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Abstract: The present paper attempts at a contribution to peak load pricing theory. The general result from the traditional 

theory that charges the off peak consumers marginal operating costs only and the peak users marginal operating plus 

marginal capacity costs has already been called into question in the literature. This paper shows that if the off-peak period 

output is explicitly expressed in terms of capacity utilisation of that period, the result will be an off-peak price including a 

fraction of the capacity cost in proportion to its significance relative to total utilisation.  
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1. Introduction 

The literature on peak load pricing essentially emerged in 

response to problems faced by most public utilities, such as 

electricity supply industry
1
 and telecommunications, whose 

products are economically non-storable and demand is time 

varying. These characteristics tend to result in non-uniform 

utilisation of capacity. Here peak load pricing offers an 

indirect load management mechanism that meets the dual 

objectives of i) reducing growth in peak load (‘peak 

clipping’), thus nipping the need for capacity expansion, by 

charging a higher peak price, and ii) shifting a portion of 

the load from the peak to the base load plants (‘valley 

filling’), thereby securing some savings in peaking fuels, by 

charging a lower off peak price. This thus ensures an 

improvement in capacity utilisation as well as a cut in 

operating and capacity costs. The context of public utilities 

in such peak load problem led the economists [1,17,11,22]; 

to name a few) to model pricing rules based on 

maximisation of social welfare rather than profits. 

The general result from the traditional theory charges the 

off peak consumers marginal operating costs only and the 

peak users marginal operating plus marginal capacity costs, 

since it is the on-peakers who press against capacity. 

Following [18], Crew and Kleindorfer [4] relax the 

assumption of homogeneous production capacity, and 

                                                             
1
It is in fact the peak load problem in electricity supply that motivated much of 

the early work on the peak load pricing theory [6]. 

considers diverse technology, as efficient provision for a 

periodic demand generally implies an optimal plant mix of 

different types of capacity with different relative energy and 

capacity costs. They show that the traditional conclusion 

holds only for homogeneous plant capacity (e.g., in one 

plant case), and in economic loading of two or more plants, 

the off peak price also includes a part of capacity costs. 

Wenders [21] argues that the application of peak load 

pricing theory to the electric utility, where cost 

minimisation requires that heterogeneous electric 

generation technologies be used to meet demands of 

different duration, stands to modify the usual result. He 

shows that with heterogeneous technology, off peak 

marginal cost prices almost always should include some 

marginal capacity costs a la marginal capacity cost savings 

under certain circumstances. But Joskow [12], in his 

comment on the paper, clarifies that these off peak prices 

can also be rewritten in terms of marginal energy costs only, 

in a way to validate the traditional result. Panzar [13], on 

the other hand, proposes that the usual peak load pricing 

result is due to the fixed proportions technological 

assumption employed in the traditional theory and is not a 

consequence of the fundamental nature of the peak load 

problem. He shows in particular that in a framework of 

neoclassical technology of short run decreasing returns to 

scale, consumers in all periods make a positive contribution 

toward the cost of capital inputs. 

It goes without saying that the equity norms are violated in 

the traditional peak load pricing, whereby off-peak users pay 
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no capacity charges, but are supplied output out of the 

capacity,
2

 ‘bought/hired’ by the on-peakers. True, the 

accounting sense of pricing is satisfied here (total cost is 

recouped, capacity cost being drawn from on-peakers); but 

its ‘cross-subsidisation’ stands inimical to fairness in tariffing. 

Weintraub [20] sees a ‘free ride’ problem in the peak load 

pricing, and argues that ‘The P-H [peak hour] buyers have 

every reason to claim that the ‘property’ – the capital facility 

– is theirs, that they pay for it and that others can use it only 

at a price in order to reduce the net price to them – the P-H 

users. An outcome which allocates common costs to only the 

peak-users thus has some disquieting equity features which 

go to the roots of private property, income distribution, and 

the diffusion of consumer well-being.’ [20: 512]. He 

therefore suggests ‘an alternative solution’, (‘output 

maximisation’) that is, setting prices such that peak plus off-

peak output are maximised, subject to the constraint that 

costs are covered. For him it is possible that peak price is 

greater than or less than or equal to off-peak price (p. 513). 

