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Abstract: In this paper, we study the existence of coupled solutions of anti-periodic boundary value problems for impulsive 

differential equations with ϕ-Laplacian operator. Based on a pair of coupled lower and upper solutions and appropriate Nagumo 

condition, we prove the existence of coupled solutions for anti-periodic impulsive differential equations boundary value 

problems with ϕ-Laplacian operator.  
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1. Introduction 

In recent years, the study boundary value problems (BVPs 

for short) with p -Laplacian operator has been emerging as an 

important area and obtained a considerable attention. Since p

-Laplacian operator appears in the study of flow through 

porous media ( 3 2p = / ), nonlinear elasticity ( 2p ≥ ), 

glaciology (1 4 3p≤ ≤ / ) and so on, there are many works 

about existence of solutions for differential equations with p

-Laplacian operator [24, 25]. Usually, p -Laplacian operator 

is replaced by abstract and more general version φ -Laplacian 

operator, which lead to clearer expositions and a better 

understanding of the methods which ware employed to derive 

the existence results [12, 22, 23]. 

Moreover, impulsive differential equations have become an 

important aspect in some mathematical models of real 

processes and phenomena in science. There has a significant 

development in impulsive differential equations and impulse 

theory(see [2, 3, 14]). Moreover, p -Laplacian operator arises 

in turbulent filtration in porous media, non-Newtonian fluid 

flows and in many other application areas [10, 12]. 

Furthermore, the study of anti-periodic problem for 

nonlinear evolution equations is closely related to the study of 

periodic problem which was initiated by Okochi [17]. 

Anti-periodic problem which is a very important area of 

research has been extensively studied during the past decades, 

such as anti-periodic trigonometric polynomials [11] and 

anti-periodic wavelets [4]. Moreover, anti-periodic boundary 

conditions also appear in physics in a variety of situations (see 

[1, 13]) and difference and differential equations (see [6, 8, 19, 

20]). The anti-periodic problem is a very important area of 

research. 

In addition, we known that every T -anti-periodic solution 

gives rise to a 2T -periodic solution if the nonlinearity f  

satisfy some symmetry condition. Indeed, the periodic and 

anti-periodic boundary value problems have attracted many 

researchers great interest (see [6, 8, 9, 15, 16, 19, 20, 21] and 

references therein). Recently, Guo and Gu [22] study a class of 

nonlinear impulsive differential equation with anti-periodic 

boundary condition:  

( ( ( ))) ( ( ) ( )) [0 ]u t f t u t u t a e t T Pφ ′ ′ ′= , , . . ∈ , , ,    (1) 

( ( ) ( )) 0
1 2

( ( ) ( ) ( ) ( ) ) 0

k k k

k k k k k

I u t u t
k p

M u t u t u t u t u

+

+ +

 , = , = , , , , ′ ′, , , , = ,
⋯    (2) 

(0) ( ) (0) ( )u u T u u T′ ′= − , = − ,        (3) 

where φ  is an increasing homeomorphism from R  to R , 

2[0 ]f T R R: , × →  is a Carathéodory function. 

1 0 1 1{ 0 }p p pP t t t t t t T+= , , : = < < < < =⋯ ⋯ , 0 2( )kI C R∈ , 

0 4 1( ) 1k PM C R C k p∈ × , = , ,⋯  are impulsive functions. 1

PC

will be given later. In [22], the authors obtained the existence 

of solution for anti-periodic boundary value problems (1)-(3) 
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for impulsive differential equations with φ -Laplacian 

operator. In this paper, we will continuous to consider the 

existence of coupled solutions for boundary value problems 

(1)-(3).  

This paper is organized as follows: In section 2, we will 

state some preliminaries that will be used throughout the paper. 

In section 3, we will obtain the existence of coupled solutions 

for anti-periodicφ -Laplacian impulsive differential equations 

boundary value problems (1)-(3). 

2. Preliminaries 

In this section, we will introduce some definitions and 

preliminaries which are used throughout this paper.  

For a given Banachspace E , let 0 ( )C E  be the set of all 

continuous functions f E R: → . Let ( )mC I  be the set of 

functions u  which are m  times continuously differentiable 

on I  with finite norm  

( )

( ) 0
maxm

k

C I k m
u u ∞= , ,

|| || = || || .
⋯

 

For 1 q≤ ≤ ∞ , Let ( )qL I  be the set of Lebesgue 

measurable functions u  on I  such that 
qu|| ||  is finite. 

