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Abstract: The problem of elasticity theory for the transversely isotropic hollow cylinder with mixed conditions on the side 

surface is considered in the paper. Transcendental equations are obtained regarding the eigenvalues of the problem. The roots 

of the characteristic equations are studied thoroughly. The study of the eigenvalues allowed to establish the essential 

characteristics of the stress-strain state of an anisotropic shell in comparison with isotropic shells. Homogeneous solutions 

were built here. 
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1. Introduction 

The modern theory of shells is deeply developed section of 

the mechanics of a deformable solid. However, the 

calculation of shells on the basis of three-dimensional 

equations of the theory of elasticity is associated with 

considerable mathematical difficulties. Therefore, it is 

necessary to apply to a variety of approximate methods to 

simplify the calculation of shells. Many methods of bringing 

the three-dimensional problem to a two-dimensional one use 

small shell thickness compared to its other dimensions in the 

constructions. Among them a special place is occupied by the 

asymptotic method. The asymptotic methods of integrating 

the equations of two-dimensional shell theory obtained the 

great development in A. L. Goldenveiser’s papers [1], [2]. V. 

V. Novozhilov’s [3] combination of complex transformation 

of equations of the shell theory with the asymptotic methods 

is presented in K. F. Chernykh’s works [4], [5]. With regard 

to the study of three-dimensional stress-strain state of elastic 

bodies the development of an asymptotic method belongs to 

K. Fridrix, L. Dressler [6], [7], A.L. Goldenweiser, 

I.I.Vorovich [8], [9], [10]. Further development of the 

asymptotic method went in two directions. In the first one the 

solution of the elasticity problem for thin bodies is carried 

out by means of direct integration of elasticity equations with 

the help of two iterative processes. This direction is 

developed in the works of A.L. Goldenveiser, M.I. Huseyn-

Zade, A.V. Kolos [11], [12] and L.A. Agalovyan [13]. 

The second approach is based on the investigation of a 

system of uniform solutions. The above-mentioned direction 

was developed by I.I. Vorovich [8], [9], D.C. Aksentyan [14], 

[15], O.S. Malkina [16], [17], N.N. Bazarenko [18], [19], 
T.A. Vilenskaya [20], Y.A. Ustinov [21], [22], [23] and M.F. 

Mekhtiev [24], [25]. 

Thus, the asymptotic method developed by A. L. 

Goldenweiser, I. I. Vorovich, V. B. Lidski [26] and their 

followers [27], [28], [29], [13], [30], [31], has made 

significant contribution to the development of the theory of 
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plates and shells. 

2. Statement of the Problem and Its 

Solution 

Let the cylinder occupies a volume 

[ ]{ [ ] [ ]}llzRRr ,,2,0,, 21 −∈∈∈=Γ πϕ  

The equilibrium equations in displacements are in the form 

[32]: 

( )

( )

2 2

11 0 132

2

13 0 33 2

1 0

1 0

u u u
b u b

u u u
b u b

ρ ρ ξ
ρ

ρ ρ ξ
ξ

ρ ρ ξξ

ξ ρ ρ ξ

∂ ∂ 
∆ − + + + =  ∂ ∂∂ 

∂ ∂ ∂+ + + ∆ + = ∂ ∂ ∂ 

     (1) 

here 
1 1 1 1

0 0 0 0
, , ,

r z
R r R z u R u u R uρ ξρ ξ− − − −= ⋅ = ⋅ = ⋅ = ⋅

( )0 1 2
1

2
R R R= +  is the radius of the middle surface of the 

shell, 

( ) ( )
( )

11 0 1 2 13 0 1

2

33 0

2 1 , 2 1 ,

2 1

mb G mb G

mb G

ν ν ν ν

ν

= − = +

= −
 

1 1

12 11 0 0 1 0 1

2 0 1

2 , , ,b b G E E E G G G

Eν ν

− −= − = ⋅ = ⋅
= ⋅

1 2
1 2m ν ν ν= − −  are dimensionless quantities, , ,E G ν  are 

isotropic material constants, 
1 1 1
, ,E G ν  are material constant 

in a plane perpendicular to the plane of isotropy. 