But this would detract from the peak load pricing as a load 

management strategy: the peak price must always be greater 

than the off-peak one in order to improve capacity utilisation 

at a desirable uniform level through ‘peak clipping’ and 

‘valley filling’; at the same time it should be so structured as 

to ensure equity concerns by apportioning capacity costs, 

(which are common to all periods), to both the peak and off-

peak users by their importance relative to total use. The 

present paper seeks such a solution, especially in the context 

of electricity supply. 

There is yet another, technical, reason why off-peakers 

also should bear capacity charges. Power consumption rises 

over time, with increasing number of consumers and of 

electrical gadgets in use, as well as increasing intensity of 

their use. Additional plants are required to meet not only 

the rising peak load but also the expanding base load. Thus 

the additional capacity costs involved in installing new base 

load plants must be borne by all the consumers, irrespective 

of the period of use, as the base load plants are 

continuously used in both the periods. This is why in the 

diverse technology framework, implied in economical load 

scheduling, off-peakers are also charged a part of capacity 

costs. As already stated, in [4] and [21] this appears in 

terms of an expression for capacity and running cost 

savings in line with the logic of optimum plant mix, 

without yielding a practical rate structure in a format like 

that of peak price. Our methodology does yield such a one. 

In the next section we present the traditional peak load 

pricing theory and discuss the implications of the 

                                                             
2
It should be correctly (and rightly) pointed out here that the traditional theory 

looks forward in the right sense of marginal cost pricing to the cost of 

additional capacity required to satisfy the on-peakers, but ignores to look 

backward in the true sense of cost accounting to the actual cost of that part of 

capacity that the off-peakers use. Remember, the additional capacity thus 

‘bought’ by the peakers in turn become available for the off-peakers also but at 

no cost, though fairness allocates a part of the capacity cost to them also in 

proportion to their importance in total use. It is in this context of equity 

considerations that the theory appears unfair. 

assumptions involved. Section 3 introduces, with a view to 

facilitating our further discussion, some of the important 

techno-economic characteristics of an electric utility. 

Section 4 presents the modified peak load pricing model. 

The last section concludes the study.  

2. The Traditional Theory 

In its simplest version (e.g., [17]), the model assumes 

two independent loads, each of equal length, in a demand 

cycle (a ‘day’) denoted by Do(Po) and Dp(Pp). The peak 

load problem results from the assumption that qo<qp= 

capacity, where qtis the quantity demanded in period t (t = 

peak (p); off-peak (o)); this means that Do(Po) lies 

everywhere below Dp(Pp). The independent demand 

denotes that one period price has no effect on the other 

period quantity demanded. There is only one type of plant 

available for generation (homogeneous technology), and 

investment is always forthcoming for sufficient capacity to 

meet demand. The supply costs are linear – β  being the per 

unit capacity charges per ‘day’ and b, the per unit operating 

charges per period. Then a unit output demanded in peak 

period costs b + β, as demand presses against capacity, 

necessitating additions, and that in off-peak period costs 

only  b, as no additional capacity is required.
3
 Figure 

1illustrates this two-period solution. The two prices are 

optimal in thesense of maximising the net social welfare. 

Any other price would involve a net loss in welfare; for 

example, at price P′p, there would be a net welfare loss of 

ABC. A formal discussion of the solution is given below. 

 
Fig 1. Traditional peak load pricing 

The traditional peak load pricing rule is obtained from 

the first-order condition for the maximisation of net social 

welfare, defined by 

W = 
0

( ) ( )
tq

t t t t

t

P y dy C q−∑ ∫                    (1) 

                                                             
3
 Note that this case refers to what is known as Steiner’s ‘firm peak case’. 

Steiner also considers what is called ‘shifting peak case’ that results as the 

pricing serves its purpose of load management. The low off-peak price induces 

and the high peak price discourages consumption such that the loads tend to 

shift. At the resulting price-output points, capacity is fully utilised in both the 

periods, and the capacity cost is shared in proportion to the relative strength of 

the loads, thus determining different prices. This case is out of our 

consideration here. 
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where Pt(qt) is the inverse demand function, assumed to be 

periodically independent; C(qt) is the total cost, composed 

of capacity and operating components, i.e.,  

C(qt) = 
,

p t

t o p

q b qβ
=

+ ∑                           (2) 

where qp is the peak period demand (= capacity), qo, off-

peak period demand (< capacity), β and b are the per unit 

capacity cost per cycle (e. g., a day) and operating cost per 

period respectively, and t denotes different periods (say, 

peak (p) and off-peak (o)). Maximisation of the net social 

benefits yields the following optimal peak (Pp) and off-peak 

(Po) prices: 

Po = b, and Pp=  b + β                                 (3) 

Thus the on-peakers are to bear the entire capacity costs, 

and the off-peakers are favoured by charging them only 

operating costs.  

