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Abstract: This article discusses multi-input intervention analysis to investigate the effect of interventions which may come 

from internal and/or external factors in time series data. The objective of this research is to obtain multi-input intervention 

analysis, which can explain the magnitude and periodic of each event effected to monthly types of the domestic airline 

passenger flight in Pekanbaru airport. The purpose of this study is to give a theoretical and empirical studies on the multi-input 

intervention analysis, particularly to develop and construct a model procedure of multi-input intervention cused by pulse and/or 

step function to evaluate the impact of these external and/or internal events in time series data. Monthly data comprising the 

number of the domestic airline passenger flight in Pekanbaru airport are used as the data for this case study. Generally, the 

forest fires, peatland, and illegal burning in Riau Province give a negative permanent impacts after four months. This study 

focuses on the derivation of some effect shapes, i.e. the temporary, gradually or permanent monthly airline passenger. In 

addition, the research also discusses how to assess the effect of an intervention in transformation data. 

Keywords: Time Series Data, Multi-input Intervention Analysis, Pulse Function, Step Function 

 

1. Introduction 

Quantitative models on autoregressive integrated moving 

average or better known as ARIMA were developed in 1976 

by Box and Jenkins in full as a standard procedure in the 

modeling of time series analysis. In the development of time 

series analysis, the various phenomena of interest and not 

simply have been often the linkages with the relationship 

between variables in a time series data. Statistical modeling 

of time series analysis in its development presents the 

ARIMA model that is a popular model and widely applied in 

modeling and forecasting time series data. Based on Box-

Jenkins procedure which is standard procedure aims to obtain 

an appropriate ARIMA model to a time series data. This 

procedure consists of four stages, namely the identification, 

parameter estimation and tests of significance, and check the 

diagnosis and forecasting. At the identification stage, this 

procedure requires the fulfillment of stationary conditions on 

the average value of the mean and variance of time series 

data. 

Based on the fact that real time data on the time series 

data, it is often encountered the problem of data that are 

changing the pattern of the mean extreme or known by the 

regime change/structural changes [13, p. 274]. These changes 

are usually caused by the presence of an intervention coming 

from external factors and/or internal. The pattern of extreme 

data changed frequently in incorrect results has implications 

for the identification stage obtaining spurious or counterfeit 

final model for a time series data. 

Disaster is one form of intervention of external factors 

which often impact on the changing pattern of the data in a 

time series. In general, the disaster that occurred in an area 



 Science Journal of Applied Mathematics and Statistics 2017; 5(3): 110-126  111 

 

can be divided into two kinds, namely natural disasters 

(natural-made) and man-made disasters (man-made). Some 

examples of natural disasters that have occurred in Riau 

Province is catastrophic smog from forest fires, soil (peat) 

and/or because of the impact of the spread of smoke of forest 

fires neighboring provinces such as Jambi and South Sumatra 

carried on the wind to Riau province, smoke appears as a 

result of uncontrolled burning of the continued cultivation of 

plantation and having an impact on several areas in Southeast 

Asia such as Malaysia and Singapore, especially in the 

Province of Riau. While examples of man-made disasters are 

the bomb and raw shoot in Jakarta in January 14, 2016 in 

front of Sarinah Building, Jakarta bombing in July 17, 2009, 

Bali bombings in October 12, 2002 and in October 1, 2005. 

One of the important issues of the catastrophic events is 

how to measure or construct a mathematical model, the 

magnitude and duration, the impact caused by the 

intervention of various disasters. For example, how to 

measure and determine the impact of disasters smoke haze 

from forest fires and smoke pollution in Southeast Asia in 

2013 to the field of air transport for domestic flights via 

International Airport Sultan Syarif Kasim II Pekanbaru, as 

measured by the number of passengers types of domestic 

flights to Riau Province. The same question also appears how 

the construction of a mathematical equation or model of 

forecasting are affected by natural disasters to the number of 

passengers types of domestic flights to Riau Province. One 

statistical method that can address the concerns and questions 

is the analysis of multi-input intervention. 

In the last few years there is a lot of research on the 

analysis of interventions that have been conducted to 

evaluate the effects of an internal and/or external 

intervention. Until now, most research on the analysis of 

interventions relates to the evaluation of the impact of new 

policies on an applied field. The subject of further analysis of 

the intervention can be found in several books of time series 

analysis, among others are Brockwell and Davis [3, p. 340], 

Box et al. [5, p. 481], Cryer and Chan [11, p. 249], Drakos 

and Kutan [12], Luthkepohl [22, p. 604], Enders [13, p. 280], 

Hamilton [16, p. 677], Montgomery et al. [26, p. 330], Tsay 

[35, p. 389], Wei [39, p. 212], Yaffee and McGee [41, p. 

265]. One of the main problems in the modeling analysis of 

the intervention is the absence of a standard procedure for the 

establishment of a model of intervention, either in a single 

intervention or multiple interventions (more than one type of 

intervention). In addition, most of the discussion of 

intervention analysis on a variety of time series analysis 

reference books covers the analysis of a single intervention. 

Various studies on the intervention model are not only 

limited to the analysis of a single intervention (single-input), 

the step function or pulse only, but also series of data. They 

can contain more than one type of intervention (multi-input), 

i.e. step and pulse function. So it is still very in need to be 

further developed the standard procedures in modeling the 

multi-input intervention. These problems provide further 

opportunities to do research related to the multi-input 

intervention, namely this research is applied to model and 

forecast the monthly data types of the number of passengers 

for domestic flights in Riau Province. 

Intervention model was first proposed by Box and Tiao [6] 

who examine the effect of the enactment of legislation on the 

engine design oxidant levels of pollution in the Los Angeles 

area. Then Ladolter and Chan [24] use the intervention 

analysis in response to changes in federal policy to study and 

evaluate the effect of raising the speed limit on the interstate 

highway system countryside to 65 miles per hour (mph), 

higher speeds are generally considered to generate economic 

benefits primarily because of the reduction in travel time. 

