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Abstract: In this paper, use is made of the tools of analytical mechanics and the concept of operators to obtain the time-

independent and time-dependent Schrodinger wave equations for quantum mechanical systems. Derivations are embarked 

upon of expressions for reflection and transmission coefficients for a particle of mass m as well as of energy E moving under 

different potential set-ups across step functions, barriers and well functions. The tunneling effect is then discussed. The 

transmission probability equation obtained in this research has been observed to be more accurate than the transmission 

probability expression deduced by some researchers in 2014 for a tunneling barrier. This research work finds applications in 

nuclear magnetic resonance imaging systems, synchrotrons, gyrators, accelerators, and in electrodynamics. 
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1. Introduction 

Several texts and past research work on this research area 

or topic employ diverse and very difficult approaches in the 

treatment of potential steps, barriers, wells and the tunneling 

effect [1, 2]. In this paper, use would be made of a simplified 

model in deriving the time-independent and time-dependent 

Schrodinger Wave Equations (SWEs) as outlined in Section 

2 [3-5]. In Section 3, some illumination will be shed on 

potential step functions as encountered by moving particles 

in systems and devices. Further, in Section 4, the potential 

barrier functions as encountered by moving particles in 

devices and systems will be treated with derivations and 

discussions [6, 7]. Section 5 explains the concept of potential 

well of depth V0 in a scenario in which it is encountered by 

some particle in motion of mass m and of energy E (where 

both cases, E > V0 and E < V0, are treated). Section 6 offers 

to explain the ‘tunneling effect’ and some of its applications 

[8-10]. The concluding remarks will be presented in Section 

7. 

2. Schrodinger Wave Equations 

The Lagrange’s equation for a conservative mechanical 

system is given by: 

��� � ������ −	 ����� =	 �����                                (1) 

But 
� 
��⁄  = 0. Therefore, Equation (1) becomes 

��� � ������ −	 ����� = 0                                   (2) 

The Langragian (L) of the mechanical system (quantum or 

classical) is given by: 

L = T- U                                          (3) 

Where T = kinetic energy; U = Potential energy; ��  = 

generalized coordinate. 

����� =	 �(���)��� = ����� =	��� =	��                    (4) 

Hence we have: 

∑�� ����� = �(��)� = 2�                          (5) 

The Hamiltonian (H) of a mechanical system is its total 

energy, and is given by: 
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� = 	��� 
 
�� −  = 2� 	  � 2� 	 �� 	 !� 
� 2� 	 � " ! � � " !                                (6) 

Let p be the momentum and m the mass of the mechanical 

system. Then 

� � 	 #$�% " ! � &                                    (7) 

Using operators, equation (7) becomes 

�' � 	 #($�% "	!' � 	&)                                     (8) 

Introducing the concept of wave function Ψ�+�  in one 

dimension, we have: 

�'Ψ�+� 	� 	 #($,�-��% "	!'�+�Ψ�+� 	� 	&)Ψ�+�                (9) 

The momentum operator is given by: 

.̂ � 01 ��- � 	01 ��-                            (10) 

⟹	�.̂�� �		1� �$�-$ �		1� �$�-$           (11) 

By virtue of equation (11), equation (9) becomes: 

�'Ψ�+� 	� 		1� �$�-$Ψ�+� "	!'�+�Ψ�+� 	� 	&)Ψ�+�      (12) 

Equation (12) is the time-independent Schrödinger wave 

equation (SWE). For time-dependent SWE, the total energy 

operator �&)� is given by: 

&) � 		01 ���                                     (13) 

By virtue of equation (13), equation (12) becomes: 

�Ψ�+, 4� � 	1� �$�-$Ψ�+, 4� " 	!�+�Ψ�+, 4� � 	01 ��� 	Ψ�+, 4� (14) 

Equation (14) is called the time-dependent SWE. 

SWEs are used for determining the expressions of 

probabilities and computing values for energy states (En) and 

wave functions Ψ5	678	�9:549�	�;<=:50<:>	?@?4;�?. 

 

Figure 1. A potential step with a moving particle of mass m and of energy E 

(Where E > VO). 

3. Potential Step Functions 

Let us consider Figure 1 which displays a potential step of 

height VO which is encountered by a particle of energy E 

(Where E > VO). Then the potential step is described by: 

B�+� � 	 C0; 	+	 E 0
BF; + G 0                                 (15) 

For region I in figure 1 in the case where E > VO, the SWE 

is: 

�$,H�-��-$ "	IJ�ΨK�+� � 	0; 678	+ E 	0                (16) 

Where 	IJ� � 2�&/1�. 