It is generally recognised that the peak load problem 

emerges from the (oft-factual) assumption that qoff-peak < 

qpeak = capacity, but it is less understood that the solution 

results from the implicit assumption of the independence of 

off-peak output from capacity, and thus, as Panzar [13: 521] 

rightly points out, has nothing to do with the ‘fundamental 

nature of the peak load problem’. It is traditionally assumed 

that whenever a unit of capacity is installed at a cost β, it 

becomes available for demand in all periods; off-peak 

demand also is met from this capacity; yet this relationship 

is not explicitly incorporated into the cost equation. And 

thus the off-peak price comes out without the capacity cost 

component! Herein lies the significance of equity concerns 

in the sense of [20]. It can be shown that if the off-peak 

period output is explicitly expressed in terms of capacity 

utilisation of that period, the result will be an off-peak price 

including a fraction of the capacity cost in proportion to its 

significance relative to total utilisation. This would appear 

as a general case, irrespective of the nature of generation 

technology, that is, even when there is only one plant, in 

contrast to [4] and [21]. The objective of this paper is thus 

to illustrate this as follows. 

3. Some Techno-Economic 

Characteristics of Electric Utility 

As already noted, electric utility is characterised by an 

economically non-storable product and a periodically 

fluctuating load. The load on a utility is the varying sum of 

all the residential, commercial, and industrial loads, each 

varying by time of day in its own way. A typical (smoothed) 

system load curve (as a plot of load, in kilowatt (kW), 

against the time at which it occurs) is given in the first part 

of Fig. 2. There is a pronounced valley in the curve during 

early morning hours and a peak in the evening. The area 

under a (daily) chronological load curve measures the total 

energy consumption during the day, evaluated by 
24

0

( )kW dt∫ , 

expressed in kilowatt-hour (kWh) terms. From the load 

curve is derived the load duration curve (LDC), by 

rearranging all the loads of the chronological curve in the 

order of descending magnitude; thus it plots the load 

against the number of hours (or duration, θ) during the day 

for which it occurs. A typical LDC also is shown in Fig. 2. 

Note that the areas under the chronological curve and the 

corresponding LDC are equal. Annual LDC is generated 

from the aggregation of all the daily load curves, and is 

used for planning purposes, which we will consider later on.  

 
Fig 2. Chronological load curve and the derived load duration curve 

The cost of supplying electricity to consumers may be 

divided into demand and energy costs, comparable to the 

common industrial classification of fixed and variable costs. 

Demand (or load or capacity) costs are the capacity related 

costs for generation, transmission and distribution, and vary 

with the quantity of plant and equipment and the associated 

investment. Energy (or unit or output) costs are those which 

vary directly with the quantity of units (kilowatt-hours) 

generated. They are largely made up of the costs of fuel, 

fuel handling and labour. The β  in our earlier discussion 

roughly represents the demand costs and b, the energy costs. 

Thus determination of b is straightforward, once number of 

units of energy generated is known. On the other hand, β  is 

determined on the basis of pro-rating of the annuitised cost 

of installing and maintaining the plant over its useful life. 