However, higher speeds are also associated with the 

increased risk of accidents. 

Many different models have been proposed for multi-input 

intervention time series forecasting by researchers. Rezeki et 

al. [34] use the multi-input intervention analysis model to 

analyze and evaluate the impact of the Asian crisis and the 

terrorist attacks against tourist arrivals in Bali. The study 

concludes that in general the Asian crisis and the Bali 

bombings a negative impact on the number of tourist arrivals 

in Bali. This is confirmed by the results of the study the 

number of tourists to Bali when there are permanent events 

effects of the Asian crisis after a delay of 10 months as well 

as the Bali bombing I and II that have a direct impact and 

temporary. 

Lee et al. [25] model using multi-input interventions to 

evaluate the effects of the Asian crisis and the terrorist 

attacks against the number of tourist arrivals. The results of 

empirical studies on these case studies show that the multi-

input intervention model is proven to explain precisely the 

magnitude and duration of the impact of disasters on a time 

series data.  

The facts in these studies underlie the implementation of 

further study forecasting in the field of air transport. The 

problems of intervention analysis of multi-input evaluates 

the number of passengers types of domestic flights in Riau 

Province with a focus on the development of forecasting 

models of intervention multi-input capable of explaining 

the period and the magnitude of the impact these events. 

In this research we discuss the results of theoretical and 

empirical studies on the development of procedures for 

establishing a multi-input intervention model used for the 

evaluation of the impact of a disaster on a time series data. 

Theoretical study is focused on the identification stage, 

namely the decrease in the quantities of the statistics used 

as the basis for determining the order of the intervention 

model. Furthermore, the results of a theoretical study are 

used as a basis to develop a standard procedure for the 

establishment of a multi-input intervention model. At the 

end, the empirical studies are conducted to analyze the 

issue, which is still in a question in evaluating the impact 

of disasters on a real case occurred in the province of 

Riau, namely the impact of disasters smoke haze from 

forest fires in the last five years, Southeast Asia pollution 

smoke in 2013, and the national elections as a political 

year in July 2014, to the number of domestic passengers 

flying in Riau Province. 
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2. General Multi-input Intervention 

Model  

A time series data can be affected by a variety of special 

events, namely the existence of an intervention either internal 

or external that can cause changes in the pattern of time 

series data. In the analysis of the intervention, it is assumed 

that the incidence of intervention occurs at time t is known as 

a time series. 

In the intervention model, a shock or series of 

interventions called discrete input is valuable, while the time 

series data to model referred to as the series output. With the 

intervention model, it can be seen how big and long the 

effects of intervention events. The process of estimating the 

effect of intervention is called the analysis of the intervention 

(intervention or interrupted) time series. Time series data in 

several empirical studies often consist of the observations of 

the several intervention variables. 

A general formula is formed if there is more than one type 

of intervention occurs in a time series data, then the model 

suitable for use is a multi-input intervention model whose 

mathematical model is given as follows (see Abraham [1], 

Box et al. [5, p. 482], Box and Tiao [6], Ismail et al. [19], 

Montgomery and Weatherby [29], Wei [39, p. 215]) 

1

( ) ( ) ( )

( ) ( ) ( ) (1 ) (1 )

j

j

t

j

b Sk
s q Q

t j tS d S D
r p Pj

B B B B
Y a

B B B B B

ω θ
ζ

δ ϕ=

Θ
= +

Φ − −∑   (1) 

where a polynomial form of intervention model parameters 

contained in the response is defined as 

( ) 0 ...
j j j

s
s sB Bω ω ω= − − , ( ) 0 ...

j j j

r
r rB Bδ δ δ= − − , while 

tY  is a response variable at time t, 
tj

ζ  is a binary indicator 

varible that shows the existance of an intervention at time t 

and for the jth with respect to the intervention variable at 

time t and 
tj

ζ is a deterministic indicator variable, taking 

only the values 0 and 1 to indicate nonoccurrence and 

occurrence of some event respectively which indicates 

whether there is influence of intervention at time t, and b is 

the delay time from the effects of an intervention, to the 

declared the value of ( )
js Bω  a parameter models 

intervention jth the specified order-s, while the value 
jrδ  is 

stated parameters intervention model jth the specified order-

r, ( )q Bθ  and ( )p Bϕ  are moving average and autoregressive 

polynomials in B of degrees q and p, respectively. The roots 

of ( )q Bθ  lie outside and ( )p Bϕ  lie in or outside the unit 

circle. 

In order to identify the model of intervention b, r and s can 

be done by looking at the residual plots. Residual value to be 

obtained from the difference between the observed data 

values uses noise forecasting models. Suppose residual 

denote as follows: 

( )*
t t t tY Y n f ζ= − = .                           (2) 

Values s indicate when the motion of response weight 

began to decline, the value of b is determined by looking at 

when the effect of the intervention started happening while r 

is the pattern of the residuals. Theoretical and complete study 

can be seen in Lee et al. [25], Helfenstein [18] and 

Makridakis et al [30]. 

Thre are two common types of deterministic input variable 

tj
ζ that have been found useful to represent the impact of 

intervention events on a time series. Both of these are 

indicator variables taking only the values 0 and 1 to denote 

the nonoccurrence and occurrence of intervention. One type 

is a step function at time T, given by [5, p. 530; 26, p. 462; 

39, p. 213] as 

( )  0,  

 1,  ,t

T

t

t T
S

t T
ξ

<
= =  ≥

                             (3) 

typically used to represent the effects of an intervention that 

are expected to remain permanent after time T to some 

extent. The other type is a pulse function at T, given by [5, p. 

530; 26, p. 462; 39, p. 213] as 

( )  0,  

 1,  ,t

T

t

t T
P

t T
ξ

≠
= =  =

                           (4) 

that represents the effects of an intervention that are 

temporary or transient and will die out after time T. These 

indicator input variables are used in many situations where 

the effects of the intervention cannot be represented as the 

response to a quantitative variable that does not exist or it is 

impractical or impossible to obtain the measurements of such 

a variable. 

