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Abstract: We investigate the option pricing problem when the price dynamics of the underlying risky assets are driven by 

delay geometric Brownian motions with regime switching. That is, the market interest rate, the appreciation rate and the 

volatility of the risky assets depend on the past stock prices and the unobservable states of the economy which are modulated by 

a continuous-time Markov chain. The market described by the model is incomplete, the martingale measure is not unique and 

the Esscher transform is employed to determine an equivalent martingale measure. We proved the model has a unique positive 

solution and the price of the contingent claims under the model can be computable numerically if not analytically. 

Keywords: Option Pricing, Regime Switching, Esscher Transform, Itô Formula, Euler-Maruyama 

 

1. Introduction 

In the modern financial economics, options form a very 

important and useful class of financial securities. There is an 

important problem from both theoretical and practical 

perspectives is that how to determine options value. In the 

path- breaking works of Black, Scholes [1] and Merton [16] 

assume that the price dynamics of the underlying risky assets 

are driven by a geometric Brownian motion (GBM). The 

option pricing formula does not rely on the actual appreciation 

rate of the underlying risky asset, which is replaced by the 

risk-free rate of interest. 

Despite its compact form and popularity, the fitness of 

the GBM model has been questioned on the basis of the 

assumption of constant volatility, as empirical evidence 

shows that volatility actually depends on time in a way that 

is not predictable. Moreover, the need for better ways of 

understanding the behavior of many natural processes has 

motivated the development of dynamic models of these 

processes that take into consideration in the effect of past 

events on the current and future states of the system. This 

view is especially appropriate in the research of financial 

variables, since predictions about their evolution take 

strongly into account the knowledge of their past. For 

example, Arriojas, Hu et al. [2] develop an explicit formula 

for pricing European options when assume the stock prices 

satisfy a stochastic differential delay equation. The model 

maintains the no-arbitrage property and the completeness 

of the market too. Yan and Zhang [3] priced the European 

options when the underlying assets price follows the 

stochastic functional differential equation with finite delay 

driven by a G-Brownian motion. Mao and Sabanis [4] 

propose a model driven by a delay geometric Brownian 

motion and introduce an Euler-Maruyama numerical 

scheme for their model which shows that this method 

approximates options price very well. 
In recent years, regime switching models become more 

and more important in modern financial economics. The 

origin of econometric applications of regime switching can 

track back to the early work of Hamilton [5] in which a 

class of discrete-time Markov switching autoregressive 

time series models is proposed. These models provide a 

more realistic way to describe the asset price dynamics for 

option pricing. They can incorporate the effect of structural 

changes in macro-economic conditions and business cycles 

on option price. Nowadays, the applications of Markov 

regime switching models can be found in various important 

fields in financial economics. Some of these applications 

include Elliott, Chan and Siu [6, 7, 8] consider the option 

pricing problem when the risky underlying assets are driven 



264 Tianyao Fang et al.:  Option Pricing under Delay Geometric Brownian Motion with Regime Switching  

 

by geometric Brownian motions with regime switching. 

Ratanov [9] studies incomplete market models based on 

jump-diffusion processes with parameters that are switched 

at random times and obtain explicit formula for the option 

prices in the two-state hidden Markov process. Ma and 

Zhou [10] investigate moving mesh implicit finite 

differen-ce methods for pricing Asian options with regime 

switching which follows a system of partial differential 

equations with moving boundaries. Fan, Shen et al. [14] 

discuss a Markov chain approximation method to price 

European options, American options and barrier options in 

a Markovian regime-switching environment. Jin and Qian 

[15] introduce a numerical method to price the European 

lookback floating strike put options where the underlying 

asset price is modeled by a generalized regime-switching 

jump diffusion process. However there is little amount of 

work on the option pricing when consider the underlying 

assets prices are affected by the past stock prices and the 

unobservable states of the economy. 