( )AC I q, denotes the set of absolutely continuous functions 

u  on I  satisfy ( )qu L I′ ∈ . ( )m qW I, denotes the set of 

functions 1( )mu C I−∈  and ( 1) ( )mu AC I q− ∈ ,  with finite 

norm  

( )

( ) 0
maxm q

k

qW I k m
u u,

= , ,
|| || = || || .

⋯
 

It is easy to see that ( )mC I  and ( )m qW I, are Banach 

spaces and ( )m qW I,  is a usual Sobolev space.  

Let p N∈ . A finite subset P  of the interval [0 ]T,  

defined by  

1 0 1 1{ 0 }p p pP t t t t t t T+= , , : = < < < < = .⋯ ⋯  

Let 0 1
[0 ]J t= ,  and 1

( ]
k k k

J t t += ,  for all 1k p= , ,⋯ . For 

{0}m N∈ ∪ and 1 q≤ ≤ ∞ , we denote  

( )

( ) ( )

{ [0 ] 0 ( ) ( )

1 ( ) ( ) 1 1 0 }

{ [0 ] ( ) 0 }
k

m m l

P k k

l l

k k

m q m q

P J k

C u T R forall k p u C J there exist u t

k p and u t u t k p l m

W u T R u W J k p

+

−

, ,
|

= : , → : = , , , ∈ , ,

= , , = , = , , + ; = , , ,

= : , → : ∈ , = , , .

⋯

⋯ ⋯ ⋯

⋯

 

It is easy to verify that the spaces m

PC  and m q

PW , are 

Banach spaces with the norms  

( ) ( )0 0
max maxm m m q m q

k kP k kP
J JC C J W JWk p k p

u u and u u, ,| |= , , = , ,
|| || = || || || || = || || .

⋯ ⋯
 

We say that 2[0 ] (f T S R S R: , × → ⊂ ) satisfies the 

restricted Carathéodory conditions on [0 ]T S, ×  if  

i. for each x S∈  the function ( )f x⋅,  is measurable on 

[0 ]T, ;  

ii. the function ( )f t,⋅  is continuous on S a.e. [0 ]t T∈ , ;  

iii. for every compact set K S⊂ , there exists a 

nonnegative function 
1
(0 )

K
L Tµ ∈ ,  such that  

( ) ( ) [0 ]
K

f t x t for a e t T and all x Kµ| , |≤ . . ∈ , ∈ .  

In this paper, we use Car( [0 ]T S, × ) to denote the set of 

functions satisfying the restricted Carathéodory conditionson 

[0 ]T S, × . In what follows, D±
 and D±  denote the Dini 

derivatives.  

Definition 1. The functions 1

PWα β ,∞, ∈  such that α β≤  

are said to be a pair of coupled lower and upper solutions of 

problem (1)-(3) if α β,
 

satisfy the following conditions:  

(i) ( ) ( )D t D tα α+
− ≤

 
for all [0 ]t T P∈ , , . Moreover, if 

[0 ]T Pτ ∈ , ,  such that ( ) ( )D Dα τ α τ+
− = , then there 

exists 0ε >  such that  

1([ ])Cα τ ε τ ε∈ − , + , 

([ ])ACϕ α τ τ ε′∈ , +�  

and  

( ( ( ))) ( ( ) ( )) [ ]t f t t t a e tϕ α α α τ τ ε′ ′ ′≥ , , . . ∈ , + .  

(ii) ( ) ( )D t D tβ β+
− ≥ for all [0 ]t T P∈ , , . Moreover, if 

[0 ]T Pτ ∈ , ,  such that ( ) ( )D Dβ τ β τ+
− = , then there 

exists 0ε >  such that  

1([ ])Cβ τ ε τ ε∈ − , + , 

([ ])ACϕ β τ τ ε′∈ , +�  

and  

( ( ( ))) ( ( ) ( )) [ ]t f t t t a e tϕ β β β τ τ ε′ ′ ′≤ , , . . ∈ , + .  