2.1. Case 1 Model 

Multi-input intervention model with a step function (b1 = 

1, r1 = 1, s1 = 1) and followed by a pulse function with (b2 = 

1, r2 = 0, s2 = 1) is given as 

( ) ( )1 1

2 2

1

1
0 1 1

0 1
1

,
1

t t t t

B B
Y S B B P N

B

ω ω
ω ω

δ

−
 = + − +
 −

  (5) 

where 

( )

( )(1 ) (1 )

q

t td S D
p

B
N a

B B B

θ
ϕ

=
− −

 and 
11 1δ <  so that 

intervention effects that occur are 

( ) ( ) ( )
1 1 1 1 1 1 1 1 1 1 1 1 2 2

* 2
0 1 0 1 1 2 1 0 1 1 3 1 0 1 1 0 1 1 2... ,k

t t t t t k t tY S S S S P Pω ω δ ω δ ω δ ω δ ω δ ω ω ω−
− − − − − −= + − + − + + − + −      (6) 

which can also be written in Table 1. 
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Table 1. Magnitude of the Effects Intervention. 

Response Effect’s Magnitude Time 

*

t
Y =  

0 

10ω  

( )
1 1 1 1 1

2

0 1 0 1 1

0

k
j

j

ω δ ω δ ω
−

=

+ −∑  

( )
1 1 1 1 1 2

2

0 1 0 1 1 0

0

k
j

j

ω δ ω δ ω ω
−

=

+ − +∑  

( )
1 1 1 1 2 2

2

0 1 01 1 1 0 1

0

k
j

j

ω δ ω δ ω ω ω
−

=

+ − + −∑  

with k = 2, 3,... 

t ≤ T1 

t = T1+1 

t = T1+k 
T1+k ≤ T2 

t ≥ T2+3 

t = T2+1 
t = T2+2 

The illustration of Eq. (6) and its impact are represented in 

Figure 1. For illustrations, consider a multi-input intervention 

with two events, namely a step function occurring at t = T1 = 

110 where 
10 50ω = , 

11 30ω = − , 
21 0,8δ = , 

20 20ω = − , 

21 5ω =  and 
12 4ω =  with (b1 = 1, s1 = 2, r1 = 0) which is 

followed by a pulse function at t = T2 = 127 with (b2 = 1, r2 = 

1, s2 = 1). The first intervention that affected the data at t 

=111, with a magnitude of 50. The pulse function 

intervention had an effect that lasted for 3 periods beyond t = 

T1 = 110 with a magnitude effect of −35 and −40 on the 

second and third after the intervention, respectively.  

  

Figure 1. (a) Plot of Simulation the Intervention Model, (b) Intervention Effect of the Multi Input Intervention where the Step Function (b1 = 1, s1 = 2, r1 = 0) 

Occurred at T1 = 110 and Followed by the Pulse Function (b2 = 1, r2 = 1, s2 = 1) at T2 = 127. 

Figure 1 shows the simulation study used to show that the 

response function to estimate the order of a multi-input 

intervention model to do exactly the kind of data of the number 

of passengers for domestic flights in Pekanbaru airport. In 

Figure 1 (a) it can be seen that the data are stable at 100 from t 

= 1 to t = 101 rising at t = 150, 180 and 200 to t = 131 and 

rising again to 240 at t = 132 and slowly or gradually falling 

back to the value of 200. While Yt shows data of simulation 

scenarios with two intervention orders and coefficients that are 

defined or assumed as in the previous description. 

2.2. Case 2 Model 

Multi-input intervention model with a pulse function (b1 = 

1, s1 = 2, r1 = 0) and followed by a step function with (b2 = 1, 

r2 = 1, s2 = 1) is given as 

( ) ( )
2 2

1 1 1

2

1
0 12 1

0 1 2 1, 2,
1

,
1

t t t t

B B
Y B B B P S N

B

ω ω
ω ω ω

δ

−
 = − − + +
  −

                                        (7) 

where 
21 1δ < , so that intervention effects that occur are  

( ) ( )
1 1 1 2 2 2 2 2 2 2 2

*
0 1, 1 1 1, 2 2 1, 3 0 2, 1 0 1 1 2, 2 0 1 1 1 2, 3 ...t t t t t t tY P P P S S Sω ω ω ω ω δ ω ω δ ω δ− − − − − −= − − + + − + − +           (8) 

which can also be written in Table 2. 

Table 2. Magnitude of the Effects Intervention. 

Response Effect’s Magnitude Time 

*

t
Y =  

0 

10ω  

11
ω−  

12ω−  

0 

2 2 2 2

1 2

0 1 1 1

1 2

m m
i i

i i

ω δ ω δ− −

= =

−∑ ∑  

with k = 2, 3,... 

1t T≤  

1 1t T= +  

1 2t T= +   

1 3t T= +  

1 2t T k T= + ≤ , 4k ≥  

2 ,t T m≥ +  1m ≥  

Figure 2 shows the simulation considering a multi-input 

intervention with two events, namely a step function 

occurring at T1 = 110 assuming step function (b1 = 1, s1 = 2, r1 

= 0) the initial value for 
10 100ω = , 

11 60ω = − , 0,5δ = , 

20 40ω = − , 
21 5ω =  and 

12 4ω = , which is followed by a 

pulse function (b2 = 1, r2 = 1, s2 = 1) occurred at t = T2 = 127.  

 

 

 

1501351201059075604530151

240

220

200

180

160

140

120

100

Time

Y
(t

)

T1=110 T2=127

Simulation of the Intervention Model

(a)

126112988470564228141

0

-10

-20

-30

-40

Time

 Y
*

(t
)

T1=110 T2=127

 Intervention Effect

(b)



114 Salam Ali Wiradinata et al.:  Multi-Input Intervention Analysis for Evaluating of the Domestic Airline Passengers in an  

International Airport 

 

  
Figure 2. (a) Plot of Simulation the Intervention model, (b) Intervention Effect of the Multi-Input Intervention where the Step Function (b1 = 1, s1 = 2, r1 = 0) 

Occurred at T1 = 110 and Followed by the Pulse Function (b2 = 1, r2 = 1, s2 = 1) at T2 = 127. 

