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Abstract: Logarithms are indispensable in the revision of mathematics which are basic components tools in the theory of 

mathematical analysis. Logarithms have playing acute fundamental role in the study of the properties of power and arithmetic 

means as well as inequalities of Logarithms with their bound. This paper shows the properties of logarithms mean, power mean, 

arithmetic mean, Harmonic mean, geometric mean and later we use Minkowski’s inequality and Hölder’s inequality to establish 

the modified means. In the paper, we obtained the generalization of power mean, logarithms mean, arithmetic mean, Harmonic 

mean and geometric mean. The methodology adopted are Minkowski’s inequality and Hölder’s inequality to establish some 

means of order α of two distincts. These inequalities further generalize some existing results. This research work also 

demonstrated the importance of the Minkowski’s inequality and Hölder’s inequality over existing arithmetic mean, Harmonic 

mean and geometric mean and further extend the generalization to weighted logarithms mean. Hence, this article distinguished 

some present results on power mean, logarithms means and acquired more robust means by engaging modified Minkowski’s 

inequality and Hölder’s inequality with some ordinary theorems. The modified Minkowski’s inequality on power and logarithms 

mean further extends the generalized weighted logarithms mean of order α of two distincts. 

Keywords: Extension of Logarithms Mean, Power Mean, Arithmetic Mean, Geometric Mean, Harmonic Mean,  

Minkowski’s Inequality and Hölder’s Inequality 

 

1. Introduction 

The application of different forms of means has attracted 

many researchers in the field of mathematics, which has led 

to several extension of logarithms means, power mean, 

geometric mean and harmonic mean. This was investigated 

by Pal et al [1] The importance of generalization of 

inequalities involving logarithmic mean and power mean 

cannot be overemphasized as stated by E. B. Leach and M. C. 

Sholander [2]. The Extensions and generalizations of 

inequalities involving the logarithmic mean, power mean 

and their applications have been extensive studied in the 

literature [see 2-5]. 

Tung-Po Lin [6] assumed p as the least value and q the 

greatest value for all value of positive numbers �  and � 

respectively of the logarithmic mean and the power mean of 

order � of two distinct. Given 

Ⱪ� � ��	�, �� � 	Ⱪ
  

is consistent for all distinct nonnegative real numbers x and y. 

Tung-Po Lin [6] demostrated in his work that at q=0 and 

p=1/3 are the optimal solution for the above order which may 

satisfy any non-negative real numbers x and y. H. Alzer [7] 

further established that the inequalities from Tung-Po Lin [6] 

is better compared to existing inequalities. 

Alzer [7- 8] studied a form of generalized logarithmic mean 
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which is a special case of the Stolarsky mean. Define thus: 

��	�, �� =
���
�
���

���� ���������
����� , � ≠ 0, −1, � ≠ �

 !�� !���� , � = 0, � ≠ �
�� ��� !�� !� , � = 0, � ≠ ��, � = �

	   (1) 

so that "(�, �� = �#(�, ��. 
In 1995 J. S $′ ndor, obtained certain refinements for 

inequalities involving means, results attributed to Carlson [9]; 

Leach and Sholander; Alzer; Sándor; and Vamanamurthy and 

Vuorinen. 

See [10 − 12], theses papers gave an easy proof compare 

to Tung-Po Lin′s of a more general result. S. Furuichi and H. 

R. Moradi [13] introduced weighted logarithmic mean and its 

inequalities among weighted means were demonstrated. 

Farissi et al [14] applied the standard Hermite-Hadamard 

inequalities to logarithms means. Y. M. Chu and W. F. Xia [15] 

proved that harmonic mean is greater than logarithms mean i.e. )(*, +� ≥ ��(*, +�. More precisely and the authors obtained 

the classes of functions . and ℎ0 , � ∈ ℝ such that 

34	.0(5� − 67(8�
98�7� :7 > 0, 5 > 1.  

We shall consider lower bound value + and upper bound 

value value * such that 

<= < " < <> 

is hold for all difference non- negative real numbers + and *, 

where 

(*, +� = lim(�,��→(>,=� >�= !(>�� !(=� = C *	D.	* = +>�= !(>�� !(=� 	E5ℎF�GDHF    (2) 

and 

√*+ ≤ "(*, +� ≤ 9>�K�=�KL :! ≤ >�=L *, + > 0.	    (3) 

Are the logarithmic mean and power mean of order 4 of 

two different non- negative real numbers *  and + 

respectively. 

