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Abstract: This study derived estimates of missing values for bilinear time series models BL (p, 0, p, p) with normally 
distributed innovations by minimizing the h-steps-ahead dispersion error. For comparison purposes, missing value estimates 
based on artificial neural network (ANN) and exponential smoothing (EXP) techniques were also obtained. Simulated data was 
used in the study. 100 samples of size 500 each were generated for bilinear time series models BL (1, 0, 1, 1) using the R-
statistical software. In each sample, artificial missing observations were created at data positions 48, 293 and 496 and 
estimated using these methods. The performance criteria used to ascertain the efficiency of these estimates were the mean 
absolute deviation (MAD) and mean squared error (MSE). The study found that optimal linear estimates were the most 
efficient estimates for estimating missing values for BL (p, 0, p, p). The study recommends OLE estimates for estimating 
missing values for bilinear time series data with normally distributed innovations. 
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1. Introduction 

A time series is data recorded sequentially over a specified 
time period. There are cases where some observations that 
were supposed to be collected are not obtained and this result 
in missing values. Being unable to account for missing 
observation may result in a severe misrepresentation of the 
phenomenon under study. Further, it can cause havoc in the 
estimation and forecasting of linear and nonlinear time series 
as in [3]. This problem can be overcome through missing 
value imputation. 

Imputation of missing values has been done for several 
linear time series models. For non-linear time series models, 
imputation has been done for ARMA models with stable 
errors as in [24]. For other nonlinear models, such as bilinear 
time series models, there is no evidence to show that 
imputation of missing values has been explicitly done. 
Therefore this study derived estimates of missing values for 
the bilinear time series models with normally distributed 
innovations. The missing values were derived using optimal 
linear interpolation techniques based on minimizing the h-
steps-ahead dispersion error. Other techniques for estimating 
missing values that were used included the non-parametric 
methods of artificial neural network as in [4], [31] and 

exponential smoothing. 
Interest in this study was also on the quality of the imputed 

values at the level of the individual, an issue that has received 
relatively little attention as in [5]. The basic idea of an 
imputation approach, in general, is to substitute a plausible 
value for a missing observation and to carry out the desired 
analysis on the completed data as in [22]. Here, imputation 
can be considered to be an estimation or interpolation 
technique. 

The imputation of the missing value technique developed 
may be adopted by data analysts to improve on time series 
modeling. 

2. Literature Review 

Most of the real-life time series encountered in practice 
are neither Gaussian nor linear in nature and are adequately 
described by nonlinear models. One of the most important 
nonlinear models used in practice is the bilinear time series 
models. The nonlinearity of bilinear models can be 
approached in two ways. The first approach is to create a 
model that consist of a blend of non-Gaussian and 
nonlinearity which has been widely discussed as in [31] 
where he considers the existence of bilinear models with 
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infinite variance innovations. The other approach is to 
introduce nonlinearity in the model but assume that the 
distribution of the innovation sequence is Gaussian as in 
[36]. Properties of these models have been extensively 
studied in the literature. This is the bilinear model of 
interest in the study. 

2.1. Bilinear Models 

A discrete time series process tX  is said to be a bilinear 
time series model of order BL (p, q , P, Q) if it satisfies the 
difference equation 
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where θ,  and ijb  are constants while  is a purely random 

process which is normally distributed and =1. For the 
bilinear time series model BL(p,o,p,p), we have 
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Bilinear time series models may have sudden burst of large 
negative and positive values that vary in form and amplitude 
depending on the model parameters and thus it may be 
plausible for modeling nonlinear processes as in [25]. A 
bilinear model is a member of the general class of nonlinear 
time series models called ‘State dependent models’ formed 
by adding the bilinear term to the conventional ARMA model 
as in [30].  

It is a parsimonious and powerful nonlinear time series 
model. Researchers have achieved forecast improvement 
with simple nonlinear time series models. Reference [21] 
used a bilinear time series model to forecast Spanish 
monetary data and reported a near 10% improvement in one-
step-ahead mean square forecast error over several ARMA 
alternatives. Reference [9] also reported a forecast 
improvement with bilinear models in forecasting stock prices. 
The statistical properties of such models have been analyzed 
in detail as in [10), [11], [25], and [17] etc., while an 
economic application is presented as in [14]. 

The first step in identification of bilinear time series model 
is to determine whether a given data is nonlinear or not. Once 
the data is found to be nonlinear, it is important to fit an 
appropriate time series model to the data. Reference [39] 
pointed out that the second order properties of BL (p, p, 0, 1) 
are similar to those of ARMA (p, 1) and hence it is necessary 
to study higher order cumulants to distinguish them from 
nonlinear models. The technique of identification of a given 
nonlinear model can be extended to more general bilinear 
models provided there are difference equations for higher 
order moments and cumulants as in [24]. 

For some super diagonal and diagonal bilinear time series, 
the third order moments do not vanish and the pattern of 

nonzero moments can be used to discriminate between the 
bilinear models and white noise and also between different 
bilinear models. Looking at the table of third order moments, 
one can easily distinguish bilinear models from pure ARMA 
or mixed ARMA models.  

Third order moments may also be useful in detecting non-
normality in the distribution of the innovation sequence. 
References [10] and [37] have shown that in most cases, 
second order autocorrelation will be zero for these models 
which makes it difficult to distinguish them from complete 
white noise. 

Reference [24] showed that with a large bilinear 
coefficient ijb , a bilinear model can have sudden large 

amplitude bursts and is suitable for some kind of 
seismological data such as earthquakes and underground 
nuclear explosions. The variant of the bilinear process is time 
dependent. This feature enables bilinear process to be used 
also for financial data as in [21]. Empirical studies have been 
done on estimating missing values for different time series 
data. Reference [26] used interpolation and mean imputation 
techniques to replace simulated missing values from annual 
hourly monitoring air pollution data. 