For region (II) in figure 1 in the case where E > VO, the 

SWE is written as: 

�$,$�-��-$ "	I��Ψ��+� � 0; 	678	+ G 0                (17) 

Where 	I�� � 2��& 	 BF�/1�. 

On solving equations (15) and (16), we get: ΨJ�+� � 	M;�NH- " O;��NP-;	                    (18) Ψ��+� � 	Q;�N$- " R;��N$- �	Q;�N$-; 678	+	 G 0                     (19) 

Where A, B and C are amplitude constants and D = 0. 

The probability that the moving particle will be reflected 

(R) is: 

R � 	 TU T�V                                       (20) 

The probability that the moving particle is transmitted (T) 

is given by: � �	 T� T�⁄                                      (21) 

Where: T� � 05<0W;54	<988;54	W;5?04@; TU � 8;6>;<4;W	<988;54	W;5?04@; T� � 48:5?�044;W	<988;54	W;5?04@. 

It has been found that: 

T� �	 1NH% |M|�                                   (22) 

TU �	 1NH% |O|�                               (23) 

T� �	 1N$% |Q|�                               (24) 

Thus, by virtue of Equations 22 - 24, we obtain: 

Reflection coefficient, 

Y � 	 TU T�⁄ � 	 |Z|$|[|$                             (25) 
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Transmission coefficient, 

� =	 T� T� = (I� IJ⁄ ) |\|$|[|$V 	                         (26) 

To find the expressions for R and T in terms of IJ and I�, 

we proceed as follows. Applying the boundary conditions on 

equations (17) and (18), we get: ΨK(+)| -]^ =	Ψ�(+)| -]^	                       (27) 

�,P(-)�- _-]^ =	 �,$(-)�- _-]^                       (28) 

Thus, we get: 

A+B = C                                      (29) 

KIA – KIB = K2C.                             (30) 

Solving for B, we get: 

O = `IJ −	I�IJ " I� aM 

⟹	Z[ =	 bNP�N$NPN$ c                                (31) 

Solving for C, we obtain: 

Q = 	` 2IJIJ " I�aM 

⟹	 \[ � � �NPNPdN$�	                               (32) 

Hence, we get: 

Y � 	 |Z|$|[|$ �	 �NP�	N$�$�NPd	N$�$                         (33) 

And 

� � 	 �IJ I�⁄ � |Q|�|M|� 

�	 eNPN$�NPdN$�$                                       (34) 

At this point, let us find the reflection coefficient, R, and 

the transmission coefficient, T, for the wave function of a 

particle of a mass m and of energy E encountering a potential 

step, VO, represented by: 

B�+� � 	 f0; 	+ E 	0BF; 	+ g 0                              (35) 

Where & E BF. See Figure 2. 

 

Figure 2. Potential step of height VO encountered by a particle of mass m of 

energy E (where E < VO). 

For region (I), the SWE is: 

�$,P�-��-$ "	IJ�ΨJ�+� � 0; + E 	0                      (36) 

On solving equation (36), we get: ΨJ�+� � 	Ψ��+� 	" 	ΨU�+� � M;�NH- " O;��NP- 	         (37) 

Where: Ψ��+� � 	M;�NH-; ΨU�+� � O;��NP- 	; 
A,B = amplitude constants; and IJ� � �%h1$ . 
For region (II), the SWE is written as: 

�$,$�-��-$ 		 	I��Ψ��+� � 0; +	 G 0                           (38) 

On solving Equation (38), we get: Ψ��+� � Q;�i$- " R;��N$- � Q;�i$- � Ψ��+�.                             (39) 

Where: D = 0; 

C = amplitude constant and I� �	 �%�jk�h�1$ . 

Let T� � .87l:l0>04@	05<0W;54	<988;54	W;5?04@; TU � .87l:l0>04@	8;6>;<4;W	<988;54	W;5?04@; T� � .87l:l0>04@	48:5?�044;W	<988;54	W;5?04@. 
Then 

Y � 	 mnm� �	 m�m� 	� 1                            (40) 

� � mpm� � m̂� � 0	                               (41) 

This means the reflection is complete. 
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4. Potential Barriers 

Let us consider the potential barrier in Figure 3. 