In this paper, we investigate the option pricing problem 

when the price dynamics of the underlying risky assets are 

governed by a delay geometric Brownian motion with 

regime switching. In particular, the market interest rate, the 

appreciation rate and the volatility of the risky assets 

depend on the past stock prices and the unobservable states 

of the economy which are modulated by an continuous-time 

Markov chain. More specifically, one may interpret the 

states of the markov chain as proxies of observable 

macro-economic indicators, such as gross domestic product 

(GDP) and retail price index (RPI), or different stages of 

business cycles. The market described by the model is 

incomplete in general, hence the martingale measure is not 

unique. We adopt a regime switching Esscher transform to 

determine an equivalent martingale measure. Furthermore, 

we prove the model has a unique positive solution and the 

price of contingent claims under the model can be 

computable numerically if not analytically. 

2. The Delay Geometric Brownian 

Motion with Regime Switching 

Throughout this paper, unless otherwise specified, we let 

 be a complete probability space with a 

filtration  satisfying the usual conditions (i.e. it is 

increasing and right continuous while  contains all -null 

sets). Let  be a scalar Brownian motion defined 

on the probability space. If ,  are real numbers, the  

denotes the maximum of  and , and  denotes the 

minimum of  and . Let  and  

denotes the family of continuous function : from  to 

 with the norm . 

Let  be a right-continuous Markov chain 

on the probability space taking values in a finite state space 

 with generator  given 

by: 

 

where . Hence  is transition rate from  to  

if  while: 

 

We assume that the Markov chain  is independent of 

the Brownian motion . It is well known that almost every 

sample path of  is right continuous step function and 

 is ergodic Markov chain. Moreover,  denotes the 

empty set and we set . For a set A, its indication 

function is denoted by . 

Consider the asset price process  be driven by the 

delay geometric Brownian motion with regime switching: 

     (1) 

on , with initial data . 

Here  is a positive constant,  is the risk-free 

interest rate and  is a scalar Brownian motion. While the 

appreciation rate  and the volatility 

 are in . 

3. Equivalent Martingale Measure 

Since the market described by the model (1) is incomplete, 

there are more than one equivalent martingale measures. 

Based on the risk-neutral pricing theory, the option valuation 

is equal to the conditional expectation of the discounted 

maturity function under risk-neutral measure. So having a 

reasonable equivalent martingale measure is crucial to the 

asset pricing in incomplete market. Following from Elliot et 

al. [6], we employ the regime switching Esscher transform to 

determine an equivalent martingale measure. Let 

 

Suppose ,  denote the 

-augments of the natural filtrations generated by 

,  respectively. For each 

, set . Then we can define a regime 

switching Esscher transform  on  with respect to a 

family of parameters  by: 

 

while,  denote the expectation under . 

Note that given ,  follows a normal 
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distribution with mean: 

 

and variance  under . 

So the Radon-Nikodym derivative can be written as: 

 

Moreover, we assume that: 

. 

By the fundamental theorem of asset pricing, the absence of 

arbitrage is “essentially” equivalent to the existence of an 

equivalent martingale measure under which the discounted 

stock price process is a martingale. As in Elliot et al. [6], due 

to the presence of the uncertainly generated by the Markov 

process , the martingale condition in our case is given by 

 which is defined with respect to the 

enlarged filtration  under the probability . Here  

denotes the expectation under . Then, by applying Bayes 

rule, we can obtain that the martingale condition holds if and 

only if : 

 

for all . 

According to the martingale condition, the Radon-Nikodym 

derivative of  is given by: 

 

By Girsanov’s theorem, we can obtain the following result, 

given , 

 

is a standard -Brownian motion. Because the Markov chain 

 is independent of the Brownian motion , the 

formula of Markov chain  will not be changed under a 

regime switching Esscher transform . 

Furthermore, the stock price process  satisfying the 

following model: 

    (2) 

As a result, the discount asset price process is a martingale 

and the model is arbitrage free. The risk-neutral measure  

guarantees that the market is complete and appropriate 

hedging strategies can be obtained. 

Again for the reason of notational simplicity, although we 

will work with the “risk-neutral” probability space 

, we will avoid the use of the “~” notation 

for all relevant calculations in the next sections: 

    (3) 

4. Existence and Uniqueness of a Positive 

Solution 

The model (3) describes the option price and its volatility 

in the financial market. It is therefore essential to prove that 

the solution of model (3) is non-negative with probability 1 

[11]. We impose the following assumption. 