Thus, if the basic cycle is one year and the life of a plant of 

100 kW capacity is 25 years, then β will be equal to 1/100th 

of the annuity sufficient to maintain and replace the plant 

after 25 years.
4
 

An important concept that has an overwhelming bearing 

on common cost allocation is load factor (LF), defined as 

the ratio of the average load (in kilowatts) to the peak or 

maximum load during a given period (say, a year). If we 

disregard reserve margin, assuming capacity as equal to 

peak load, then the ratio (LF) yields capacity factor (CF), a 

measure of capacity utilisation, rather than demand 

variability as implied in the former. Plant load factor (PLF) 

defined in the same vein measures capacity utilisation of a 

given plant. It goes without saying that cost per unit 

                                                             

4 See [19] for more details. 
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(kilowatt-hour) generated is inversely related to capacity 

utilisation and thus to LF. That is, at cent per cent LF, 

installed capacity is put to the best possible use, and the 

maximum possible amount of energy is produced during a 

given period; capacity cost distributed over this maximum 

amount of energy would be a minimum in this respect. On 

the other hand, at a low LF, the same capacity cost is spread 

over a less number of units generated, yielding higher unit 

cost. Thus a poor LF implies cost inefficiency also. It is this 

techno-economic characteristic that we make use of in our 

model; that is, the capacity cost is distributed on an average 

basis according to the PLF.  

Given this background, let us now turn to the optimum 

planning of plant mix. With reference to Fig.2, suppose that 

the peak demand on the system is P kW. If there is only one 

generating plant in the station, with a capacity equal to the 

peak load, then the prime mover and generator will be 

running under-loaded most of the time, thus rendering the 

operation uneconomical. A better method is to divide the 

load into three parts, referred to as base load (B), 

intermediate load (M) and peak load (P), as shown in Fig. 2, 

each being supplied from separate plants. Thus the base 

load plant, with a capacity of B kW, is run continuously for 

all the time (i.e., on full load), and the peak load plant, with 

a capacity of P – M kW, only for a short time. Between 

these two is the duration of operation of the intermediate 

load plant, with a capacity of M – B kW.  

The most economical operation of an electric utility 

requires that the plant having the minimum operating cost 

be used to meet the base load, e.g., run-of-river-flow-type 

(or reservoir-type) hydroelectric plant or nuclear power 

plant, and that the plant with the highest operating cost, to 

supply the peak load, e.g., gas turbine plant or pumped-

hydro plant. The logic is simple – the total running cost will 

be a minimum, if the plants are operated inversely to their 

running costs; remember the base load plants are run for the 

longest time (with full load, i.e., at cent per cent PLF) and 

the peak load plants for the shortest time (at lower PLF). 

Evidently, the total operating cost will be a minimum, when 

a low-running-cost plant (rather than a high-cost one) is 

used as the base load plant. At the same time, optimum 

planning also requires that the capacity cost of the base load 

plant be the highest and that of the peak load plant, the 

lowest, as it is so in practice: nuclear or hydropower plants 

are much costlier to install than the gas turbines. The cost 

minimisation in this respect evidently follows from the 

inverse cost-PLF relationship, explained above. It should 

also be pointed out here that in actual practice, hydro- or 

diesel-power plant is used as peak load plant, since these 

sets are quick to respond to load variations, as the control 

required is only for the prime mover, whereas in steam-

turbine plant, control is needed for the turbines as well as 

for the boilers. 

The significance of PLF in determining the most 

economical plant scheduling, that has much to do with the 

structuring of optimum tariffing, has, however, not so far 

been recognised in peak load pricing literature. And 

precisely this technical inadequacy has been the source of 

the error in the usual peak load pricing result, which 

supplies to the off-peakers free of capacity cost. Once the 

capacity utilisation factor during a particular period is 

accounted for in an optimum tariff structuring, then the 

corresponding portion of the capacity cost is automatically 

attributed to that period. This we show below.  

4. The Modified Peak Load Pricing 

Model 

As usual, the problem is to maximise the net social 

welfare, given by  

W = 
0

( ) ( , )
tD

t t t t

t

P y dy C D Qθ −∑ ∫            (4) 

where Dt is demand in period t (t = 1, …, T), Pt(Dt) is the 

inverse demand function, assumed to be periodically 

independent,
5
 θt   denotes  the  duration  of period t, and 

C(D, Q) represents total cost as a function of demand and 

capacity during the given cycle. We follow the 

heterogeneous technology specification of [5]: there are m 

different plants (j = 1, …, m), having constant operating 

cost bj (per kilowatt-hour per period) and capacity cost  βj 

(per kilowatt per cycle, say, year); therefore the total cost is:  

C = t j jt j j

t j j

b q Qθ β+∑∑ ∑               (5) 

where qjt is power output (in kW)
6
 of plant j in period t and 

Qj, capacity of plant j (in kW).  

