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Abstract: The effects of the constant applied magnetic field as a function of its angle with the channel walls is studied 

using finite elements. This is done for insulating channel walls and for two insulating and two conducting walls forming a 

short-circuited magnetohydrodynamic generator. The volumetric flow rate is kept constant by regulating the pressure 

gradient as a function of the applied magnetic induction angle. The necessary pressure gradient diminishes as the angle 

increases from 0 to 45 degrees because the electrical current flow diminishes. This paper affords a simple and quick method 

for solving MHD generator problems that defied solution for many years. 
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1. Introduction 

Much has been written about channels carrying 

conducting fluids
[l-22]

. Bozkay and Tezer-Sezgin
[22] 

are 

among the first to investigate the MHD channel with a 

skewed magnetic field. Their solution is done for only one 

angle of tilt and they do not consider the MHD generator 

configuration. When a magnetic field is applied to the 

channel, usually from an external source such as a magnet, 

the generated currents alter the velocity profile. To find the 

altered velocity profile, the usual fluid flow equations must 

be coupled with the Maxwell equations describing the 

generated electrical currents that alter the velocity profile. 

The applied magnetic fields used in most of the papers in 

the literature are directed along two of the parallel walls of 

the channel and are perpendicular to the other walls. In this 

paper the magnetic field is applied at an angle to the walls. 

A channel with ideally insulating walls and a short-

circuited magnetohydrodynamic generator configuration 

comprising two insulating walls and two ideally 

conducting is considered. In the MHD generator half of the 

current returns above and below the generator. Where the 

current returns affects the induced magnetic induction field 

which in turn influences the velocity profile. A multitude of 

other cases could be considered, but are not presented here 

for brevity. 

2. Magnetohydrodynamic Equations 

The geometry is shown in Fig. 1. The conducting fluid 

flows in the x direction under the action of a constant 

pressure gradient. The applied steady magnetic induction, 

BO is depicted at an angle to the z axis. Due to symmetry it 

is sufficient to solve the problem for �/4 ≤ � ≤ �/2 

where � is the angle between the y axis and the magnetic 

induction, BO. As in the case where BO is parallel to one 

of the channel walls, conducting fluid flowing in the x 

direction and passing through a magnetic field in the yz 

plane induces electric fields in the yz plane given by 

Maxwell's curl(H) equation combined with the special 

theory of relativity as shown below. Here we choose an 

observer travelling in the fluid. There results 

 

Figure 1. The MHD channel. 
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∇x H = -z		Hx/		y + y		Hx/		z              (1) 

where Hx is the induced magnetic intensity. Then the 

current densities in the y and z direction are given by 

Jy = 	Hx/		z                              (2) 

and 

Jz = -		Hx/		y                             (3) 

The above quantities are seen by an observer riding on 

the channel walls and those seen by an observer riding in 

the conducting fluid are denoted with an asterisk. The 

Maxwell-Lorentz transformation based upon special 

relativity yields 

J* = J = σ(E* + V x B)                       (4) 

where J is the same to both observers. Because Ohm's law 

is good only in the rest frame of the moving conductor, it 

must be used as given in Eq.4. From the V x E = 0 it 

follows that 

	Ez /		y = 	Ey /		z                          (5) 

Because the velocity,U is in the x direction and the 

applied magnetic field in the yz plane 

V x B = U(-yBOz + zBOy )                        (6) 

Let H = h + BO/µO where H is the total magnetic 

intensity vector, h is the induced magnetic intensity and BO 
is the applied magnetic induction. Also we assume B = 

h+BO where B is the total magnetic induction and h is the 

induced magnetic induction that is very small compared to 

B. Eq.3 becomes 

	hx/		y = -<(Ez + U BOy )                     (7) 

Substituting Jy as given in Eq.4 into Eq.2 yields 

	hx/		z = <(Ey - U BOz )                        (8) 

Eq.7 is differentiated with respect y to yield 

	
2
hx/		

2
y = -σ		Ez /		y - σ (BOy 	U/		y + U 	BOy /		y)   (9) 

and Eq.8 is differentiated with respect z to yield 

	
2
hx/		

2
z = σ		Ey /		z - σ (BOz 	U/		z + U 	BOz /		z)   (10) 

The addition of Eq.9 and Eq.10 when the V x E = 0 from 

Eq.5 and V · B = 0 are also substituted gives 

∇	
hx + σ (BOy 	U/	y + BOz 	U/	z) = 0         (11) 

which is the magnetohydrodynamic magnetic diffusion 

equation that must be solved simultaneously with the 

appropriate Navier-Stokes equation. The  induced currents 

in the fluid cause a retarding force on the fluid given by 

J x B = -Jz BOy + Jy BOz = BOy (	hx/	y) + BOz (	hx/	z)  (12) 

Using this as the electromagnetic body force in the 

Navier-Stokes equation for the U, the x component of fluid 

velocity yields 

µf	∇	



 U + BOy (	hx/	y) + BOz (	hx/	z) = 	P/	x       (13) 

where 	P/	x is the pressure gradient that propels the fluid. 