Assumption 4.1 When the state of markov chain  is , 

the volatility function  is bounded by a positive constant , 

namely, 

 

where  

According to Assumption 4.1, we are not surprise to have 

both the drift and diffusion coefficients of model (3) are local 

Lipschitz continuous and satisfy the linear growth condition. 

Theorem 4.2 Given any initial value , 

there exist a unique global positive solution  to model (3) 

on , namely, 

. 

Proof. Clearly, the drift and diffusion coefficients of model 

(3) obey the local Lipschitz continuous. Hence, there exist a 

unique maximal solution  on , where  is the 

explosion time [12]. To prove our theorem we need to show 

that . 

For each sufficiently large integer , satisfying: 

, 

such that for any , define the stopping time: 

 

Obviously,  is increasing as . Set , 

hence . If we can prove , then 

, and . In other words, 

to complete the proof we need to show: . 

Next we prove it by contradiction, namely we can find a 

sufficiently large  for , . 

Define the function : , by 

 

and we compute the diffusion operator: 
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By the elementary inequality: 

 

we have 

 

Hence, 

 

Then using the generalized Itô formula: 

 

where . Observe the right-hand- 

side term is increasing in t, we must have: 

 

So, we can get: 

 

where . By using the Gronwall 

inequality implies: 

 

In particular, 

 

On the other hand, if we define 

 

then , as  and 

 

Letting , then , 

obviously it yields a contradiction.  So we have  

that is,  and . We 

complete the proof. 

5. Numerical Solutions 

For the purpose of defining the Euler-Maruyama numerical 

solutions to the model (3), we first extend the definition the 
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volatility function  from  to  by letting 

 for . It can make the solutions are always 

positive and the volatility function satisfies local Lipschitz 

condition. Given a stepsize , set . Let 

 defines the integer part of the real number . 

Compute the discrete approximation solution:  

by setting  on ,  [13] and 

forming: 

 

where  

 

and . Let: 

 

and define the continuous EM approximate solution: 

 

Note that , for any . 

In the next section, we will discuss the strong convergence 

of the EM method while the coefficients  and  satisfy 

local Lipschitz continuous. Let us now present a lemma for 

further use. 

Lemma 5.1 ([13] th moment bounded) For any , 

there is a constant , which is dependent on only  but 

independent of , such that the exact solution and the EM 

approximate solution to the model (3) have the property that: 

    (4) 

Proof. see [12, 13]. 

Theorem 5.2 Under lemma 5.1 and the coefficients ,  

are local Lipschitz continuous, the EM approximate solution 

convergences to the exact solution of the model (3) in the 

sense that: 

        (5) 

Proof. fix a . By Lemma 5.1, there exist a positive 

constant  independent of  such that: 

      (6) 

For sufficiently large integer , define the stopping times 

 

and . Set 

 

Using the Young inequality: for  and 

 we can get: 

 

So for any , 

 

According to (4), 

 

A similar result can be derived for , hence 

 

Again according to (4), 

 

In the similar way, we can show that 

 

where  is a constant independent of . Using these 

bounds gives 

 (7) 
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Given any , choose  sufficiently small, ,  

sufficiently large, so that: 

 

substituting this into (7), 

 

We complete the proof. 

According to the strong convergence properties mentioned 

above, we can have the expected pay-off under numerical 

method converges to the correct expected pay-off when 

 for all kinds of options. 

For example, assume that one buys a European call option 

at ,  denote the exercise price at the expiry date  

and the underlying asset price is described by the model (3). 

Thus, the pay-off of the European call option at  is: 

    (8) 

So we can obviously show that: 

 

Consequently, for a sufficiently small , European call 

option price:  have a 

numerical solution: 

. 

6. Conclusion 

The proposed model (3) which is described by a SDDE 

with Markovian switching, is more suitable to modeling the 

real financial market. We use Esscher transform to determine 

an equivalent martingale measure in incomplete market. The 

model has a unique positive solution is proved and the price 

of the contingent claims under the model can be computable 

numerically if not analytically. 
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