Given two numbers (*, +� , then the logarithmic mean "(*, +� is less than the arithmetic mean and the generalized 

mean with exponent one third but greater than the geometric 

mean, otherwise the numbers are the same, in which all three 

means are equal to the numbers. We will use the above 

inequality in our later discussion. 

The Mean value theorem of differential calculus is given as 

follows: 

Given mean value theorem, there exists a value M in the 

interval between * and + where the function f derivative .′ 
equals the gradient of the secant line: exists 

M ∈ (*, +�:	.′(M� = O(>��O(=�>�=   

We get logarithmic mean value of M by substituting by P4 

for .  and same for its corresponding derivative of natural 

logarithm: 

�Q = RS(>��RS(=�>�=   

and solving for M: 

M = >�=RS(>��RS(=�  

The logarithmic mean of two positive nnumbers can also be 

taken as the area under an exponential function that is 

exponential curve. 

In light of this, we present an integral insight using 

Minkowski′s inequality and HET lder′s inequality to generalize 

logarithmic mean. We further extend the generalization to 

weighted logarithmic mean. 

Preliminaries Result 

The following form of logarithm mean inequality is 

required: 

The prove of above logarithmic mean and power mean are 

as follows to establish our main result; 

Theorem 1: Suppose +  and *  are non negative real 

functions defined on an open interval (+, *� . Then, the 

following inequality holds: 

U 	�# +8*8V5 ≤ U 	�# 5+ + (1 + 5�*V5	      (4) 

Then, we have 

"(*, +� = >�=X!(>��X!(=� ≤ �L + + �L * = (=�>�L 	    (5) 

equality holds if + = *. 

Proof: 

Integrate both sides of above inequality yields 

"(+, *� = U 	�# +��8*8	d5 ≤ U 	�# 5+ + (1 − 5�*	d5
= =RSZ[\] Z>= − 1] = =RSZ[\] Z>�== ] ≤ �^L + + Z1 − �^L ] * − #^

L + + Z0 − #^
L ] *

= >�=RSZ[\] ≤ �L + + * − �L *   

"(*, +� = >�=RS(>��RS(=� ≤ �L + + �L * = (=�>�L .	      (6) Further simplification, if right hand side of (6) that is 

>�=RS(>��RS(=�  is replaced with + = _��̂_L�̂  and * = _̀ �̂_a�̂, _ > 0 
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gets 

�
a 9_�

�
^ + _L

�
^ + _̀�^ + _a

�
^:	           (7) 

To extend it to finitely many numbers for any positive 

integer 4 and positive numbers ��, �L, … �LK we have 

(��, �L, … �LK� �̂K ≤ �L! (��, �L, … , �LK�     (8) 

If we set c equal to * and the remaining it′s equal to + 

(where 0 < c < 2!) yields 

* d̂K+�� d̂K − eLK * − Z1 + eLK] + ≤ ∞	      (9) 

The above inequality showed arithmetic-geometric mean 

inequality: 

The area interpretation made it simple to derive certain 

basic logarithmic mean properties. Since the exponential 

function is a case of monotonic function, then the integral 

over an interval * and + of length 1 is bounded by the same 

values. 

Then, we want to obtain useful integral inequality mean 

they are as follows: 

Theorem 2: Suppose +  and *  are non negative real 

functions defined on an open interval (+, *� . Then, the 

following inequality holds: 

�(8�>�(=�8� ≤ ∞  

"(*, +� = U 	g# h8(8�>�(=�8� = �>�= × U 	g# Z h8(8�>� − h8(8�=�]  

�>�= × log l(8�=�(8�>�m#gn = �>�= × log+ − log* ≤ ∞   (10) 

The homogeneous function of the integral operator can be 

adopted in the mean operator, that is 

"(o*, o+� = o"(*, +� 

The above inequality, as with other means, we have "(o*, o+� = o(*, +� for o > 0. In particular, 

"(*, +� = *"(1; =>� = *+"(�> , �=�. 
If the mean value theorem is considered, the above 

inequality can be generalized to 4 + 1 variables by divided 

differences for derivative of the logarithm. 