When the magnetic induction is parallel to one of the walls 

of Fig.1, Eq.11 and Eq.12 reduce to the standard channel 

flow equations given by Hughes and Young 
[l9] 

at page 199. 

3. Boundary Conditions 

Considering ideal insulating and conducting walls there 

are many configurations for a rectangular channel. The 

boundary condition on velocity at a fixed channel wall is U 

= 0. If the walls are electrical insulators the induced current 

circulates inside the channel, never exiting and produces no 

magnetic field at the walls. Then hx = 0 at all of the 

boundaries. For conducting boundaries the normal 

derivative of induced magnetic intensity is zero or 	hx/	n 

= 0. 

4. Insulating Walls Solution 

This is the simplest case when the applied magnetic 

induction is in either the y or z direction. Then the solution 

is found by standard methods for solving simple coupled 

partial differential equations
[l9] 

executed at page 204. The 

resulting solutions involve infinite series of cisoidal and 

hyperbolic functions that shed little light on the physical 

results without rather tedious calculations. The equations 

presented here for solution do not have constant 

coefficients and it is not clear that analytical solutions are 

possible. If they were they might be very hard to evaluate 

numerically. For example By = BO cos�	= yBO (y
2 + z

2
)

-l/2 

and Bz = zBO (y
2 + z

2
)

-l/2 would make the solutions to the 

partial differential equations given above rather difficult. 

The easy method of solution is to use a finite element 

numerical solution which is very useful in a closed 

boundary problem. Here FLEXpde software published by 

www.PDEsolutions.com is used. 

4.1. Finite Element Program 

The finite element code for solving Eq.11 and Eq.13 is 

presented below. It comprises 38 numbered lines and could 

be executed in a trial download of the aforementioned 

software. It is set to work in the coordinates of Fig.1 and is 

not in nondimensional form. The conducting fluid is liquid 

mercury (see lines 13 and 14) at room temperature, the 

walls are perfect insulators and the applied magnetic 

induction established in line 17 is 0.002 Tesla or 20 gauss. 

The angle of the magnetic induction to the y axis is 

incremented from 0 to 45 degrees in steps of 5 degrees. 

This is accomplished in lines 15, 16 and 17. Lines 10, 11, 

20 and 24 keep the volumetric flow in the channel the same 

for all angles of the applied magnetic induction. The 

program ignores any text enclosed in { } and any text 
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occurring after! Lines 25 through 28 describe the geometry 

and set the boundary conditions. Line 27 starts at the lower 

left side of the geometry and value(U)=0 value(h)=0 sets 

the fluid velocity and the induced magnetic intensity to 

zero on the complete channel boundary. When starting a 

new problem it is best to omit lines 3 and 4 to get a quick 

and rough solution. Line 3 sets the error limit and line 4 

requests cubic rather than quadratic elements. Lines 30 and 

31 allow the operator to see the solutions as they are done. 

Lines 32 to 37 produce plots of the contours of U and h and 

a vector plot of the current density, J. Line 37 a plot of Pg 

vs �. 

{1} TITLE 'Magnetohydrodynamic Insulating Channel 

Flow (MHDIC1.pde)' 

{2} SELECT 

{3} errlim = 1e-04 

{4} cubic = on 

{5} COORDINATES 

{6} CARTESIAN( 'z' , 'y' ) 

{7} VARIABLES 

{8} U 

{9} h 

{10} GLOBAL VARIABLES 

{11} Pg ! pressure gradient 

{12} DEFINITIONS 

{13} k = 1 sigma = 1.016E6 ! mercury @ 20 C 

{14} muf = 1.55E-03 ! mercury 

{15} theta = staged(0,5,10,15,20,25,30,35,40,45) 

{16} sang = Pi*theta/180 

{17} B0y = 0.002*cos(sang) B0z = 0.002*sin(sang) ! in 

tesla 

{18} Bm = (B0y^2+B0z^2)^0.5 

{19} J = curl(h) 