From Figure 2 (a) it is shown that the data is stable at 100 

from t = 2 until t =110 increasing at t = 111, 113 and 114 still 

t = 116 and stable in value at 300 then rising again to 380 at t 

= 127 and gradually or permanent effect at 300. 

3. Parameter Estimation 

The intervention model is defined as [33, p. 332] 

( )
( )

( )
( )

,
(1 ) (1 )

qs
t t b td S D

r p

BB
Y a

B B B B

θω
ξ

δ ϕ−= +
− −

       (9) 

Eq.(9) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
d d

r p t s p t b r q tB B B Y B B B B B aδ ϕ ω ϕ ξ δ θ−− = − + and/or 

( ) ( ) ( ) ,t t b tc B Y d B e B aξ −= +                                                                        (10) 

where 

( ) ( ) ( ) 1(1 ) (1 ) 1 ... ,d S D p r
r p p rc B B B B B c B c Bδ ϕ +

+= − − = − − −  

( ) ( ) ( ) 0(1 ) (1 ) ... ,d S D p s
s p p sd B B B B B d d Bω ϕ +

+= − − = − −  

( ) ( ) ( ) 1 ... , r q
r q r qe B B B e Bδ θ +

+= = − −  

and thus, 

1 1 0 1 1... ... ... ,t t t p r t p r t b p s t b p s t r q t r qa Y c Y c Y d d e a e aξ ξ− + − − − + − − − − + − −= − − − − − − + − −                 (11) 

and can be represented as: 

( ) ( )
( ) ,

t t b
t

c B Y d B
a

e B

ξ −−
=                                                                              (12) 

under the assumption that the ta  are ( )20, aN σ  white noise, conditional likelihood function 

( ) ( ) 22 2 2
0 0 0 2

1

1
, , , , | , , , , , 2 exp .

2

nn

a a t

a t

L b Y Y a aδ ω ϕ θ σ ξ ξ πσ
σ

−

=

 
= − 

  
∑                                              (13) 

In general, the estimation methods introduced in [39, p. 

145] can also be used to estimate the parameters , , ,δ ω ϕ θ  

and 2
aσ . For example, by setting the unknown a’s equal to 

their conditional expected values of zero, the nonlinear least 

squares estimate of these parameters is obtained by 

minimizing  

( )
0

2, , , | ,

n

t

t t

L b aδ ω ϕ θ
=

=∑                       (14) 
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where { }0 max 1, 1t p r b p s= + + + + +  and ta are the 

residuals under the white noise assumption and normal 

distribution.  

4. Research Methodology  

The intervention response or *
tY  is easily formulated using 

the response values chart for determining the order of  the 

intervention model using the orders b, s and r. 

The intervention response denoted as *
tY  is basically 

residual or error which is the difference between the actual 

data and the ARIMA model forecasts based on the data 

before the intervention. A complete procedure of the 

intervention model building can be used to evaluate these k 

intervention functions at time T1, T2, …, Tk as according to 

the following procedures. This procedure is described in 

Ismail et al. [19], Lee et al. [25], Montgomery et al. [26, p. 

309], Yaffee and McGee [41, p. 282]. 

The First Procedure:  

Dividing the data set of time series into ( )1k +  parts 

a Part 1:  

The first part is the data before the first intervention, as 

many as 0t
n time periods, i.e. t = 1, 2, ⋯ , 1 1T − . Denoted the 

data as 0t
Y . 

b Part 2: 

The second part is the data from the first intervention until 

just before the second intervention, as many as 1t
n time 

periods, i.e. 1 1 1 2, 1, 2, , 1t T T T T= + + −… . Denoted the data as 

1t
Y . 

c Part ( )1k + :  

The ( )1k + st part is the data from the kth intervention until 

the end of data analysis based on as many as 
tkn  time periods, 

i.e. , 1, 2, ,k k kt T T T n= + + … . Denote these data as 
tkY . 

The Second Procedure:  

Modeling of the first intervention  

a Step 1:  

(1) Apply Box-Jenkins procedure to get a review ARIMA 

model building for time series data before the first 

intervention 0t
Y  occurs. It can be simply written as 

follow: 

0

( ) ( )

( ) ( )(1 ) (1 )t

S
q Q

tS d S D
p P

B B
Y a

B B B B

θ
ϕ

Θ
=

Φ − −
.        (15) 

(2) Forecast Part 2 dataset 1t
Y using the best of ARIMA 

model. In this step, the forecasted data are 

1 1 1 11 1
ˆ ˆ ˆ, ,...,T T T nY Y Y+ + − .

 

b Step 2: 

(1) Calculate the response values of the first intervention 

or 
*

1t
Y . These are the residuals of the data for time 

periods 1 1 1 2, 1, 2,..., 1t T T T T= + + − , based on the 

forecasting of the ARIMA model in the first step. This 

step produces response values of the first intervention, 

i.e. 
1 1 2

* * *
1 1, ,..., .T T TY Y Y+ −  

(2) Determination of set order 1 1 1, ,b s r  from the first 

intervention by using the plot of response values 

1 1 2

* * *
1 1, ,...,T T TY Y Y+ −  and a confidence interval of width, 

i.e. 
0

ˆ3 ,aσ±  where 
0

ˆ
aσ is Root Mean Square Error 

(RMSE) of the previous ARIMA model. 

(3) This interval is based on the determination of control 

chart bounds during statistical quality control for 

detecting outlier observations. 

c Step 3: 

(1) Estimate the parameter and test the significance for 

the first intervention model. 

(2) Conduct a diagnostic check to examine the residual 

assumption, i.e. white noise and normality 

distribution. In this step, the first input intervention 

model is 

1

1

1

1,

( ) ( ) ( )
.