 

Figure 3. A potential barrier of width a and of height VO encountered by a 

moving object or particle of mass M and of energy E (where E> VO). 

The potential barrier in figure 3 can be represented by: 

B(+) = 	 C 0; 	+ E 0B̂ ; 0 q + q :0; 	+ g :                      (42) 

For region (I), the SWE is: 

�$,H�-��-$ "	IJ�ΨK�+� � 	0; 678	+ E 	0                (43) 

On solving equation (43), we get: ΨJ�+� � 	M;�NH- " O;��NP-; + E 0                  (44) 

Where IJ� �	2�& 1�V ; 

A,B =amplitude constants. 

For region II, the SWE is written as: 

�$,$�-��-$ "	I��Ψ��+� � 	0; 0 q + q :	                  (45) 

On solving equation (45), we have: Ψ��+� � Q;�i$- " R;��N$-; 	0 q + q :	           (46) 

Where: 

I�� �	 �%�h�jk�1$ ; 

C,D = amplitude constants. 

For region (III), the SWE is written as: 

�$,r�-��-$ "	IJ�Ψs�+� � 	0; 678	+ g 	:               (47) 

On solving equation (47), we obtain: Ψs�+� � &;�NP- " t;��NP-; 	+ g : � &;�NP-                                      (48) 

F= 0, which implies there is no reflection in this region. 

To determine A, B, C, D and E, let us use the boundary 

conditions which work out here to be the following: ΨJ�0� � Ψ��0�                               (49) 

�,P�^��- �	 �,$�^��- 	                             (50) 

Ψ��:� � Ψs�:�                              (51) 

�,$�u��- �	 �,r�u��-                              (52) 

Equations (49-52) work out to give us the following: 

A + B = C + D                             (53) 0IJ�M 	 O� � 0I��Q 	 R�	                     (54) Q;�N$u " R;��N$u � &;�NPu                     (55) 0I�Q;�N$u 	 0I�R;��N$u � 0IJ&;�NPu	          (56) & Is found to be: 

& � 4IJI�;�NPu. Mw4IJI�<7?�I�:� 	 20�IJ� " I���?05�I�:�x�J   (57) 

The transmission coefficient T is: � �	 |&|�|M|� 

� 	y1 "	Je �NP$�N$$NPN$ �� ?05��I�:�z�J                (58) 

The reflection coefficient R is: Y � 	 |O|�|M|� 

�	 {1 " e� |}k�� |}k�J�
~��$�u�$�}k1$ �P$� |}k�J�

P$��
�J

                (59) 

Now for a potential barrier of height BF, let us consider the 

case where the energy E of the moving particle of mass m is 

less than BF 	(i.e. E< BF). Refer to figure 4. 

 

Figure 4. A potential barrier of height VO and of width ‘a’ encountered by a 

moving particle of mass m and of energy E (where E < VO). 

The potential barrier is described by: 
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B(+) = 	 C 0; 	+ E 0B̂ ; 0 q + q :0; 	+ g :                         (60) 

For region (I), the SWE is: 

�$,H�-��-$ "	IJ�ΨK�+� � 	0; 678	+ E 	0                (61) 

Upon solving equation (61), we obtain: ΨJ�+� � 	M;�NH- " O;��NP-; + E 0                      (62) 

Where IJ� �	2�& 1�V ; 

For region (II), we have as SWE: 

�$,$�-��-$ "	I��Ψ��+� � 	0; 	0 q + q :                  (63) 

Where I�� �	 �%�jk�h�1$  

The solution for equation (63) is: Q;�i$- " R;��N$-; 	0 q + q :                      (64) 

For region (III), the SWE is: 

�$,r�-��-$ "	IJ�Ψs�+� � 	0; 	+ g 	:                    (65) 

On solving equation (65), we get: Ψs�+� � &;�NP- " t;��NP-; 	+ g : 

But F = 0, since there is no reflection in region (III), 

therefore we have: Ψs�+� � &;�NP-; + g :                      (66) 

The reflection coefficient R is: 

Y � 	 |Z|$|[|$                                     (67) 

The transmission coefficient T is: 

� �	 |h|$|[|$                                      (68) 

To determine A, B and E, let us use the following 

boundary conditions: ΨJ�0� � Ψ��0�                                 (69) 

�,P�^��- �	 �,$�^��- 	                               (70) 

Ψ��:� � Ψs�:�                                  (71) 

�,$�u��- �	 �,r�u��-                                  (72) 

Solving for A, B and E, we obtain (after substitutions in 

equations 67 and 68): 

 Y �	�NP$dN$$NPN$ �� ?05=��I�:�. y4<7?=��I�:� "

�NP$dN$$NPN$ �� ?05=��I�:�	z�J                 (73) 

� � 4 y4<7?=��I�:� " �NP$�N$$NPN$ �� ?05=��I�:�	z�J    (74) 

5. Potential Wells 

Let us consider a moving particle of mass m and of energy 

E trapped in a potential well of infinite walls as shown in 

Figure 5. 