{20} Qcontrol=integral(U) { the control function for 

total flow volume } 

{21} EQUATIONS 

{22} U: muf*div(grad(U)) + B0y*Dy(h)+B0z*Dz(h) = 

Pg ! Eq.13 

{23} H: div(grad(H)) + sigma*(B0y*Dy(U)+B0z*Dz(U)) 

= 0 !Eq.11 

{24} Pg: Qcontrol = -50 {determines the negative 

pressure gradient} 

{25} BOUNDARIES 

{26} region 1 

{27} start(0,0) value(U)=0 value(h)=0 line 

{28} to (1,0) to (1,1) to (0,1) to finish 

{29} MONITORS 

{30} contour(U) report(Bm) report(theta) report(Pg) 

{31} vector(J) norm report(Bm) report(theta) report(Pg) 

{32} PLOTS 

{33} contour(U) as 'Velocity Profile' report(Bm) 

report(theta) report(Pg) 

{34} contour(h) as 'Induced Magnetic Intensity' 

report(Bm) report(theta) report(Pg) report(integral(-Dy(h))) 

{35} vector(J) norm as 'Current Density Vectors' 

report(Bm) report(theta) report(Pg) 

{36} HISTORIES 

{37} history(Pg) vs theta as 'Pressure Gradient' 

{38} END 

4.2. Velocity Profiles 

The velocity profiles for � = 0, 15, 30 and 45 degrees are 

presented here. When the reader makes his own 

calculations using this software smaller increments of 

angle can be used to produce movies of the velocity profile 

as e varies. 

 

Figure 2. Velocity profile for � = 0. 
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Figure 3. Velocity profile for � = 15 degrees. 

 

Figure 4. Velocity profile for � = 30 degrees. 
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Figure 5. Velocity profile for � = 45 degrees. 

 

Figure 6. Magnetic intensity for � = 0°. 

4.3. Induced Magnetic Intensity 

The induced magnetic intensity, hx is also plotted for the 

same values of e. The lines of constant magnetic intensity 

are the lines of current flow and like the velocity profile the 

magnetic intensity is greatly influenced by the applied 

magnetic induction. In Fig.6 on the line along y = 0, the 

induced magnetic intensity is zero. This indicates no 

current flows on that line. As � increases that line where h 

= 0 gradually shifts until it runs from (0,1) to (1,0) at	� = 
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45o. This is illustrated in Fig.10 showing the current 

density vectors. In line 35 of the script the word 'norm' 

makes all the vectors the same length. If that word were not 

there, the vector lengths would be proportional to the true 

length of the vectors that might be too small to see. 

However, when all the vectors are the same length their 

colors indicated their true magnitude. Most of the current 

flows in a boundary layer near the insulating walls and 

returns in the core of the flow to generate a negative 

magnetic intensity near (0.1,0.1) and a positive magnetic 

intensity near (0.9,0.9). The total flow has been kept 

constant by adjusting the pressure gradient as the angle of 

the applied magnetic induction is varied. The adjusted 

pressure gradient is shown in Fig.11. The adjustment is. 

 

Figure 7. Magnetic intensity for � = 15°. 

 

Figure 8. Magnetic intensity for � = 30°. 
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Figure 9. Magnetic intensity for � = 45°. 

 

Figure 10. The current density vectors for � = 45° not large. 

5. Verification of Eq.11 and Eq.13 

Both of these equations have an extra term compared to 

the conventional MHD channel equations. A method to 

check them is to rotate the channel so that the extra terms 

are not needed. Here the channel is rotated by 45 degrees 

and a magnetic induction is applied in the y direction only. 

This corresponds to e = 45o using the aforementioned 

equations. The result in Fig. 12 is clearly identical to that of 

Fig.5. The pressure gradients and minimum velocities are 

identical in both cases. The magnetic intensity is given in 

the next figure.  It is the same as given previously having 
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the same extremum values of magnetic intensity. Fig. 14 

Show the current density vectors that are the same as those 

of Fig.10. Most of the current flows in a layer near the 

insulating boundaries and returns at low density through 

the fluid core forming two oppositely directed eddies. 

These results show that the extra terms here in the MHD 

equations are correct. 

 

Figure 11. Adjusted pressure gradient vs e. 