( ) ( ) ( ) (1 ) (1 )

b S
s q Q

t t tS d S D
r p P

B B B B
Y a

B B B B B

ω θ
ξ

δ ϕ
Θ

= +
Φ − −

  (16) 

The Third Prosedure:  

Modeling of the mth Intervention Model, where m = 2, 

3,..., k  

a Step 1: 

Forecast data ( )1m +
 tmY based on the ( )1m − st 

intervention model. In this step, we obtain the forecasted 

values from the ( )1m − st intervention model, i.e. 

1 1
ˆ ˆ ˆ, ,..., .

m m m mT T T nY Y Y+ + −  

b Step 2: 

(1) Calculate the mth intervention responses
*

tmY , which is 

the residual of the data periods for 

1, 1, , 1m m mt T T T += + −… , This is based on the 

forecasting of the ( )1m − st intervention model. These 

response values are denoted as 

1

* * *
1 1, ,..., .

m m mT T TY Y Y
++ −  

(2) Identify presume orders , ,m m mb s r  from the ( )1m − th 

intervention model from the plot of response values 

1

* * *
1 1, ,...,

m m mT T TY Y Y
++ − , and the confidence interval of 

width 
1

ˆ3 .
maσ

−
±  

c Step 3: 

(1) Perform parameter estimates as a measure seeking the 

best or most efficient estimates for the parameters in 

the model and test of significance as in the comparative 

evaluation of the mth intervention models. 

(2) Checks diagnostic to evaluate and/or examine the 

suitability of residual assumption that if residual 

eligible white noise and normally distributed. This step 
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can also be tested against the residual is a white noise 

process can be done individually or jointly. Testing can 

be done individually if known distribution of the 

estimated residual, which is generally near normal with 

mean zero. While testing the model all together is by 

Ljung-Box. The result of this step is  

1

( )

( )

j

j

j

b
m

s

t jt t
rj

B B
Y N

B

ω
ξ

δ=

= +∑            (17) 

This procedure is done iteratively until the last kth 

intervention. As a result of these steps, eventually we obtain 

the following multi-input intervention model as 

,

1

( ) ( ) ( )

( ) ( ) ( )(1 ) (1 )

j

j

j

b Sk
s q Q

t j t tS d S D
r p Pj

B B B B
Y a

B B B B B

ω θ
ξ

δ ϕ=

Θ
= +

Φ − −∑    (18) 

Based on the procedures for establishing multi-input 

intervention model in Section 4, the number of passengers 

carried data modeling types of domestic flights in Pekanbaru 

Airport with the following steps. 

5. Results and Discussion 

5.1. Pre-intervention Model Results  

This section presents the results of the Box-Jenkins 

procedure [5, p. 93; 41, p. 101; 26, p. 231] utilized for this 

research which includes the identification, parameter 

estimation, diagnostic checking and forecasting to find the 

best ARIMA model before the first intervention, i.e. the 

smog disaster since June 2013. 

The identification step shows that the data are not stationary 

both in variance and mean. In this case, a homogeneous 

nonstationary time series can be reduced to a stationary time 

series by taking a proper degree of differencing [39, p. 71]. 

Stationary data on the mean obtained through differencing 

before the first intervention after regular and seasonal 

differencing (d = 1, D = 1 and S = 12). Based on this Box-Cox 

transformation [39, p. 85], a natural log is employed to cause the 

variance data to be stationary as shown in Figure 3. 

 
Figure 3. Natural log (ln) Transformation of the Monthly Types of the Domestic Airline Passenger in Pekanbaru Airport from January 2004 - December 2016. 
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Figure 4. (a) Plot of ACF and (b) PACF of the Stationary Data before the First Intervention after Regular and Seasonal Differencing (d = 1, D = 1 and S = 

12). 

A realization of this model with its sample autocorrelation 

function is given in Figure 4. A visual inspection reveals that 

the mean and variance remains stable while there are some 

short runs where successive observations tend to follow each 

other for very brief durations, suggesting that there is indeed 

some negative autocorrelation as confirmed by the sample 

ACF plot. The ACF plot of before the first intervention data 

show that ACF at lag 1 and lag 12 are significantly different 

with zero or they are greater than the confidence interval of 

ACF. There are several non seasonal lags (lag 1, 2,..., 8) and 

the ACF tends to be cut off after lag 1 whereas PACF 

diminishes dies down. On the other hand, ACF and PACF at 

seasonal lags (lag 12, 24,...) tend to cut off after lag 12. 

Hence, there are 2 possible appropriate orders of this ARIMA 

model, i.e. (0, 1, 1)(0, 1, 2)
12

 and (0, 1, 1)(0, 1, 1)
12

.  

Table 3 shows the results of the parameter estimation, 

parameter significance test, and diagnostic checking. From 

this table, we know that both models are appropriate as a 

means for forecasting the monthly types of the domestic 

airline passenger in Pekanbaru airport before the first 

intervention.  

Table 3. Results of Parameter Estimation, Parameter Significance Test and Diagnostic Checking. 

Final Estimates of Parameters 

Type Coef SE Coef  T P 

MA 1 0,6072 0,0826 7,35 0,000 

SMA 12 0,7583 0,0937 8,09 0,000 

Constant 183,0 151,6 1,21 0,230 

Differencing 1 regular 1 seasonal of order 12   

Number of observations Original series 109 after differencing 96   

Residuals SS = 12663716473 (backforecasts excluded) MS = 136168994 DF = 93 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 

Chi-Square 14,6 42,2 70,2 85,0 

DF 9 21 33 45 

P-Value 0,104 0,004 0,000 0,000 

 

Completely, the best ARIMA of pre-intervention model for 

this case can be written as 

12

12

(1 0,6072 )(1 0,7583 )
ln  

(1 )(1 )
t t

B B
Y a

B B

− −=
− −

        (19) 

5.2. The First Intervention Model Results 

This section presents the results of the intervention model 

by illustrating the impact of the first step function, namely 

the smog disaster from February 2013 until December 2013 

or at the time t = 110, 111,..., 121. Mathematically, the first 

intervention type of step function of a deterministic (dummy) 

intervention indicator is written as 

( )110

1,

 0, 109

 1,  110,111, ,121.
t t

t
S

t
ξ

≤
= =  = ⋯

          (20) 

The first step in this model is to determine the order b1, r1 and 

s1 for the first step function intervention model [39, p. 324; 41, p. 