This maximisation is subject to: 

,jt t

j

q D=∑  ∀t, (dual variables λt)             (6) 

kjtQj – qjt = 0,    ∀j, t,   (dual variables γjt)        (7) 

Dt ≥ 0,   qjt ≥ 0,   Qj ≥ 0,     ∀j, t,              (8) 

where kjt= /
jt j

q Q , as implied in (7). The first constraint 

(6) requires that demand be met in each period, and the 

second (7) that output of each plant in each period be equal 

to the corresponding capacity that is actually utilised. 

Implied in the latter is the condition that output should not 

exceed capacity; but it qualifies the usual capacity 

constraint in terms of capacity utilisation, and thus rules out 

the possibility of off-peak output being independent of 

capacity, as explicitly specified so far in the literature. And 

this is our basic point of departure from the tradition.  

                                                             

5 Note that the demands are periodically independent. We can, following [16], 

specify interdependent demands, in which case we will have a line-integral 

formulation of gross surplus. Such a welfare function is well defined when 

certain ‘integrability conditions’ are satisfied (also see [7: 19 – 22], which is 

possible when demands in different periods are independent. Then the line 

integral specification of gross welfare becomes just the sum of simple integrals, 

as in equation (4).  

6 Thus θt qjt represents energy (in kilowatt-hour) of plant j during period t.  
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Now the Lagrangian (L) from (4) – (8) is: 

( )t jt t jt jt j jt

t j t j

L W q D k Q qλ γ
 

= + − + − 
 

∑ ∑ ∑∑   (9) 

Assuming strictly positive output (or Dt > 0), at the 

optimal solution, the Kuhn-Tucker conditions for the above 

maximisation problem are: 

θtPt(Dt) = λt,   ∀t;                                (10) 

λt−θtbj – γjt ≤ 0,   qjt ≥ 0, qjt(λt−θtbj – γjt) = 0;   ∀j, t  (11) 

jt jt j

t

kγ β−∑ ≤ 0,  Qj ≥ 0, Qj ( jt jt j

t

kγ β−∑ ) = 0, ∀j   (12) 

γjt ≥ 0,     γjt(kjtQj – qjt) =  0,    ∀j,t                      (13) 

Also note that with independent demands, L (in 9) is 

strictly concave, and the above conditions, (10) – (13), are 

necessary and sufficient for maximisation. 

Now, let us find the optimum prices for  the two periods, 

peak and off-peak (t = peak, p; off-peak, o), first in the case 

of the traditional framework of homogeneous technology 

(i.e., only one plant;  j = 1). From (10) and (11), we get 

θtPt  = θtb1 + γ1t,   ∀t = p, o                         (14) 

Consideration of (7) along with (13) requires that γ1t > 0 

always; i.e., the (modified) capacity constraint is always 

binding, since, as we have already discussed, some capacity 

is utilised in the base period also. Hence, we have to 

substitute in (14) for the shadow price from (12) for Q1 > 0. 

Since this capacity is used in both the periods, though in 

different degrees depending on k1t (such that k1oQ1 = q1o = 

Do < k1pQ1 = q1p = Dp at the optimum), the corresponding 

capacity cost is to be distributed over the whole range of 

output of both the periods and then apportioned to each 

period in proportion to its significance. The first task (of 

capacity cost distribution over total output) may better be 

captured by dividing the unit capacity cost, β1, by the sum 

of the capacity utilisationactors, k1t, of the two periods.
7
 

Consideration of (12) for Q1 > 0 then lends enough sense to 

equate this with the shadow price of the modified capacity 

constraint (7).
8
 That is,  

 
1 1

1 1

1 1

,

t

t

t p o

k k

β βγ β
•

=

′= ≡ ≡
∑                             (15) 

Where k1. is the sum of k1t over peak and off-peak 

periods. Thus we have the two optimum prices (per 

kilowatt-hour) as: 

                                                             
7
Remember  k1t = q1t/Q1.  

8
 Note that this implies that the shadow price of the modified capacity 

constraint (7) for any plant is the same across all time periods, γjo = γjp, but as  

(12) specifies, its attributed share varies across time according to the 

corresponding capacity utilisation. 

