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Abstract: In this work, the energy levels of light nuclei from the NU method are calculated and their structures are 

determined. Therefore, by using a local potential that is suitable for light nuclei and compatible with the Hafstad-Teller 

potential, the Schrodinger equation from NU method is solved and the energy levels and wave functions are obtained. For 

more accuracy, the spin-orbit and tensor potentials are added to the central potential as perturbation and the first-order energy 

correction is obtained for the different states of many alpha systems. So, we calculate the energy levels of nuclei 
8
Be and 

16
O 

and compare the obtained results with the experimental data and get a good agreement. This agreement is better for 
16

O than 
8
Be. Therefore, anybody can conclude that the α cluster model has the better results for the nuclei with the number of more 

alpha particles. Finally, by the strength of Coulomb
’
s repulsion, it is shown that the ground and first excited states of the 

16
O 

nucleus have the tetrahedral and square configurations, respectively. Also, it is obtained that the structures of the second and 

third excited states are as square and linear chain that these structures show the non-localized gas configuration for the higher 

excited states of 
16

O nucleus. 
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1. Introduction 

In all branches of physics, usually, the construction of a 

suitable model compatible with experiment, is very important 

for solving the physical problems. In the nuclear physics, 

because of the complexity of the force between nucleons, it is 

suitable to find a model to decrease these complexities. One 

of these models is the cluster model. This model is based on 

this assumption that the nuclei can be considered as the small 

clusters of nucleons that the most important cluster is the 

alpha particle, i.e. the nucleus of 
4
He. This model was 

created after the decay of alpha particles from the heavy 

nuclei like the radionuclides and this topic was expressed that 

probably the nuclei have been composed of the alpha 

particles [1]. Therefore in the past decades, a number of 

nuclei have been considered as the many-alpha systems. 

From the point of view the nuclear structure, the alpha decay 

is represented as the particle decay from a virtual nuclear 

level. The experimental results show that the nuclei with A > 

150 are often more unstable than the alpha decay and for the 

very light nuclei, the probability of alpha decay is very low 

[2]. However, this model has the better results for light 

nuclei, especially for the nuclei with the full layers, such as ����  and ����  [3-11]. On the other hand, in the light nuclei, 

deviation from the spherical state is interpreted as the cluster 

structure of these nuclei. 

In the other fields of physics, anyone can see the cluster 

structures. In the largest scales after the big bang due to the 

gravitational force, masses attracted each other and formed 

different clusters [12]. In the atomic structure, due to electric 

forces, the atoms join each other and create a molecule that is 

a cluster. In the subatomic structure, every nucleon is made 

of the sum of three quarks in the Hadron volume as small 

clusters. These evidences say this fact that cluster structure 

can be used in the range of nuclei so that the many nucleons 

can constitute a cluster [13-20]. This model is based on this 

principle that there are combinations of nucleons in the 

nucleus that interact together and the movement between the 
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clusters is the basis of the nucleus movement. 

So the article is organized as follows: Sec. II is started by 

introducing a local potential that is suitable for the light 

nuclei. According to this potential and using an appropriate 

approximation, the Schrodinger equation is solved through 

the NU method. In this section, the energy levels and the 

wave functions are obtained for a two-body system. Also, the 

spin-orbit and tensor potential as the perturbation terms are 

added to obtain the energy levels with higher accuracy. 

In Sec. III, the light nuclei of ��	� 	and �	��  are considered 

and energy levels of these two nuclei are obtained. These 

results are compared with the experimental data and the 

structure of �	��  nucleus in different states is determined. 

Finally, in Sec. IV, the results of paper are written. 

2. Solutions of the Schrodinger Equation 

Using the NU Method with a Local 

Potential 

In this section, the energy levels and wave functions are 

obtained from the Schrodinger equation using a local 

potential from the NU method. This potential is selected by 

the Hafstad-Teller potential [21-27]. One of the best 

potentials for the light nuclei is the Ali-Bodmer potential [28, 

29] which is compatible with the Hafstad-Teller potential. 