The relations of the generalized Hooke's law are [33]: 
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Suppose that the boundary conditions are given at the 

cylinder side surface 

0, 0
r rz

u τ= = for ( )1,2
s

r r s= =                (3) 

The nature of the boundary conditions at the ends of the 

cylinder is not defined yet, but we assume them so that the 

cylinder is in equilibrium state. 

The solution (1), (3) will be sought in the form of: 

( ) ( ) ( ),
dm

u u u W m
d

ρ ξρ ρ ξ
ξ

= =           (4) 

where the function ( )m ξ  is subjected to the condition: 
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2
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d
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ξ
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Substituting (4) into (1) to (5), we obtain the following 

boundary value problem 
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The general solution of (6) has the form of: 
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Here ( ) ( ) ( )1 2k k k
Z C J C Yρ ρ ρ= + , the functions 

( ) ( ),
k k

J Yρ ρ  are linearly independent solutions of the 

Bessel equation, 
1 2
,C C  are the arbitrary constants. 

,n n nt tα =  are the roots of a quadratic 

equation: 
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By satisfying the homogeneous boundary conditions (7), 

we obtain the characteristic equation  
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where 

( ) ( ) ( ) ( ) ( )11 1 1 1 1
,L x y J x Y y J y Y xα α α α α α= ⋅ − ⋅ . 

The transcendental equation (10) defines a countable set of 

roots 
k

µ , and the corresponding constants 
1 2 3 4

, , ,
n n n n

c c c c  are 

proportional to the cofactors of some row of the determinant 

of the system. Choosing the cofactors of the elements of the 
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first row as a system of solutions, the solutions to system (1) 

can be written as: 
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where 
n

C  are arbitrary constants. 
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As for the stresses, they can be determined by the 

generalized Hooke's law [33], [34]. 

3. The Asymptotic Analysis of the 

Problem 

The left side of equation (1.10) as an entire function of the 

parameter µ  has a countable set of zeros with the 

accumulation point at infinity. For effective study of its zeros 

we’ll assume that the shell is thin-walled. 

Let us assume that 
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                       (12) 

We believe that ε  is a small parameter 0µ = . 

Substituting (12) into (10) we obtain 

( ) ( )1 2
, , , 0D µ ε µ ρ ρ= ∆ =                   (13) 

Equation (13) has one restricted root. From (11) we find 

that this corresponds to the root of the following decision: 
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0
C  is an arbitrary constant. 

Stress state corresponding to zero 0µ =  is equivalent to 

the principal vector P  of stresses directed along the axis of 

the cylinder. 
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Let us prove that the characteristic equation (13) at 0ε →  

does not have any other restricted roots. For this purpose, we 

expand ( ),D µ ε  in a series in ε  and confine ourselves to the 

first terms of the expansion. We get 
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This shows that the characteristic equation has no other 

restricted roots besides 0µ = . Thus, all the roots of the 

characteristic equation tend to infinity as 0ε → . 

In principle, there could be the following limiting cases: 
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As in [32], we can prove that the cases 1 and 2 are not 

feasible. In the third case, we seek 
n
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In cases 1 and 2, after substituting (17) into (9) and its 

transformation using a series expansion in ε  we get: 
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With regard to the cases 3 and 4, their results are obtained 

from cases 1 and 2 by a formal replacement of 
1 2
,s s  into 

1 2
,i s i s , and of p  into i p . These equations coincide with 

the equations determining the performance of Saint-Venant’s 

edge effects in an anisotropic elasticity theory for a layer. 

The table 1 shows the values of the coefficients for some 

materials: 

Table 1. The coefficients for some materials. 

 magnesium cadmium zink 

1q  1,276 0,725 0,281 

2q  1,032 0,425 0,378 

2

1 2
q q−  0,595 0,101 -0,299 

4. Asimptotic Analysis of Stress-Strain 

State 

We now present the first terms of the asymptotic 

expansions of solutions, co-responding to different groups of 

roots. For displacements and stresses, in the first 

approximation, we get two classes of solutions, the first of 

which corresponds to the zeros 
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n

G
D F F mτ δ η η ε ξ

ε

∞

=

 ′= + + ∑  (23) 

where 

( ) ( )