(iii) For all 1k p= , ,⋯ , ( ( ) )
k k

I tα ,⋅  are injective and there 

exist ( )kD tα+
, ( )

k
D tα− , ( )

k
D tβ+ , ( )kD t Rβ− ∈  

such that  

( ( ) ( )) 0 ( ( ) ( ) ( ) ( ) )

( ( ) ( )) 0 ( ( ) ( ) ( ) ( ) )

k k k k k k k k

k k k k k k k k

I t t M t t D t D t

I t t M t t D t D t

α α α α α α α
β β β β β β β

+ + +
−

+ + −
+

, = ≤ , , , , ,

, = ≥ , , , , .
 

and there exist (0)D α+
, ( )D Tα− , (0)D β+ , ( )D T Rβ− ∈  

such that  

(0) ( ) 0 (0) ( )

( ) (0) 0 ( ) (0)

T D D T

T D T D

α β α β
α β α β

+ −

− +

+ = ≤ + ,
+ = ≥ + .

 

Definition 2. Given a function 1

Pu C∈  is called a solution 

of the problem (1)-(3) if 1 1

Pu Wϕ ,′ ∈�  and u  satisfies (1) and 

fulfills conditions (2) and (3).  

Definition 3. Assume that f ∈ Car( 2[0 ]T R, × ) and 
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1

PWα β ,∞, ∈  satisfying ( ) ( )t tα β≤ for [0 ]t T∀ ∈ , . We say 

that f  satisfies a Nagumo condition with respect to α  and 

β  if, for 1k p= , ,⋯ , there exist [0 )
k

Cφ ∈ ,∞  and 

(0 ) 1qw L T q∈ , , ≤ ≤ ∞ , such that 0
k

φ >  on [0 ),∞ ,  

( ) ( ) ( ) [ ( ) ( )]
k k

f t u v w t v on J t t Rφ α β| , , |≤ | | × , × .
 

Moreover, there exists a constant ( )K K α β= ,
 

with 

max{ }
k

K r α β∞ ∞′ ′> , ,‖ ‖‖ ‖ , such that  

1 ( 1)
( )

( 1)

1( )

1 ( 1)
( )

( 1)

1( )

( ( ))

( ( ))

( ( ))

( ( ))

k
k

k

k

q q
K

q q

J q k
r

k

q q
r

q q

J q k
K

k

x
dx w or

x

x
dx w

x

ϕ

ϕ

ϕ

ϕ

ϕ η
φ ϕ

ϕ η
φ ϕ

− − /
− /

,−

− − /− − /
,−−

> ,

− > ,
−

∫

∫

‖‖

‖‖

     (4) 

where sup ( ) inf ( )
k

k

k
t Jt J

t tη β α
∈∈

= −  and 

1 1

1

1
max{ ( ) ( ) ( ) ( )}k k k k k

k k

r t t t t
t t

β α β α− + + −
+ +

+

= − , − .
−

 Any 

constant such max{ 0 } 0
k

K r k p> : = , , >⋯  will be called a 

Nagumo constant.  

Throughout this paper, we impose the following 

hypotheses:  

(H 1 )The function R Rϕ : →  is a continuous and strictly 

increasing.  

(H 2 )The BVP (1)-(3) has a pair of coupled lower and upper 

solutions α and β . 

(H 3 ) f ∈Car( 2[0 ]T R, × ) and satisfies a Nagumo condition 

with respect to α and β .  

(H 4 )The functions 0 2( )kI C R∈  are non-decreasing in the 

first variable for 1k p= , ,⋯ , and the functions 

0 4 1( )k PM C R C∈ ×  are non-increasing in the third variable 

and non-decreasing in the fourth and fifth variables.  

3. Existence Results of Coupled Solutions 

This section is devoted to proving the existence of coupled 

solutions for anti-periodic impulsive differential equations 

boundary value problems with φ -Laplacian operator. Firstly, 

we state the following existence and uniqueness result.  