Therefore, a local potential similar to the Ali-Bodmer 

potential is considered for this work as a central potential. 

This potential is as: 


��
� = 
��
� + 
��
� = −
� �������� + 
� ��������� + ��� ,   (1) 

where 
� = 
 �!�  and 
� = 
 �! �� . The 
 �, 	
 � , !�  and !� are the attractive depth, the repulsive depth, the range of 

the attractive and repulsive sections, respectively. 
"  is the 

strength of Coulomb
’
s repulsion calculated from the 

Coulomb
’
s potential. In this potential, the first two terms are 
��
� or the local potential between the alpha particles. In 

the above potential, the repulsive part at small distance 

results from the Pauli exclusion principle and the attraction 

part at large distances is for the Van Der Waals potential [30]. 

Although the internal structure of the alpha particles can be 

ignored [31-34], but according to the repulsive part of this 

potential, the effects of Pauli exclusion principle are 

somewhat considered. Now, for higher accuracy, we exert the 

contribution of spin and isospin as the spin-orbit term and the 

tensor term in the total potential and consider these terms as 

the perturbation potentials because the values of these terms 

are very small compared to the central potential. So the 

potential totally is as: 
	�
� = 	
� 	�
� +	
#.%�
�&. '	 + 	
(�
�'��.       (2) 

Now in this stage, the radial portion of Schrodinger 

equation is solved with the central potential from the NU 

method and finally the terms of spin-orbit and tensor are 

applied as the perturbation potential at the energy levels. The 

radial portion of the Schrodinger equation is written as: 

)**�
� + �� )*�
� + �+ℏ� -. − 
�
� − ℏ�/�/0���+�� 1 )�
� = 0,  (3) 

where µ, l, E and R(r) are the reduced mass of clusters, the 

quantum number of angular momentum, the total energy of 

the system and the radial section of the wave function, 

respectively. Substituting Eq.(1) into Eq.(3), we get: 

)**�
� + �� )*�
� + �+ℏ� 3. − �−
� �������� + 
� ��������� + ��� � −
ℏ�/�/0���+�� 4 )�
� = 0.                    (4) 

The above equation can be written as: 

5�����5�� + �� 5����5� + ��� 67�
�8����� − 7��8����� − 79
 − 7 +
:�
�; )�
� = 0,                         (5) 

where the parameters of it are as follows: 

7� = �+��ℏ� , 7� = �+��ℏ� , 79 = �+�<ℏ� , 7 = =�= + 1�, ?� = �+@ℏ� . (6) 

Because Eq.(5) cannot be solved using analytical methods, 

so the exponential functions in this equation should be 

approximated. This approximation is up to degree at most 

two of the variable r, because the VN (r) potential, i.e. the 

potential between alpha particles which is due to the potential 

between the nucleons, is short-range(1fm). I.e. the potential 

of VN (r) at r > 1fm can be ignored. Then, ratios 
�A� and 

�A� are 

less 0.5, and degree after 2 is the 4th grade that the previous 

ratios to the power 4 are negligible. Therefore, this 

approximation is a good approximation and degree 2 of r is 

suitable for the NU method. So, Eq.(5) is simplified as: 

5�����5�� + �� 5����5� + ��� BCD�A�� + ?�E 
� + �7� − 79�
 − �7� +7 �F )�
� = 0.                           (7) 

For simplification, the parameters α, β and γ are defined 

as: 

! = −CD�A�� + ?�E ، G = 7� − 79 ، H = 7� + 7 .   (8) 

So considering these parameters and the change of variable 

r → s and the equivalence ψ (r) ≡ R(r), Eq.(7) is converted to:  

5�I�J�5J� + �J 5I�J�5J + �J� K−!L� + GL − HMN�L� = 0. (9) 

Comparing the above second order differential equation 

with the equation of hypergeometric-type NU, i.e. the below 

equation [35,36]: 

N**�L� + OP�J�Q�J�N*�L� + QR�J�Q��J�N�L� = 0,       (10) 
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Somebody can get: S̃ = 2, σ�s� = s, σR = −αs� + βs − γ.         (11) 