 

Figure 12. Velocity in geometry rotated by 45°. 
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6. Conducting and Insulating Walls 

6.1. A Magnetohydrodynamic Generator Configuration 

For all walls U = 0. If the top and bottom walls are 

insulators the magnetic intensity at the top wall should be 

equal to the negative of the magnetic intensity at the 

bottom wall when one-half of the current returns above and 

one-half returns below the channel. This is an antiperiodic 

condition easily done with finite elements. At the 

electrodes walls located on the xy plane at z = 0 and z = 1, 

the boundary conditions are 8hx/8z = 0. In this case lines 

27 and 28 of the script should be: 

{27} start(0,0) value(U)=0 nobc(h) line to (1,0) 

natural(h)=0 line to (1,1) 

{28} value(h)=0 antiperiodic(z,y-1) line to (0,1) 

value(U)=0 nobc(h) line to finish 

This change invokes antiperiodicity and the nobc(h) 

allows the values of h to be calculated so that they are of 

the same magnitude but of differing sign at the top and 

bottom boundaries. The comparison of Figures 15 through 

18 shows a skewing of the core of the velocity that 

increases with the angle of the applied magnetic induction. 

Figures 19 through 22 show the magnetic intensity or 

current lines as the angle increases. As expected the current 

flows across the channel in the z direction in all cases. 

However, as the angle, e increases the current lines become 

distorted and tend to flow perpendicular to the channel 

diagonal, only resuming flow directed more in the z 

direction near the electrodes at z=0 and z=1. In Fig. 23 the 

current density vectors are displayed for e = 45o. Note the 

skewing along the diagonal and the development of eddies 

at the lower left and upper right corners of the channel.  

In these calculations 181 stages (one for each 1/4 

degrees of angle) were made so that movies of the above 

curves could be produced with appropriated frame rates. 

Those who have downloaded Flexpde demo version are 

encouraged to run this problem and view the movies. 

Having kept the volumetric flow rate constant by 

regulating the pressure gradient, it is of interest to have a 

curve of pressure gradient versus angle. This was done in 

the HISTORY section of the script. Fig.24 shows the 

pressure gradient diminishing as e increases from 0 to 45 

degrees whereas Fig.25 exhibits the magnitude of the 

current decreasing. As the current decreases the J x B 

decreases making it require less pressure gradient to push 

the fluid through the channel. Thus the aforementioned 

curves Behave in accordance with physical principles. 

 

Figure 13. Magnetic intensity in rotated geometry. 
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Figure 14. Current density vectors. 

 

Figure 15. Velocity profile for e = 0. 
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Figure 16. Velocity profile for e = 15°. 

 

Figure 17. Velocity profile for e = 30°. 
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Figure 18. Velocity profile for e = 45°. 

 

Figure 19. Magnetic intensity for � = 0. 
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Figure 20. Magnetic intensity for � = 15. 

 

Figure 21. Magnetic intensity for � = 30°. 
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Figure 22. Magnetic intensity for � = 45°. 

 

Figure 23. Current density vectors for � = 45°. 
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Figure 24. Pressure gradient versus �. 

 

Figure 25. Total current versus �. 

7. Conclusions 

The finite element solution to the channels considered 

here, is easily applied and the results can be presented 

graphically in as much detail as desired. This is in contrast 

to finding closed form solutions to the 

magnetohydrodynamic equations that in most cases are 

expressed in power series of the y and z coordinates and 

geometry variables. Such solutions usually shed little light 

on the physics of the channel flow without numerical 

evaluation
[l9].

Many papers exist on the solution to the 

magnetohydrodynamic generator considered here and this 

author is not aware of a single closed form solution. 
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Research in magnetohydrodynamic generators has 

diminished because of material problems. They can be 

activated at full power for only a few minutes before they 

burn away. However, if power is needed in a very remote 

location where no electric power lines exist and power is 

needed for only one or two minutes for a rocket launch 

such a disposable magnetohydrodynamic generator would 

be very useful. The solution presented here can also be 

used to account for the fringing of the applied magnetic 

field encountered in all practical magnets. 

From the curves presented here it is clear that skewing 

the magnetic induction field does not help but rather 

hinders the magnetohydrodynamic flow by effectively 

lowering the Hartmann number.  

In contrast to most papers in this field the reader can do 

a very large number of very different cases by using the 

included computer program that can be easily modified. 

Many published papers seem to be of interest and useful 

but the reader of most of them finds it very difficult to 

repeat their work and almost impossible to easily do new 

cases. It is easy to get a student version of FlexPDE at no 

cost from www.pdesolutions.com. The program is easily 

modified to include loads on the MHD generator and can 

account for fringing of the magnetic induction. The 

program given here runs on said student version. However, 

the curves it produces are not a smooth as those produced 

by the professional version that can be obtained on a trial 

basis. 
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