 

for peak period:   

1

1p

p

P b
β
θ

′
= +                               (16) 

and for off-peak period:  

1

1o

o

P b
β
θ

′
= +                                  (17) 

Since the peak time duration (θp) is much shorter (though 

k1p is the maximum), the unit capacity cost contribution to 

peak period price (per kilowatt-hour) will be much higher, 

and hence the peak period price will be much greater than 

the off-peak price, as required. Also note, with reference to 

(16) and (17), that the sales revenue from the output of 

plant j during time t, is given by t t jt j t jt jt j jP q b q Qθ θ α β= + , 

where jt jt j jt jk k q qα • •= =  is the plant’s output share 

during time t (where j jtt
q q• =∑ ), such that the total 

revenue from any plant j during any time t covers the 

corresponding total (energy and capacity) costs. 

Thus we find that both the on-peakers and the off-

peakers contribute to capacity cost recovery, in inverse 

proportion to their load duration. It should be stressed that 

our result contradicts all the earlier studies in the 

homogeneous technology framework, which have toed the 

tradition of sparing the off-peakers from capacity charges. 

Also note that the load management strategy of the peak 

load pricing dominates here over the minimum cost 

allocation principle associated with PLF. Again, this 

capacity cost allocation to the off-peakers does not follow 

the usual marginal cost principle, but just corresponds to a 

fairness principle in the sense of [20] in accounting for 

capacity use that occurs in both the periods, though the 

additional capacity is occasioned by only the peak users. 

This result is unique in the homogeneous technology case 

only. In the diverse technology framework, based on 

economical load scheduling, it is the marginal cost 

principle itself that matters; that is, by accounting for 

additional capacity in both peak and base load, as explained 

earlier. We now turn to this case, with j = 2 plants. 

Suppose that plant 1 (say, hydropower plant) has lower 

marginal operating (and higher marginal capacity) costs 

than plant 2 (say, gas turbine). Optimal load scheduling 

requires that plant 1 be run as base load plant, and plant 2 to 

meet peak load. Evidently, the off-peak price is related to 

the costs of plant 1 and peak price to that of plant 2, in line 

with the marginal cost principle. Since plant 1 is used 

continuously in both peak and off-peak periods, we have γ1t 

> 0,  t = o, p, such that 

k1oQ1 = q1o = k1pQ1 = q1p = Do>0                     (18) 

that is, plant 1 continues to supply q1p = Do units in the peak 

period also.  On the other hand, plant 2 is used only in peak 

period, such that γ2o = 0,  k2. = k2p, and meets the additional 

peak requirements: 
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k2pQ2 = q2p = Dp – Do> 0                         (19) 

Then, we have: 

for off-peak period:  

1

1o

o

P b
β
θ

′
= +                                      (20) 

And for peak period: 

2 2

2 2

2

p

p p p

P b b
k

β β
θ θ

′
= + ≡ +                           (21) 

Remember b1 < b2, but β1 > β2. Peak duration is much 

shorter than off-peak duration; while the peak load plant 

normally operates at low load factor, the base load plant is 

run at full capacity, such that k1o = k1p > k2p. Thus (20) and 

(21) appear incomparable. However, we can rewrite (20) in 

terms of capacity and running cost savings in the context of 

optimal plant mix a la [4] and [21], and prove that the off-

peak price is lower than the peak price in the given 

operating regime, as required. 

From (10) and (11), we get for j = 1 and t = o,  

θoPo  =θob1 + γ1o                                  (22) 

from (10), (11) and (12), and noting that k1o = k1p,  

1 1 1 1( )o o p pk P bγ β θ= − −                          (23) 

Therefore, we have
9
 

1 2

1 2

1 2

1
p p

o

o o o p p o

P b b
k k

θ θβ β
θ θ θ θ

  
= + + − +       

      (24) 

The logic for this is as follows. Given the operating 

regime in (18) and (19), the cost of meeting an additional 

unit of load in off-peak period can be minimised by 

increasing plant 1 capacity by one unit, involving a 

marginal cost of 
1 1 1o o

b kθ β+ and reducing plant 2 capacity 

by one unit yielding a marginal cost saving equal to 

2 2 2p pb kθ β+ , the cost that would have been incurred, had 

plant 2 been used instead (which in turn is equal to 
p pP θ ); 

since the additional unit of plant 1 is used in peak period 

also, it involves an extra cost of a fraction of its running 

cost, ( 1 pbθ
). Hence the expression (24). 