Now from the NU method, one can solve Eq. (9). From 

Eq.(10), the important function π (s) [35] can be obtained: 

[�L� = Q\�J�8OP�J�� ± ^_Q\�J�8OP�J�� `� − aP�L� + ?a�L�.  (12) 

Since π(s) should be a polynomial of degree at most one, 

so the discriminant of the term under the square root sign in 

the above equation is zero. Solving this equation, one can get 

values of k. By calculating k and using the equation below: 

π�L� = �� KS�L� − S̃�L�M,                    (13) 

the function τ (s) is obtained as: 

S�L� = 1 + b1 + 4H − 2√αs.	                   (14) 

After calculating function τ (s), one can obtain λ from k = 

λ − π ′ (s) and ef from the equation below: 

λf = −gS*�L� − f�f8��� a**�L�, g = 0,1,2,3, ….     (15) 

So the two parameters λ and ef are as follows: 

e = G − b!�1 + 4H� − √α, λj = 2n√α           (16) 

From equality of λ and ef, anyone can get: 

! = l�m�0�f0b�0nop�.                               (17) 

Substituting Eqs. (5) and (7) into Eq. (16), the low 

equation is obtained: 

. = −
 � − �qℏ�m�r�A�8�<p�
s�0�f0t�0nu�vwrxyx�ℏ� 0z�z0��	{|�

,         (18) 

where this equation is the eigenvalues of energy of the two 

cluster nuclei for a local potential. Let us now turn attention 

to find the radial wave functions for this potential. Taking the 

wave function ψ (s) as ψ (s) = ϕ (s)	}f�L� and substituting 

this function into Eq.(9), somebody can get: 

σ�L�}**�L� + S�L�}*�L� + e}�L� = 0,       (19) 

where ~\�J�~�J� = ��J�Q�J�,                       (20) 

and 

}f�L� = ����J� 5�5J� Kaf�L���L�M.	                     (21) 

The function }f�L� in the above equation is solution of Eq. 

(19) called Rodrigues relation. In this relation, �f  and ρ(s) 

are the normalization constant and the weight function, 

respectively. ρ(s) must satisfy condition[35,36]: 

_a�L���L�`* = S�L���L�.                       (22) 

Now using Eqs. (11), (13) and (14) into Eq. (20), ��L� is 

gotten as: 

��L� = �8√AJL���b�0no8��,                      (23) 

and substituting Eqs. (11) and (14) into Eq.(22), one can 

obtain: 

��L� = �8�√AJLb�0no,                            (24) 

for the weight function ρ(s). Considering the above equation 

for ρ(s), the function }f�L� in Eq.(21) is written as: 

}f�L� = �f��√AJL8b�0no 5�5J� _�8�√AJLf0b�0no`.  (25) 

Now we can obtain the wave function ψ(s) from ψ(s) = 

ϕ(s)	}f�L� as 

N�L� = �f�√AJL8��mb�0no0�p 5�5J� _�8�√AJLf0b�0no`.   (26) 

Using the generalized Laguerre polynomials: 

&f��� = �����f! 5�5�� ��8�	�A0f�,                (27) 

the function ψ(s) is rewritten in terms of &	Af	��� as follow: 

N�L� = �f�8√AJL��mb�0no8�p&fb�0no	m2√!	Lp,     (28) 

Where �f  is the normalization constant. For calculating �f, using the normalization condition, � 	� 	)��
�
��
	 = 	1 

and orthogonality relation of the generalized Laguerre 

polynomials, � �A0f� �8�&fA���&�A ����� = �f0A�!f! �2g +! + 1��f,�, one can get: 

�f = t f!m�√Ap√��������f0b�0no0��mf0b�0nop!.	                (29) 

So the radial wave function of the Schroedinger equation 

is as: )�
� =
t f!m�√Ap√������m�f0b�0no0�pmf0b�0nop! �8√A�
��mb�0no8�p&fb�0no	m2√!	
p.	 (30) 