Hence, it gives 

"(*#, … , *!� = q(−1�(!���4ln(*#, … , *!�sK
 

where ln(*#, … , *!�  denote a divided difference of the 

logarithm. The Arithmetic mean form (4) is given, if the right 

side of (4) is replaced with 5+L + (1 − 5�*L, then integrate 

with respect to 5. We have 

"(*L, +L� = U 	�# 5+L + (1 − 5�*LV5 = 8^L +L + (5 − 8^L �*L ==^�>^
L   

tu>^,=^vt(>,=� = \^�[^^[�\^ = >�=L   

The Geometric mean form (4) is given, if the right side of (4) 

is replaced with 5+L + (1 − 5�*L, then integrate with respect 

to 5. We have 

" Z�> , �=] = U 	�# 5 �> + (1 − 5� �= V5 = 8^
L> + (8�w^̂�= x#

� = [�\^[�\^[\ = *+  

)F4yF, zt(>,=�tZ�[,�\] = z [�\^[�\^[\ = √*+  

The Harmonic mean form (4) is given, if also the right side 

of (4) is replaced with 5+L + (1 − 5�	*L, then integrate with 

respect to 5. We have 

" Z �>^ , �=^] = U 	�# 5 �>^ + (1 − 5� �=^ V5 = >^�=^L>^=^
∴ tZ�[,�\]tZ �[^, �\^] = [�\^[\[^�\^^[^\^

= L�[��\
  

2. Main Results 

Theorem 3: Suppose (|, c, }�  be a finite space and .: * → ℝ be a } −integrable defined the integral arithmetic 

mean (the conditional expectation of the random variable . 

in which case it is denoted) ∑ 	. in probability theory) by 

<�(., }� = ��(>� U 	� .V}	           (11) 

and suppose �: | → ℝ be a } −integrable function. 

(a) If . is a convex function given on an interval 3 that 

include the image of �	and �: 3 → ℝ is a function such 

that � ∈ ∂.(*�  for every + ∈ 3  and ���  and �(����  are } − integrable functions, then, the 

following inequality holds: 

0 ≤ <�(.��� − .(<�(��� ≤ <�(�(����� − <�(��<�(����	$4V	                   (12) 

(b) if .  is concave, then, the (12) holds in the reverse 

direction. 

Proof: 

Taking the left hand side of (12) that is <�(.��� −.(<�(��� and since .�� is } −integrable function equality 

holds for . strictly convex if and only if � is constant } − 

almost everywhere. Let <�(�� ∈ 3  if otherwise ℎ =

<�(�� − �(E�	 − ℎ� will be a strictly positive function whose 

integral will be zero that is, �: 3 → ℝ satisfies.(a) for every * 

in the interior of 3. If <�(�� is also in the interior of 3, then 

.(<� ≤ .(�(*�� 

If 
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�	*� = U 	>� .	*, +�V+,�(*� = U 	g� V+uU 	�� .(*, +��V+v��,
�(*� = U 	g� V+uU 	g= .(*, +��V+v�7	$4V	5ℎF	D4F��$PD5�	U 	g� �(*�V* ≤ �(*�0

	   (13) 

holds and sufficient by Theorem (1) that 

U 	g� �(*��(*�V*	∀�(*�	          (14) 

such that 

U 	g= �(*��V* ≤ 1  

� 	g
� �(*��(*�V* = � 	g

� V+ 9� 	�� .(*, +�V+: �(*�V* 

= � 	g
� V+ 9� 	=> .(*, +��(*�V*: = � 	g

� V+ 9� 	g
= .(*�0V*:�0 9� 	g

= �(*��V*:��
 

≤ U 	g� V+uU 	>= .(*, +�V*v�7  

using (2.4) yields 

U 	g� uU 	>� .(*, +�V+v0V* ≤ 9U 	g� V+uU 	g= .(*, +��V*v�7:0
  

Hence, 

ZU 	g� uU 	>� .(*, +�V*v0V+]�7 ≤ U 	g� uU 	g= .(*, +�V*v�7V+.  

The (14) can be written as 

U 	g� �(*��(*�V* = U 	g� uU 	g> .(*, +�V+v�(*�V* = U 	g� V+uU 	g> �(*�.(+, *�V*v
≤ U 	g� V+ lU 	g> �(*���V*n� uU 	g> .(*, +�0V*v�7 = U 	g� V*uU 	g> .(*, +�0V*v�7                (15) 

Hence, 

U 	g� uU 	g> .(*, +�V+v�V* ≤ U 	g� uU 	=� .(*, +�0V*v�7V+  

and 

ZU 	g� uU 	g> .(*, +�V+v0V*]�� ≤ U 	g� uU 	=� .(*, +�0V*v�7V+  

Theorem 4: let ��(*�, �L(*�, … , �!(*� are real functions such that �!(*� ≥ 0 and 4 ≥ 1. ∑ 	!��� ��=1 and ��(+� ≥ 0 we 

have 

∏ 	!��� ����(*� ≤ ∑ 	!��� ��(*���(*� ≤ (∑ 	!��� ��(*���(*�!��K	                      (16) 

Proof: 