Lemma 1.(Lemma 7 of [23])Assume that 
1[0 ]f L T∈ ,ɶ  and 

k k
A B R, ∈  for each 0k p= , ,⋯ . Suppose that R Rϕ : →  is 

a strictly increasing function satisfies ( )R Rϕ = . Then the 

non homogeneous impulsive Dirichlet problem  

1

0

( ( ( ))) ( ) [0 ]

( ) ( ) 1 2

(0) ( )

k k k k

p

u t f t a e t T

u t B u t A k p

u A u T B

ϕ
+

−

 ′ ′ = . . ∈ , ,
 = , = , = , , , ,
 = , = ,

ɶ

⋯  

has a unique solution u , which can be written in the form  

1
( ) ( ( ) ) 0

k k

t z

k k k
t t

u t A f s ds dz t J k pτϕ −= + + , ∈ , = , , ,∫ ∫ ɶ ⋯  

where k
τ  is the unique solution of the equation  

1 1
( ( ) )

k

k k

t z

k k k
t t

B A f s ds dzτϕ+ −− = + .∫ ∫ ɶ  

Next, let us consider the following functions  

( ) min{ max{ }}
K

y K y K for all y Rδ = , ,− ∈ ,  

where K  is the constant introduced in definition 2.3,  

( ) min{ ( ) max{ ( )}} ( ) [0 ]t u t u t for t u T Rρ β α, = , , , ∈ , × ,  

coupled with functionals 1

k k PA B C R, : →  given by  

0

1

( ) (0 ( ))

( ) ( ( ) (0) ( ))

( ) ( ( ) ( ( ) ( ))) 1

( ) ( ( ) ( ( ) ( ) ( ) ( ) )) 1

p

k k k k k k

k k k k k k k k

A u u T

B u T u T u u T

A u t u t I u t u t k p

B u t u t M u t u t u t u t u k p

ρ
ρ

ρ
ρ

+ + +

+ +
−

= ,− ,
′ ′= , − − ,

= , + , , = , , ,
′ ′= , + , , , , , = , , .

⋯

⋯
 

Moreover, for each 1

Pu C∈  we consider a function 

[0 ]
u

T Rf : , →ɶ  defined by 

( ) ( ( ( )) ( ( ( ))))
Ku

d
t f t t u t t u tf

dt
ρ δ ρ= , , , , .ɶ  

The function 
u

fɶ  is well defined according to the 

following result (by redefining function ( ( ))d

dt
t u tρ ,  as zero 

when it does not exist). It can be proved in a similar way to 

Lemma 2 in [24].  

Lemma 2. For given 
1

n Pu u C, ∈  such that n
u u→ in 

1

PC , 

then  

(i) ( ( ))
d

t u t
dt

ρ ,  exists for a.e. [0 ]t T P∈ , , ;  

(ii) ( ( )) ( ( ))
n

d d
t u t t u t

dt dt
ρ ρ, → , for a.e. [0 ]t T P∈ , , .  

Now, we can define a strictly increasing homeomorphism 

R Rϕ : →  by:  

( )

( ) ( ) ( ) 1
( ( ) ( ))

2 2

x x K

x R x K K
x K K x K

K

ϕ
ϕ ϕ ϕ ϕ ϕ

, | |≤ ,
∈ → =  − − − + − , | |> .

 

In the following, we are in a position to prove the existence 

theorem for our considering problems. 

Lemma 3. (Theorem 3.3 of [22])Assume that (H 1 )-(H 4 ) 

hold. Then there exists at least one solution u  of the problem 

(1)-(3) such that  

( ) ( ) ( )t u t tα β≤ ≤  

and 

( ) [0 ]u t K t T′| |≤ , ∈ , ,  
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where ( )K K α β= ,  is the constant introduced in Definition 

2.3.  

Next, we are devoted to the existence of coupled solutions. 

We first introduce the following definition.  

Definition 4. The functions x y,  are called coupled 

solutions of problems (1)-(3) if 1

Px y C, ∈  and satisfy (1)-(2) 

and  

(0) ( )x y T= − ,                 (5) 

(0) ( )x y T′ ′= − ,                 (6) 

(0) ( )y x T= − ,                 (7) 

(0) ( )y x T′ ′= − .                 (8) 

Remark If the coupled solutions x  and y  of problem (1)-(3) 

satisfy x y= , the x y=  is a solution of problem (1)-(3).  

Next, we give the existence of coupled solutions for 

problems (1)-(3).  

Theorem 5. Assume hypotheses (H 1 )-(H 4 ) hold. Then there 

exists at least a pair of coupled solutions 1

Px y C, ∈  of the 

impulsive differential equations boundary value problem 

(1)-(3) such that  

[ ] { ( ) ( ) ( ) [0 ]}x y u t u t t t Tα β α β, ∈ , = : ≤ ≤ , ∈ , ,     (9) 

and 

( ) [0 ]x t K for t T′| |≤ ∈ , ,  

( ) [0 ]y t K for t T′| |≤ ∈ , ,  

where ( )K K α β= ,  is the constant introduced in Definition 2.3.  