Now, although the terms of tensor and spin-orbit in Eq. (2) 

are small, but since the nuclear forces depend on spin and 

isospin, for higher precision, the terms of spin-orbit and 

tensor are considered as the perturbation potentials and the 

perturbation energy levels calculated. The perturbation 

method is used for the systems in which the eigenstates are 

not easily obtained. The first-order correction of the energy 

eigenstates is equal to the expected value of the perturbed 

potential while the system is in the unperturbed state. 
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Therefore the value of the first-order perturbed energy 

correction in the state |n > is determined by: 

.f��� 	=< 	g�
#.%�
�&. '	 + 
(	�
�'����g	 >	=	� 	 Nf� �∗	�
�m
#.%�
�&. '	 + 	
(	�
�'�	��	pNf� �	�
�
�	�
,  (31) 

where Nf� ��
�  is the unperturbed wave function for the 

central potential. By equivalence Nf� �	�
� 	≡ 	)�
� and using 

Eq. (30), value of .f��� can be calculated. 

3. Clustering Examples 

3.1. The Nucleus �	� � 

The simplest example for cluster structure of the nuclei is 

the nucleus 	���  which is constructed from the two alpha 

particles. This nucleus is totally unstable in the ground state 

and decays to the two alpha particles by 92KeV. In the 

potential of Eq. (1), values of parameters for this nucleus 

should be determined. The parameter µ of this nucleus is as ���  that is equal to 1876����� . Also, the value of 
"  is 

obtained by the Coulomb
’
s potential which is 4��  for this 

nucleus. Therefore, for �	� � nucleus, 
" is equal 5.76MeV.fm 

that ��  = 1.43998MeV.fm. Also, the other parameters have 

been gotten by fitting the ground state and the first excited 

state of the �	� � nucleus to the experimental data. In this way, 

the parameters  ¡	
 �, 
 � , !�, and !� for the �	� � nucleus in 

Eq.(1) are obtained as 33.101MeV, 50.22MeV, 3.33fm, 

2.5fm, respectively[37]. Because the nucleus 	���  has two 

particles, So one can use Eqs. (18) and (30) to calculate the 

energy levels, i.e. .� , and the wave function of nucleus �	� �. 

Also, by using Eqs. (31) and (30) for this nucleus, the value 

of corrected energy, i.e.	.f���, is calculated which is equal to 

zero when the system is in the zero spin. For example, the 

value of .f���for the 00 state is equal to zero, but this value 

for the 20 state is equal 2.35MeV. We calculate the value of .f��� for the second excited state, i.e. 40, equal to 4.15MeV. 

Therefore the calculated results for the central potential and 

perturbed potentials along with the experimental data have 

been shown in Table (1). 

Table 1. The energy levels of nucleus 	���. 

The levels ¢£�¤�¥� ¢£ + ¢¦�§��¤�¥� ¢�¨©�¤�¥� ª«, ¬, ­, ® 

The ground state -57.74 -57.74 -56.50 00, 0, 0, 0 
The first excited state -54.94 -52.92 -53.47 20, 0, 2, 1 
The second excited state -53.42 -49.27 -44.80 40, 0, 4, 1  

 

3.2. The Nucleus of 	§¯° 

Because the number of alpha particles in the nucleus 	��� 

is more than two, so this many-particle system can be made 

from a variety of geometric arrangements of four alpha 

particles. Therefore the structure of the ground state of this 

nucleus should be influenced by clustering or its symmetries. 

Now we have to see which one of the α cluster configurations 

in 	��� has the lowest energy. The various calculations show 

that the tetrahedral structure is the form of the	��� ground 

state which challenges the traditional shell model picture [38-

40]. In this section, we also consider the structure of the 

ground state of the	��� nucleus by the Coulomb
’
s potential. 

The excited states of this nucleus may evolve into the square, 

or linear chain, or non-localized gas configuration [39-41]. 