 

Figure 5. A potential well of width ‘a’. 

The potential well is described by: 

B�+� � 	 C ∞; 	+ E 00	; 0 q + q :∞; 	+ g :                        (75) 

The wave functions in regions (I) and (III) are zero. Hence 

for region (II), inside the well, we have as the SWE: 1�2� W�Ψ�+�W+� � &Ψ�+� 
W�Ψ�+�W+� �		2�&1� Ψ�+� 
⟹	 �$,�-��-$ "	I�Ψ�+� � 0                         (76) 

Where I� � 2�&/1� 

Solving equation (76), we get: Ψ�+� � M?05��+� " O<7?��+�               (77) 

The well is infinite at x = 0 and at x = a. Hence, Ψ�0� � 0 Ψ�:� � 0 Ψ�0� � 0 " O<7?	�0� � 0 ⟹ O � 0                                        (78) Ψ�:� � M?05�I:� � 0 
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But M	 � 0. Therefore: ?05�I:� � 0 I: � 5�; 	5 � 1,2,3,4, …… ⟹ I � �5�/:� 
But I� � �%h1$ �	5���/:� 

∴ & � 	&� �	I�1�2�  

�	 �$�$1$�%u$                                      (79) 

(Where 5	 � 1,2,3,4, ……). Equation (79) shows that the 

energy states in a potential well (and in all quantum systems) 

are quantized. Thus, the wave function is quantized also in a 

potential well. It is given by: 

Ψ��+� � 	 ��u�P$ ?05	 ���-u � ; 5 � 1, 2, 3, 4, ….               (80) 

6. The Tunneling Effect 

Let us investigate the motion of a particle of mass m and 

of energy E in the presence of a square potential barrier of 

the form: B�+� � 	 B̂ �: 	 |+|�                             (81) 

As shown in Figure 6. 

 

Figure 6. A potential barrier. 

A classical particle will be reflected from the potential 

barrier if its energy E is less than the barrier height 	B̂ . 

According to quantum theory, there is a finite probability of 

the particle penetrating the potential barrier and being 

transmitted even if E <	B̂ . This purely quantum mechanical 

phenomenon is known as “tunneling effect”. Important 

examples of tunneling effect are alpha decay of nuclei, the 

cold emission or the tunneling of cooper pairs between 

superconductors separated by a thin insulating layer. 

If two superconductors are connected by a thin layer of 

insulating material with no electrostatic potential present, 

there is a quantum mechanical penetration, through the layer 

of electrons existing as cooper pairs. This arrangement (of 

superconductor-thin insulator-superconductor) is called a 

Josephon junction, and the tunneling is known as the dc 

Josephon effect. 

If a steady potential difference V is applied, an oscillatory 

current passes through the layer of angular frequency � � 2�6 � 2��;B/=�, where e is the effective charge of the 

cooper pairs. This is known as the AC Josephson effect. 

Let us solve the SWE for the three regions indicated 

around/in the potential barrier of Figure 6. The general form 

of the solution is: 

Ψ�+� � 	� �;�NP- " Y;��NP-	; + E 	:Q;�N$- " R;N$-; 		: q + q :�;�NP- " �;��NP-; 	+ g :	        (82) 

Where: 

IJ �	 �2�&�P$ 1� ; I� �	 w�%�jk�h�xP$1  

In order to relate the amplitude constants I, R, C, D and G, 

we use the continuity requirements for the wave function Ψ 

and its derivatives. 