( )

2 2

1 33

1

2 2

33

2

cos

2 sin ]

sin

_ 2 cos ] ;

n n n

n n n

n n

n n n

F b ch

sh

b sh

ch

η β χ βδ η χ δ η

χβ βδ η χδ η

β χ βδ η χ δ η

χβ βδ η χδ η

= + − +


+ ∆ −

− + − −


∆

 

( ) (
(
2 1

2

sin cos )

sin cos ) ;

n n n n n n

n n n n n

F сh sh

ch sh

η β βδ η χδ η χ βδ η χδ η

χ βδ η χδ η β βδ η χδ η

= − ∆ +

+ + ∆
 

( )( )
( )

2 2

1 33 13

13

2 sin

2 2 cos ;

n n n

n n

b b sh

b ch

β χ βδ χδ

χβ βδ χδ

 ∆ = − + + − +
 

+ +
 

( )( )
( )

2 2

2 33 13

13

2 cos

_ 2 2 sin ;

n n n

n n

b b ch

b sh

β χ βδ χδ

χβ βδ χδ

 ∆ = − + + − −
 

+
 

Expressions for 2,4,6,...n =  are obtained from (23) by 

simply replacing ch shχ χ↔ ; , ,n n nC B D  are arbitrary 

constants. 
We note that the solution (23) is characteristic only for 

anisotropic shells. It disappears completely in the transition 

to an isotropic shell ( )0
1G = . With regard to the solutions 

(21) and (22) when 0
1G =  they merge into one, and this 

solution coincides with the Saint Venant’s solution for an 

isotropic plate. 

In [32] a generalized condition of orthogonality of 

homogeneous solutions for the transverse isotropic hollow 

cylinder is proved, which allows to accurately satisfy the 

boundary conditions at the ends on special conditions of the 

shell edge bearing. 

With the help of generalized orthogonality conditions, we 

consider the following problem: let the condition (3) satisfy 

on the side surface of the cylinder and the following 

boundary conditions be defined at the ends: 

( )21 , 0z rc uσ λ η= − =  when 0
lξ = ± , 

0
2l  is the dimensionless height of the cylinder. 

According to (21) , , ,r z r rzu u σ τ  can be written as 

( ) ( ) ( )

( ) ( ) ( )
1 1

1 1

; ;

; ;

n

r n n z n n n

n n

n

z n n rz n n n

n n

dm
u C u u C W m z

dz

dm
C Q C T m z

dz

η η

σ η τ η

∞ ∞

= =

∞ ∞

= =

= =

= =

∑ ∑

∑ ∑
 (24) 

The summation in the series (24) is taken by the roots 
n

µ  

located in the upper half-plane ( )Im 0
n

µ > . In view of the 

relations of a generalized orthogonality, the desired constants 

n
C  have the form: 

( ) ( )
1

1 2

0

1

1n n k nC ch c W dλ µ η η η−

−

= − ∆ −∫ℓ  

( ) ( ) ( ) ( )
1

1

n n n n nu T Q W dη η η η η
−

 ∆ = − ∫ . 

In general, the boundary value problem is reduced to 

solving systems of linear infinite algebraic equations using 

Lagrange variational principle. 
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5. Conclusion 

The main results obtained in the article, the following: 

1) There are obtained simple asymptotic formulas 

allowing to find strain-deformed state of cylindrical 

shell with given precision; 

2) There is distinguished a class of solution (23) which is 

characteristic only for anisotropic shells and totally 

disappear on passage to isotropic case; 

3) It is shown that stress-strain state of a cylindrical shell 

is a sum of interior stress-strain state and countable set 

of boundary-layer solutions which is localized near the 

shell edge; 

4) For 
0

1G =  boundary-layer solutions totally coincide 

with Saint-Venan solution for anisotropic plate. 

By the same method there were investigated various 

problems some of which we consider [35], [36], [37], [38], 

[39], [40]. 

One of our authers (Mekhtiyev M.F.) devoted two 

monographs to the elaboration of asymptotic method of 

integrating the equations of anisotropic theory of elasticity 

for plates and shells of variable thickness [24], [25]. 
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