For investigating this four-body system, the Jacobi 

coordinates are used that are ±�, ±�, ±9  and R, the center of 

mass as: 

±� = �²�8�²�√� , ±� = �²�0�²�8��²³√� , ±9 = �²�0�²�0�²³89�²�√�� , ) = �²�0�²�0�²³0�²�� , (32) 

where 
²�, 
²�, 
²9 and 
²n are the relative positions of the four 

particles in 	���  nucleus. In the many-particle systems, the 

mathematical formulations can be simplified by the Jacobi 

coordinates. Now the hyper-angles ´�, ´�  and the hyper-

radius quantity x are introduced as[42-44]: 

� = b±�� + ±�� + ±9�, Ѳ� = tan8� _	¸�¸�` , Ѳ� = tan8��b¸��0¸��¸³ �. (33) 

The Schrodinger equation in Eq. (8) for the N-Body 

systems in terms of the hyper-radius quantity x is: 

5�I���5�� + ¹8�� 5I���5� + ��� K−!�� + G� − HMN��� = 0,  (34) 

where D=3N-3 and N is the number of particles. In here, 

Eqs. (17) and(29) are written as: 

. = −
 � − �qℏ�m�r�A�8�<p�
s�0�f0t��8¹��0nu�qºr����ℏ� 0/�/0��	{|�

,  (35) 

and 

)�
� = t f!m�√Ap^���»�������_�f0b��8¹��0no0�`_f0b��8¹��0no`! �8√A�
��_b��8¹��0no8�`&fb��8¹��0no	m2√!	
p.           (36) 

In order to calculate energy levels, parameters of potential 

like the 	���  nucleus should be determined. First, we 

consider 
", i.e. strength of the Coulomb
’
s repulsion. If the 

ground state structure of 	���  nucleus is the tetrahedral 

structure, then 
" is equal 24��, i.e. 6 times 
"  for the 	��� 

nucleus where �� = 	1.43998½�
. ¡¾. The reduced mass µ 

for a four-body system is about three quarters of the mass of 

one of the particles. So, 
" and µ are equal 34.56MeV.fm and 
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3745.44½�
	¿�, respectively. Similar to the 	��� nucleus by 

fitting the ground state and the first excited state of the 	��� 

nucleus to the experimental data, we obtain the other 

parameters. Therefore, parameters of 
 �, 
 � , !�, and !� are 

equal 67MeV, 122.52MeV, 2fm, and 2.13fm, respectively[45-

49]. Obtained results of Eq. (35) as .�  have been shown in 

Table (2) for the different structures that are the tetrahedral, 

square and linear chain. In this table, the value of .f��� is 

calculated for every state by substituting Eq. (36) into Eq. 

(31). For example, .f���for the ground state, first excited state 

and the second excited state is equal to zero because these 

states are in the zero spin, but in the third excited state, it is 

not zero but it has different results for any of the three 

structures because these three structures have different wave 

functions. The value of .f��� for the third excited state in the 

tetrahedral structure is equal to 1.32Mev. Also, .f��� for this 

state in the structures of the square and linear chain are 

calculated as 1.28MeV and 2.54MeV, respectively. These 

results have been shown in the Table (2). From these two 

tables, one can see that the difference between the 

computational and experimental results for 	���  nucleus is 

less than 	��� . For example in the ground state, this 

difference for 	��� is equal to 1.24 MeV and for 	��� is equal 

to 0.71 MeV. Therefore, one can say that the cluster model 

has better solutions for the nuclei with the number of more 

alpha particles. One of the other issues that will be obtained 

in this paper, is the configuration of the alpha particles for 

the 	���  nucleus in the different states. We consider three 

configurations for the first four states of this nucleus like the 

tetrahedral, square and linear chain that have different factors 

like strength of the Coulomb
’
s repulsion i.e. 
" , the wave 

function, the repulsive and attractive ranges of the central 

potential. The configuration of states of the 	��� nucleus is 

determined by comparing the obtained energy of each state to 

the experimental data. So, if the calculated energy for a state 

in a probable structure is nearer to the experimental data, 

then we consider the hypothetical structure as the actual 

configuration of that state. Therefore if the structure of the 

ground state of 	���  nucleus is square, so 
"  is equal to 4m4	 +	√2p�� = 31.185½�
. ¡¾ . By using this value for 
", the energy level in Eq.(35) is equal to ( -126.17)MeV that 

it
’
s difference with the experimental data is more than the 

previous state, i.e. the tetrahedral structure that it’s level 

energy is -126.91MeV. This topic shows that the tetrahedral 

structure is the ground state form of 	��� nucleus (00). I.e, in 

the ground state of this nucleus, the distance of between of 

the alpha particles is equal. 