360]. In this work, Figure 5 illustrates a chart of the residuals to 

determine the pattern of orders for the first intervention. 
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Figure 5. Response values of the Domestic Airline Passenger Flight in Pekanbaru Airport. 

Based on the Figure 5, we can see that the response values 

at time T1, T1+1,..., T1+5 have less absolute values than the 

confidence interval. This graph also illustrates that only the 

values at T1+6 is close to the lower confidence interval. Thus, 

there is not possible set of order for the first step function 

intervention model. Parameter estimation and significance 

tests show that this model order yields significant parameters 

from this first intervention. Table 4 presents the Minitab 

output based on the first intervention model.  

Table 4. Results of Parameter Estimation, Parameter Significance Test and Diagnostic Checking. 

Final Estimates of Parameters 

Type Coef  SE Coef  T P 

MA 1 0,6125 0,0831 7,37 0,000 

SMA 12 0,7964 0,0916 8,70 0,000 

Constant 145,3 134,8 1,08 0,284 

Differencing 1 regular, 1 seasonal of order 12   

Number of observations Original series 109 after differencing 96   

Residuals  SS = 12772941832  (backforecasts excluded) MS = 135882360 DF = 94 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 

Chi-Square 14,4 42,5 69,5 87,6 

DF 9 21 33 45 

P-Value 0,108 0,004 0,000 0,000 

 

Based on the result parameter estimation and significance 

tests show that both sets of the model orders yield significant 

parameters and residuals that satisfy the white noise and 

normal distribution assumptions. An intervention model for 

the number of after the first step function intervention and 

prior to the second step function can be written as 

( ) 12
1

12

(1 0,6125 )(1 0,7964 )
ln  

(1 )(1 )t
t

B B
Y a

B B

− −=
− −

        (21) 

5.3. Results from the Second Intervention Model  

After modeling the first intervention based on the 

intervention model due to the disaster smog, furthermore, 

another analysis of the second step function intervention is 

conducted. This is based on February 2014 at which is 

equated with t = T2 = 122. Mathematically, the intervention 

type of step function is written as 

( ) ( )122

2,

 0, 121

 1,  122, 123, , 126.

T
t t

t
S

t
ξ

≤
= =  = ⋯

       (22) 

As explained above the forming of intervention model. 

The first step in this modeling is to determine the order b2, s2 

and r2 for the second step function intervention model. This 

is done to determine the order of the intervention model and 

to explain the decrease in the number types of the domestic 

airline passenger flight in Pekanbaru airport. 
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Figure 6. Response values of the Domestic Airline Passenger Flight in Pekanbaru Airport. 

The output in Figure 6, we can see that the response values 

at time T2, T2 +2, T2 +3 and T2 +4 have less absolute value 

than the confidence interval. This graph also illustrates that 

only the response values at time T2+1 (March 2014) is close 

to the confidence intervals. Thus, there is 1 appropriate 

presume order of the second step function intervention 

model, i.e. b2 = 1, s2 = 2 and r2 = 0. Parameter estimation and 

significance tests show that this model order yields 

significant parameters from this second intervention. Table 5 

presents the SAS output based on the second step function 

intervention. 

Table 5. Results of Parameter Estimation, Parameter Significance Test and 

Diagnostic Checking. 

Estimasi Parameter thitung pvalue Type of significant 

20 13092.3ω =  1,08 0.0010 significant  

 1,31 0.1931 significant 

 -15,76 0.0001 significant 

 

Table 6. Results of Parameter Estimation, Parameter Significance Test and Diagnostic Checking. 

Final Estimates of Parameters 

Type Coef  SE Coef  T P 

MA 1 0,7146 0,0692 10,32 0,000 

SMA 12 0,8456 0,0843 10,03 0,000 

Constant 195,97 90,70 2,16 0,033 

Differencing 1 regular, 1 seasonal of order 109   

Number of observations Original series 122 after differencing 96   

Residuals  SS = 18549961248 (backforecasts excluded) MS = 174999634 DF = 106 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 

Chi-Square 16,2 42,0 70,4 85,8 

DF 9 21 33 45 

P-Value 0,062 0,004 0,000 0,000 

 

Based on the results listed in Table 5, an intervention 

model for the number types of the domestic airline passenger 

flight in Pekanbaru airport after the first step function 

intervention and prior to the third step function intervention 

can be written as 

( ) ( )2

1 2 3ln 13092.3 154081.1 15.76
t

t t t tY S S S N− − − = − − +   (23) 

where 

12

12

(1 0,7146 )(1 0,8456 )
 .

(1 )(1 )
t t

B B
N a

B B

− −=
− −

 

5.4. Results from the Third Intervention Model 

The final analysis of the third pulse intervention based on 

national election event. The best of intervention model for 

the national election as a political year, which took event on 

July 2014 is equated with t = T3 = 127. Mathematically, the 

pulse function in this intervention could be written as 

( ) ( )127

3,

 0, 127

 1,  127.

T
t t

t
P

t
ξ

≠
= =  =

              (24) 

As described in the previous section, the first step in this 

modeling is to determine the order b3, r3 and s3 for the third 
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pulse function intervention model. This is done to determine 

the order of the intervention model and to explain the 

decrease in the number monthly types of the domestic airline 

passenger in Pekanbaru airport due to the national election 

and to determine the order of intervention. A residual chart is 

as in Figure 7 is used to show this step. 

 

Figure 7. Response values of the Domestic Airline Passenger Flight in Pekanbaru Airport. 