Proof. Let us define 1k k
A Bρ −, ,  for each 1k p= , ,⋯  in 

the same way as above, and construct a modified problem 

( )P∗  similar to the proof of Lemma 3, that is  

1 1

0 0

( ( ( ))) ( ) [0 ]

( ( ( ))) ( ) [0 ]

( ) ( ) ( ) ( ) 1 2

( ) ( ) ( ) ( ) 1 2

(0) ( ) (0) ( )

( ) ( ) ( ) ( )

x

y

k k k k

k k k k

p p

x t t a e t T Pf

y t t a e t T Pf

x t B x y t B y k p

x t A x y t A y k p

x A x y A y

x T B x y T B y

ϕ
ϕ

− −
+ +

′ ′ = , . . ∈ , , ,
 ′ ′ = , . . ∈ , , ,
 = , = , = , , , ,


= , = , = , , , ,
 = , = ,


= , = ,

ɶ

ɶ

⋯

⋯
 

where 

0
( ) (0 ( ))A x y Tρ= ,− ,  

( ) ( ( ) (0) ( ))pB x T x T y x Tρ ′ ′= , − − ,  

0
( ) (0 ( ))A y x Tρ= ,− ,  

( ) ( ( ) (0) ( ))pB y T y T x y Tρ ′ ′= , − − .  

From the proof of the Lemma 3, there exists a couple of 

solutions 1

Px y C, ∈  such that  

xα β≤ ≤ ,  

yα β≤ ≤ ,  

and 

( ) ( ) [0 ]x t K y t K for t T′ ′| |≤ , | |≤ ∈ , .  

Furthermore, x y,  satisfy the condition (2). Now, to prove 

that (5)-(8) is verified, it suffices to prove that  

(0) ( ) (0)y Tα β≤ − ≤ ,           (10) 

(0) ( ) (0)x Tα β≤ − ≤ ,           (11) 

( ) ( ) (0) ( ) ( )T x T y x T Tα β′ ′≤ − − ≤ ,          (12) 

( ) ( ) (0) ( ) ( )T y T x y T Tα β′ ′≤ − − ≤ .          (13) 

Firstly, we will prove (10), by contradiction, if 

(0) ( )y Tα > − , then by yα β≤ ≤ , we have  

(0) ( ) ( )y T Tα β> − ≥ − ,  

which contradict to (0) ( ) 0Tα β+ = . Moreover, 

( ) (0)y T β− ≤  can be proved similarly. 

As the same way, we can obtain that the inequality (10) is 

holds. Thus we have  

(0) ( ) (0) ( )x y T y x T= − , = − .           (14) 

Assume that the first inequality if (11) isn’t holds, as a 

consequence, we have  

( ) ( )x T Tα=  

and  

(0) ( ) 0y x T′ ′+ > . 

From (14) and ( ) (0) 0Tα β+ = , we have  

(0) ( ) ( ) (0)y x T Tα β= − = − = .  

From these facts and the relation x yα β≤ , ≤ , we have  

( ) ( ) (0) (0)x T D T y Dα β− +′ ′≤ , ≤ , 

thus  

0 (0) ( ) (0) ( ) 0y x T D D Tβ α+ −′ ′< + ≤ + ≤ .  

It is a contradiction. Moreover, the inequality in (13) be 

obtain in a similar way. Hence inequalities (11)-(12) are hold, 

that is to say x y,  satisfy (5)-(8).  

Therefore, the functions x y,  is a coupled solutions of the 

problem (1)-(3), which completes the proof. 
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4. Conclusion 

In this paper, we mainly discuss the existence of coupled 

solutions of anti-periodic boundary value problems for 

impulsive differential equations with φ -Laplacian operator. To 

give the existence results of coupled solutions for the problem 

(1)-(3), we first introduce a pair of coupled lower and upper 

solutions (see Definition 1), Then, we provide and prove the 

existence results of coupled solutions for anti-periodic φ
-Laplacian impulsive differential equations boundary value 

problems based on a pair of coupled lower and upper solutions 

and appropriate Nagumo condition (Theorem 5). 
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