Table 2. The energy levels of the nucleus 	���. 

levels ¢£�¤�¥� ¢£ + ¢¦�§��¤�¥� ¢�¨©�¤�¥� ª0, ¬, ­, ® 

the ground state 
tetrahedral:-126.91 
square: -126.17 

tetrahedral:-126.91 
square:-126.17 

-127.62 00, 0, 0, 0 

the first excited state 

tetrahedral:-125.71 

square:-125.32 
linear chain: -126.82 

tetrahedral:-125.71 

square:-125.32 
linear chain: -126.82 

-121.57 00, 0, 0, 0 

the second excited state 

tetrahedral:-124.96 

square:-124.13 
linear chain: -125.47 

tetrahedral:-124.96 

square:-124.13 
linear chain: -125.47 

-121.48 00, 0, 0, 0 

the third excited state 

tetrahedral:-124.64 

square:-124.79 
linear chain: -124.89 

tetrahedral:-123.32 

square:-123.51 
linear chain: -122.35 

-120.07 20, 0, 2, 1 

 
Now we will determine configuration of the first excited 

state of the 	��� nucleus [50]. If this structure is square, so 
" 	= 	4m4	 + 	√2p�� 	= 	31.185½�
. ¡¾ . Therefore the 

energy level of this state for the square structure according to 

Eq.(35) is equal -125.32MeV. Also, if the configuration of 

the first excited state is the linear chain, then 
"  is equal Á99 	�� , i.e. 
" 	= 	25.439½�
 . So the energy of the first 

excited state with the linear chain structure is equal to -

126.82 MeV. Therefore to compare these results with the 

experimental data for the first excited state, i.e. the value of -

121.57 MeV, somebody can conclude that the value of -

125.32 MeV is nearer to the experimental data. So the 

configuration of the first excited state of the 	��� nucleus is 

square. Now, from Table (2) for the second excited state, one 

can simply understand that the energy of the square 

configuration is nearer to the experimental data. Therefore 

the configuration of the second excited state is square. Finally, 

for the third excited state, considering Table (2), the total 

energy of the linear chain structure equal to -122.35MeV is 

nearer to the experimental data. Therefore, the structure of the 

third excited state for 	��� nucleus in the cluster model is the 

linear chain. This result is very important because it shows that 

in the higher excited states, the structure of this nucleus in the 

cluster model limit to the non-localized gas configuration, i.e. 

the decentralized structure. Of course, the structure of the 

ground state and the first excited state of this nucleus have 

been obtained already [38, 39]. 

4. Conclusions 

In this work, the light nuclei have been studied in the alpha 

cluster model. First, the Schrodinger equation was solved 

with a local potential from NU method and the energy levels 

and the wave functions were obtained. These results were 

used for the nuclei of 	���  and 	���  as the many-alpha 

systems and a good agreement was obtained between the 

computational and experimental data. The results of this 

paper showed that by increasing the number of alpha 

particles, the agreement between the experimental data and 

the numerical consequences was better. So we concluded that 

the cluster structure was a better approximation for the nuclei 

with the number of more alpha particles. Finally, by 
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comparing the calculated energy to the experimental data, we 

obtained that the ground state of the 	���  nucleus in the 

cluster model has the tetrahedral structure and configuration 

of the first and second excited state of this nucleus are as the 

square structure. Also, it was gotten that the third excited 

state of the 	��� nucleus in the cluster model has the linear 

chain structure which is a good result for this nucleus 

because this result show that the higher excited states of the 	��� nucleus in the cluster model limit to the non-localized 

gas configuration, i.e. the decentralized structure. 
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