From Figure 7 shows a chart of the residuals to 

determine the order of b3, s3, and r3 for the third 

intervention model based on the national election and we 

can see the response values at time T3, T3 +1, T3 +2,..., 

T3+5 have less absolute values than the confidence 

interval. This graph also illustrates that there is not values 

is close to the lower confidence interval. Thus, there is not 

possible set of order for the third pulse function 

intervention model. Parameter estimation and significance 

tests show that this model ARIMA yields significant 

parameters from this third intervention. After we 

estimated the parameters of each identified model, the 

estimated model should be tested to verify the assumption 

of residual. 

Table 7. Results of Parameter Estimation, Parameter Significance Test and Diagnostic Checking. 

Final Estimates of Parameters 

Type Coef  SE Coef  T P 

MA 1 0,6941 0,0702 9,89 0,000 

SMA 12 0,7976 0,1055 7,56 0,000 

Constant 58,5 134,1 0,44 0,663 

Differencing 1 regular, 1 seasonal of order 109   

Number of observations Original series 122 after differencing 96   

Residuals SS = 31049358608 (backforecasts excluded) MS = 279723951 DF = 111 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 

Chi-Square 16,4 27,4 42,8 50,2 

DF 9 21 33 45 

P-Value 0,059 0,159 0,118 0,276 

 

The SAS output shown in Table 6 shows that the final 

multi-input intervention model for the number of the 

domestic airline passengers in Pekanbaru airport after the 

third pulse intervention function can be written as  

( )
12

3

12

(1 0,6941 )(1 0,7976 )ˆln  .
(1 )(1 )

t t

B B
Y a

B B

− −=
− −          (25) 

5.5. Results from the Fourth Intervention Model 

After modeling the third intervention based on the 

intervention model due to the disaster smog, another analysis 

of the fourth step function intervention was conducted. This 

was based on January 2015 at which is equated with t = T4 = 

133. Mathematically, the intervention type of step function is 

written as 
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( ) ( )133

4,

 0, 132

 1,  133, 134, , 140.

T
t t

t
S

t
ξ

≤
= =  = ⋯

        (26) 

The first step in this modeling is to determine the order b4, 

s4 and r4 for the third step function intervention model. This 

is done to determine the order of the intervention model and 

to explain the decrease in the number of the number types of 

the domestic airline passenger flight on Riau Province via 

Sultan Syarif Kasim II International airport due to the 

disaster smog. 

 

Figure 8. Response values of the Domestic Airline Passenger Flight in Pekanbaru Airport. 

Table 8. Results of Parameter Estimation, Parameter Significance Test and Diagnostic Checking. 

Final Estimates of Parameters 

Type Coef SE Coef T P 

MA 1 0,5788 0,0797 7,26 0,000 

SMA 12 0,2401 0,1253 1,92 0,058 

Constant -253,7 512,4 -0,50 0,621 

Differencing 1 regular 1 seasonal of order 12   

Number of observations Original series 133 after differencing 120   

Residuals SS = 34683139057 (backforecasts excluded) MS = 296437086 DF = 117 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 

Chi-Square 7,9 21,4 32,2 37,9 

DF 9 21 33 45 

P-Value 0,540 0,432 0,507 0,766 

 

Figure 8 shows that the response values at time T4 +2 and 

T4 +6 have greater absolute values than the confidence 

intervals. This means that there are 2 possible sets of orders 

for the fourth step function intervention model, i.e. the first 

set order is b4 = 2, s4 = 0, r4 = 1 and the second is b4 = 2, s4 = 

3, r4 = 0. Parameter estimation and significance tests show 

that both sets of the model orders yield significant parameters 

and residuals that satisfy the white noise and Normal 

distribution assumptions.  

Table 9. Results of Parameter Estimation, Parameter Significance Test and Diagnostic Checking. 

Parameter Estimation tvalue pvalue Type of significant 

1θ = 0,5788 7,26  0,000 Significant 

1Θ = 0,2401 1,92  0,058 Significant 

40ω = -11.129,1 -1.01 0.3137 Significant 

41ω = -158.270,5 -15.16 <.0001 Significant 

42ω = 68.114,3 4,44 <.0001 Significant 

43ω = -67.088,6 -3.85 0.0002 Significant 

T4+7T4+6T4+5T4+4T4+3T4+2T4+1T4T4-1T4-2T4-3T4-4T4-5T4-6T4-7T4-8T4-9T4-10
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Based on the results in Table 7, an intervention model for 

the number types of the domestic airline passenger flight in 

Pekanbaru airport after the fourth step function intervention 

and prior to the fifth step function intervention can be written 

as 

( ) ( )4

4, 9 4, 10 4, 11 4, 12ln 11.129 158.27 68.144 67.088
t

t t t t tY S S S S N− − − −= − + − + +
 

where  

12

12

(1 0,5788 )(1 0,2401 )
 

(1 )(1 )
t t

B B
N a

B B

− −=
− −          (27) 

The calculations show that the disaster smog resulted in 

decrease the number of domestic passengers flying air 

passing through the Sultan Syarif Kasim II Pekanbaru airport 

per month of 193 290 passengers. This decline has occurred 

since the incidence of fire disaster until prior to the fifth 

intervention, which began in February 2015 and fluctuated 

until August 2015. 

5.6. Results from the Fifth Intervention Model 

The final analysis of the fifth step intervention function 

based on the disaster smog 2015 which took place on 

September 2015 or at the time t = T5 = 141 until t = T5 = 150. 

Mathematically, the intervention type of step function is 

written as 

( ) ( )141

5,

 0, 140

 1,  141, 142, , 150.

T
t t

t
S

t
ξ

≤
= =  = ⋯

           (28) 

The first step in this analysis is to determine the order of 

the 5th intervention model. Figure 9 shows a chart of the 

residuals to determine the order of b5, s5 and r5 used in the 

intervention model. The residuals will be used to model the 

decrease of the number types of the domestic airline 

passenger flight in Pekanbaru airport via Sultan Syarif Kasim 

II International airport due to the disaster smog. 

 

Figure 9. Response values of the Domestic Airline Passenger Flight in Pekanbaru Airport. 