If 

��(*� × �L(+� = Z
�(>��
^(>�L ]L − Z
�(>��
^(>�� ]L ≤ Z
�(>��
^(>�L ]L
  

��(*� × �L(*� × �`(*� × �a(*� ≤ Z
�(>��
^(>�L ]L Z
�(>��
�(>�L ]L
  

��(*� × �L(*� × �`(*� × …�!(*� and the arithmetic mean � taking 2� − 4time then we have 
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��	*� × �L	*� × �`	*� × …�!	*� × �L��! ≤ Z
�	>��
^	>��⋯�
K	>��	L��!��L� ]L�  

Therefore, 

	��	*� × �L	*� × �`	*� × …�!	*���! ≤ �. 
We observed that geometric mean is always less than the arithmetic mean unless all the �′	*�H are equal. 

Inequality (18) can also be written in order 4 of positive numbers ��	*�, … �!(*� with weights *�(*�, … *(+� as below 

�!(�; H� = (∑ 	!��� +(*���(*�!��K, 4 ≠ 0	$4V	�!(�; H� = ∏ 	!��� ����(*�, 4 = 0                  (17) 

This reduces to generalize weighted logarithmic mean if 4 = 0 and refined result. 

�!(�; H� = U 	� ∏ 	!��S ��>�(*�V�(+�                                  (18) 

The positive numbers ��(+�, . . . , �!(+� is generalized weighted logarithmic mean by 

�!(�; H� = U 	� �!(�; H�V�(+�	                                   (19) 

The means �!(�; �� are increasing sequences in 4. If is well known that the power mean �!(�; H� is increasing sequence in 4 and in (19) the same is true for �!(�; H�. 
Theorem 5: Let +, � be positive numbers with + + � = 1 such that 4 ≥ 0. Then 

�!(�; H���, �=��� ≤ �!(�; H�����!(�; ��=�� = �!(�; H���!(�; H��!(�; ����!(�; ��             (20) 

GℎF�F	(H���, �=��� = uH������=��, HL����L=��, H�̀���=̀��, … , H!������!��=�� , H!����!=��v 

Proof: 

If 4 > 0, then integral )ET lder′s inequality holds: 

�!(�; H���, �=��� = U 	� .!(H���, �=��; +�V�(+�
= U 	� u∑ 	 ��S *�(H������=���!v�KV�(+� ≤ U 	� (∑ 	 ��S +	H�!�¡��K (∑ 	 ��S +���!�\��K V�(+�	≤ �!(�; H���!(�; H��!(�; ����!(�; �� 	           (21) 

Theorem 6: Let +, � be positive numbers with + + � = 1 such that 4 ≥ 0. Then 

�!(*; H���, �=��� ≤ �!(; (� + 1�H + (+ + 1���                             (22) 

GℎF�F	((� + 1�H + (+ + 1��� ≤ ((� + 1�H� + (+ + 1���, … , (� + 1�H!�� + (+ + 1��!��, (� + 1�H! + (+ + 1��!� 

Proof: 

The arithmetic-geometric inequality if 4 ≠ 0 

�!(�; H���, �=��� = U 	� .!(H���, �=��; �V�(+� = �!(�; (� + 1�H + (+ + 1���             (23) 

In above means, �! gives 

�!(H� + ��, HL + �L� ≤ �!(H� + HL� + �!(�� + �L�	D.	4 ≥ 1 

and 

�!(H� + ��, HL + �L� ≥ �!(H� + HL� + �!(�� + �L�	D.	D.	4 ≤ 1 

We shall adapt Minkowski ′s inequality to prove arithmetic mean. 

Theorem 7: Let 4 ≥ 1 such that 

�!(�; H��� + �=��� ≤ �!(�; H���� + �!(�; �=���	                           (24) 

while for 4 ≤ 1 the inequality is reversed. 

Proof: 

If 4 ≥ 1, using Minkowski′s inequality yields: 



 Science Journal of Applied Mathematics and Statistics 2022; 10(2): 22-27 27 

 

�!	�; H��� + �=��� = U 	� .!	H��� + �=��; ��V�	*� = U 	� u∑ 	 ��� *�	H���� + ��=���!v
�
KV�	*�

≤ �!	�; H���!	�; H��! + 	�; ����!	�; �� 	          (25) 

If � � 0 the reverse of above results is obtained, that is 

Minkowski′s inequality. 

3. Conclusion 

The study’s findings distinguished some present results on 

power mean and logarithms means and acquired more robust 

means by engaging modified Minkowski’s inequality and 

Hölder’s inequality with some ordinary theorems. The results 

protracted and generalized some earlier results in literature. 
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