Thus, at x = -a: �;��NPu " Y;�NPu � Q;N$u " R;�N$u;	         (83) 0I��;��NPu " Y;�NPu� � 		I��Q;N$u 	 R;�N$u�     (84) 

The above can be put in the following matrix form 

y;��NPu ;�NPu;��NPu 	;�NPuz b �Yc � 	 � ;N$u ;�N$u�N$��$�NP ��N$���$�NP � bQRc    (85) 

b �Yc � 	12 y ;�NPu ;�NPu;��NPu 	;�NPuz � ;N$u ;�N$u0I�;N$uIJ 	 0I�;�N$uIJ � bQRc 
� ��:� bQRc                           (86) 

Where: 

��:� � 	 J� ���
����1 "	 �N$NP � ;N$ud�NPu� ��1 		 �N$NP � ;�N$ud�NPu�
��1 		 �N$NP � ;N$u��NPu� ��1 "	 �N$NP � ;�N$u��NPu����

��
  

(87) 

At x=a: 

b��c � ��	:� bQRc                       (88) 

Thus, from Equations (86) and (88), we have: 

b �Yc � ��:���J�	:� b��c                       (89) 
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Where: 

��J(−:) = 	 J� ���
�� ��1 −	 �NPN$ � ;N$ud�NPu� ��1 "	 �NPN$ � ;N$u��NPu�
��1 "	 �NPN$ � ;�N$ud�NPu� ��1 −	 �NPN$ � ;�N$u��NPu����

��
  (90) 

Hence we have: 

b �Yc = 	 ��<7?ℎ2I�:	 "	 �∝� ?05ℎ2IJ:� ;��NPu ��¡� ?05ℎ2I�:��− �¡� ?05ℎ2I�:� �<7?ℎ2I�:	 − �∝� ?05ℎ2IJ:� ;���NPu� . b��c	                       (91) 

Where: 

∝	= 	N$NP −	NPN$ 	 ; 	¢ = 	NPN$ "	N$NP	                       (92) 

Let us now confine ourselves to the situation where: 

A particle of mass m and of energy E is incident from the 

left-hand side of the potential barrier. 

For this case, G=O since there is no reflection in region 

III, and Eq. (91) becomes 

� = �. �<7?ℎ2I�: "	 �∝� ?05ℎ2I�:� ;��NPu                 (93) 

Y = �. ���¡� � ?05ℎ2I�:                    (94) 

The transmission coefficient, Tr(E), is defined as the ratio 

of the transmitted wave amplitude to the incident wave 

amplitude: 

�8(&) = 	 �K =	 ��$��P�£F~¤�N$ud	�∝$ ~��¤�N$u                       (95) 

The modulus squared of the above represents the 

probability (Pt) that a particle incident on the potential barrier 

will penetrate it. Thus, 

�� =	 |�8(&)|� =	 JJd	`Jd	`Jd	∝$¥ a~��¤$�N$ua � 0.        (96) 

Thus, there is a finite probability ��	(� 0) that a particle 

will be transmitted quantum mechanically even if its energy 

E is less than the potential barrier height, Vo. 

If the potential barrier is very high and very wide, then 

Ka >> 1 

And ?05ℎ2I�:	 ≃ 	 12 ;�N$u 	≫ 1 

Hence, we have: 

��	 	≅ 	 �1 "	∝$e ��J . (4;�eN$u)                  (97) 

or 

��	 =	 J©h(jk�h)jk$ . ;+. ª�e∝(�%(jk�h))P$ℏ «                   (98) 

According to the research finding of some researchers 

[Ref. 19] in 2014, the transmission probability (T(E)) 

through a tunneling barrier is: 

�(&) = 	¬ eini­$i®ind	i®)$i­	$d	¯in$i®$d	i­$°i­$�	in$d	i®$±²~��$(i­�) 	678	& > B³
eini­$i®ind	i®)$i­	$d	¯in$i®$d	i­$°i­$�	in$d	i®$±²~��¤$(i­�) 	678	BF < & < B³ 	   (99) 

Where: (Vb - Vo) = the barrier height; Kr = [2mE]
1/2

; Kp = 

[2m(E-Vb)]
1/2

; Kb = [2m(Vb – E)]
1/2

; and 

L = the barrier width. 

It has been found that equation (99) is less accurate than 

equation (96) in the description of the tunneling effect. The 

tunneling effect is utilized in the design of the devices such 

as tunnel diodes. 

7. Conclusion 

A simplified approach has been employed in deriving the 

time- independent and time-dependent Schrodinger wave 

Equations (SWEs). The popular concepts of quantum 

mechanical potential steps, barriers and wells have been 

treated clearly. The quantum phenomenon of tunneling effect 

has been explained clearly and its applications have been 

mentioned. The transmission probability equation obtained in 

this research is observed to be more accurate than the 

transmission probability expression deduced by some 

researchers in 2014. 
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