Based on the results a chart of the residuals in Figure 9, 

this means that there are 2 possible sets of order for the fifth 

step function intervention model, the first set order is b5 = 1, 

s5 = (1, 2), r5 = 0 and the second is b5 = 0, s5 = 0, r5 = 0 due to 

a decrease in residual patterns tend to form a straight line, 

which indicates a constant effect, parameter estimation and 

significance tests show that both set of the model orders yield 

significant parameters and residuals that satisfy the white 

noise and normal distribution assumptions. The comparison 

of SBC criteria shows that the second model yields better 

result than the first. The results in Table 8 are shown using 

the SAS output. 
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Table 10. Results of Parameter Estimation, Parameter Significance and Diagnostic Checking. 

Final Estimates of Parameters 

Type Coef SE Coef T P 

MA 1 0,7640 0,0660 11,58 0,000 

SMA 12 0,8148 0,0937 8,70 0,000 

Constant -122,6 124,7 -0,98 0,328 

Differencing: 1 regular 1 seasonal of order 12   

Number of observations Original series141 after differencing128   

Residuals: SS=61894852129 (backforecasts excluded) MS=495158817 DF=125 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 

Chi-Square 5,3 24,1 44,2 51,6 

DF 9 21 33 45 

P-Value 0,812 0,288 0,092 0,231 

Table 11. Results of Parameter Estimation, Parameter Significance test and Diagnostic Checking. 

Parameter Estimation tvalue pvalue Type of significant 

1θ = 0,7640 11,58  0,00 Significant 

1Θ = 0,8148 8,70  0,00 Significant 

10ω = -161.255,4 -14.70 <.0001 Significant 

 

In this case, the intervention model for the number types 

of the domestic airline passenger flight in Pekanbaru airport 

via Sultan Syarif Kasim II International airport after the 1st, 

2nd, 3rd, 4th and 5th step intervention function can be 

written as 

( ) 12
5

5, 9 12

(1 0,7640 )(1 0,8148 )
ln -161.255,4  

(1 )(1 )t
t t

B B
Y S a

B B
−

− −= +
− −

 (28) 

The effect of the reconstruction and the forecast of the 

final intervention model as the for transformation data 

(natural log) are presented in Figure 10.  

 

Figure 10. Effect on the Reconstruction and Forecast values of the Domestic Airline Passenger Flight in Pekanbaru Airport. 

6. Evaluating and Monitoring 

Forecasting Model Performance 

This paper considers how to evaluate the performance of 

forecasting technique for a particular time series or 

application. It is important to carefully define the meaning of 

performance. It is tempting to evaluate performance on the 

basis of the fit of the forecasting or time series model to 

historical data. 

An evaluation of the impact for each intervention could 

not be done directly based on the model of equation (28). 

This has caused the data not in origin scale, so the effect of 

each intervention could not be directly used as the estimated 

parameters. The rational for this statement is based on the 

assumption that the intervention model that we want to 
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evaluate is as follows (see Lee et al. [25], and Zhang et al. 

[42]) 

*
t t tY Y n= +                                         (29) 

where 

tY  = The actual data 

*
tY  = The intervention effect 

tn  = “Noise” model follows to ARIMA(p, d, q)(P, D, Q)
S
 

for error (data without intervention effect) 

Besides that, the next assumption is that the intervention 

effect follows the simplest model, i.e. 

( )*
0

T
t tY ω ξ=                                 (30) 

where 

( ) ( )T T
t tSξ = =  The step function at a certain T. 

In this case, the effect of the intervention at t = T is 

*
0T T TY Y n ω= − = . 

Thus, we could directly use the estimated parameters to 

measure the impact of an intervention. On the other, we can 

assume that the variance data is not stationary and we must 

transform this data by using natural log. So the process can 

be written as 

lnt tY Y=ɶ                                     (31) 

And the intervention model is 

*
.t t tY Y n= +ɶ ɶ                                (32) 

If it is defined as 

( )*
0

T
t tY Sω=ɶ                                 (33) 

then the effect of this intervention at t = T on the 

transformation data is  

*
0 .T T TY Y n ω= − =ɶ ɶ                        (34) 

Hence, the impact of this intervention on the original data 

is: 

* *
* .TT T TY n n Y

TY e e e
+= − ≠

ɶ ɶ
                   (35) 

This result shows that the estimated parameters of this 

intervention model at transformation data could not be 

interpreted directly due to the magnitude of the effects of an 

intervention. Therefore, the effect of the intervention on the 

transformation data at a certain time must be calculated by 

using the difference between the forecast of this intervention 

and the pre-intervention models.  

Following this, we can transform the data to the original 

scale to examine the impact and the results of each 

intervention as shown in Figure 11. Based on this conversion 

to the original data scale, the impact of the first, second, 

third, fourth and fifth interventions are summarized in the 

following sections. 

 

Figure 11. Effects of the Reconstruction and Forecasts of the First, Second, Third, Fourth and Fifth Interventions Models (Original Data). 

7. Conclusions 

In this study, the theoretical and empirical studies on the 

intervention model were carried out to determine the order of 

the intervention model. This model includes the derivation of 

some effect shapes categorized as temporary, gradually or 
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permanent effect.  

Based on the results of the discussion above, it can be 

concluded that each model, as a result of their intervention 

has a constructed forecasting model highly influenced by the 

phenomenon of external and/or internal factors. The final 

results of this theoretical study were developed a procedure 

for establishing an intervention model which includes three 

main stages of modeling. All the computations involved in 

this research have been performed by using MINITAB 

version 16 and SAS. 

This paper also shows that the interpretation of an 

intervention model for transformation data could not be done 

directly based on estimated model parameters. Further 

research is needed to understand the precise impact of the 

interventions on other forms of data transformation.  

However, the availability of sophisticated statistical 

software packages such as Minitab, JMP and SAS makes it 

possible for the practitioner to consider several different 

models with various orders and compare them based on the 

model selection criteria such as AIC, AICC and SIC and 

residual analysis. 
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