Now let us prove that this price (24) lies below the peak 

load price (21) in the given operating regime. Since plant 1 

is used at full load in both the periods, its marginal cost 

(mc1) of supplying one unit is: 1 1 1( )o p ob kθ θ β+ + (from 

(11) – (12) and noting γjt > 0 and kjo = kjp). Optimal plant 

mix requires that this be less than the corresponding 

                                                             
9
 Note that the expression is equivalent to that for off-peak price given by  Crew 

and Kleindorfer[4], assuming two equal duration periods and disregarding PLF 

terms. 

 

marginal cost of plant 2 (mc2), given by 

2 2 2( )o p pb kθ θ β+ + , since otherwise plant 1 would not be 

required at all. This inequality (mc1 < mc2) yields the 

required bounds: b1 < Po < b2 <Pp at the optimum.  At the 

same time note that since plant 2 is used to meet the peak 

load, it must be cheaper than plant 1 to do so; that is, mc2p = 

2 2 2p pb kθ β+ < mc1p = 1 1 1p pb kθ β+ ; (kjo = 0). Thus we 

have the following bounds at the optimum in general: b1 < 

Po < b2 < Pp < 1p pmc θ .  

An important property of our pricing model is that it 

easily lends itself to generalisation in practical application. 

With reference to (20) and (21), note that it is the unit 

(energy and capacity) costs of the marginal plant that go 

into the rate structure – plant 1 is used at the margin in the 

off-peak period and plant 2 in the peak period, though the 

former, being the base load plant, also is in use during the 

peak period. This technical characteristic helps us 

generalise the pricing rule for a scenario of diverse 

technology (j = 1,…, m), with multiple periods (t = 1, …, T) 

as: 

t

j
j

tj

j
jt b

k
bP

θ
β

θ
β ′

+≡+=
•

                   (25) 

where j j jkβ β •′ ≡  and j jtt
k k• ≡∑ , and the parameters 

are those of the marginal plant in use at time t. Remember 

the base load plant, (j = 1), is continuously run in all the 

periods, the medium load plants, in peak and intermediate 

periods only, and the peak load plant, (j = m), in peak 

period only, such that km. = kmp.  

5. Conclusion 

The present paper has attempted at a contribution to peak 

load pricing, in both theory and application. The general 

result from the traditional theory that charges the off peak 

consumers marginal operating costs only and the on-peak 

users marginal operating plus marginal capacity costs, since 

it is the on-peakers who press against capacity has already 

been called into question. It has also been shown that the 

equity norms are violated in the traditional peak load 

pricing, whereby off-peak users pay no capacity charges, 

but are supplied output out of the capacity, ‘bought/hired’ 

by the on-peakers. Theoretical attempts at modification 

have proved that the traditional conclusion holds only for 

homogeneous plant capacity (e.g., in one plant case), and in 

economic loading of two or more plants, the off peak price 

also includes a part of capacity costs. However, this appears 

in terms of an expression for capacity and running cost 

savings in line with the logic of optimum plant mix, 

without yielding a practical rate structure in a format like 

that of peak price. Our methodology does yield such a one. 

It has been traditionally assumed that whenever a unit of 

capacity is installed at a cost, it becomes available for 

demand in all periods; off-peak demand also is met from 

this capacity; yet this relationship has not been explicitly 
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incorporated into the cost equation. And thus the off-peak 

price has come out without the capacity cost component! 

This paper, however, shows that if the off-peak period 

output is explicitly expressed in terms of capacity 

utilisation of that period, the result will be an off-peak price 

including a fraction of the capacity cost in proportion to its 

significance relative to total utilisation. This would appear 

as a general case, irrespective of the nature of generation 

technology, that is, even when there is only one plant. 

An important property of our pricing model is that it easily 

lends itself to generalisation in practical application. Another 

important merit of our method is its amenability to customer-

group-wise tariffs structuring. The marginal capital cost may 

be apportioned, following the average method of common cost 

allocation, among the different customer classes.  
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