Reference [29] developed alternative techniques suitable 
for a limited set of stable case with index α∈ (1, 2]. This was 
later extended to the ARMA stable process with index α∈ 
(0,2] as in [24]. He developed an algorithm applicable to 
general linear and nonlinear processes by using the state 
space formulation and applied it in the estimation of missing 
values. 

2.2. Missing Value Imputation for Nonlinear Time Series 

Models 

Reference [35] derived a recursive estimation procedure 
based on optimal estimating function and applied it to 
estimate model parameters to the case where there are 
missing observations as well as handle time-varying 
parameters for a given nonlinear multi-parameter model. 
More specifically, to estimate missing observations, [3] 
formulated a nonlinear time series model which encompasses 
several standard nonlinear models of time series as special 
cases. It also offers two methods for estimating missing 
observations based on prediction algorithm and fixed point 
smoothing algorithm as well as estimating functions 
equations. Recursive estimation of missing observations in an 
autoregressive conditional heteroscedasticity (ARCH) model 
and the estimation of missing observations in a linear time 
series model are shown as special cases. However, little was 
done on bilinear time series models. 

Reference [28] investigated influence of missing values on 
the prediction of a stationary time series process by applying 
Kaman filter fixed point smoothing algorithm. He developed 
simple bounds for the prediction error variance and 
asymptotic behavior for short and long memory process.  

The work on estimation of missing values has also been 
extended to vector time series. A classic example is the 
studies done as in [20] who worked on estimation of missing 
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values in possibly partially non stationary vector time series. 
He extended the method as in [19] for estimating missing 
values and evaluating the corresponding function in scalar 
time series. The series is assumed to be generated by a 
possibly partially non-stationary and non-invertible vector 
autoregressive moving average process. No pattern of 
missing data is assumed. Future and past values are special 
cases of missing data that can be estimated in the same way. 
The method does not use the Kalman filter iterations and 
hence avoids initialization problems. The estimation of 
missing values is provided by the normal equations of an 
appropriate regression problem. 

2.3. Nonparametric Methods for Estimating Missing Values 

Nonparametric methods have also been proposed for 
missing data. Reference [26] considered kernel estimation of 
a multivariate density for data with incomplete observations. 
When the parameter of interest is the mean of a response 
variable which is subject to missingness, the kernel 
conditional mean estimator to impute the missing values is 
proposed as in [5]. Reference [13] studied the estimation of 
average treatment effects using non-parametrically estimated 
propensity scores. Time series smoothers estimate the level 
of a time series at time t as its conditional expectation given 
present, past and future observations, with the smoothed 
value depending on the estimated time series model as in [16]. 

Reference [25] derived a recursive form of the 
exponentially smoothed estimated for a nonlinear model 
with irregularly observed data and discussed its asymptotic 
properties. They made numerical comparison between the 
resulting estimates and other smoothed estimates. Reference 
[1] have used neural networks and genetic algorithms to 
approximate missing data in a database. A genetic algorithm 
is used to estimate the missing value by optimizing an 
objective function. Many approaches have been developed 
to recover missing values, such as k-nearest neighbor as in 
[38], Bayesian PCA (BPCA) as in [27], least square 
imputation as in [12], local least squares imputation 
(LLSimpute) as in [15] and least absolute deviation 
imputation (LADimpute) as in [5]. 

It can be seen from the literature that there are a variety of 
methods used for estimating missing values for different time 
series models. What is however lacking in the literature is an 
explicit method for estimating missing values for bilinear 
time series models. The study therefore purposed to address 
this gap. It estimated missing values for bilinear time series 
which have different probability distributions.  

2.4. Estimation of Missing Values Using Linear 

Interpolation Method 

Suppose we have one value mx missing out of a set of an 
arbitrarily large number of n possible observations generated 

from a time series process }{ tx . Let the subspace ∗
mS  be the 

allowable space of estimators of mx  based on the observed 

values },...,,{ 121, xxxx ttt −−  i.e., ∗
mS =sp { }mtnxt ≠≤ ,1:  

where n, the sample size, is assumed large. The projection of 

mx  onto ∗
mS  (denoted m

m

x

S
P ∗ ) such that the dispersion error of 

the estimate (written disp m

m

x

Sm Px ∗−( ) is a minimum would 

simply be a minimum dispersion linear interpolator. Direct 

computation of the projection mx onto ∗
mS  is complicated 

since the subspaces 1S =sp { },..., 21 −− mm xx and ∗
mS  are not 

independent of each other. We thus consider evaluating the 

projection onto two disjoint subspaces of ∗
mS . To achieve this, 

we express ∗
mS  as a direct sum of the subspaces 1S  and 

another subspace, say ∗x , such that ∗
∗ ⊕= SSSm 1 . A possible 

subspace is { }1:ˆ +≥−=∗ mixxspS ii , where ix̂  is 

based on the values { },..., 21 −− mm xx . The existence of the 

subspaces 1S and ∗S  is shown in the following lemma. 

Suppose }{ tx  is a nondeterministic stationary process 

defined on the probability space ),,( PBΩ  . Then the 

subspaces 1S and ∗S  defined in the norm of the 2L are such 

that ∗
∗ ⊕= SSSm 1 . 

Proof: 

Suppose ∗
∗ ∈ mSx , then ∗x  can be represented as 
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where 1SZ ∈ . Clearly the two components on the right hand 
side of the equality are disjoint and independent and hence 

the result. The best linear estimator of mx  can be evaluated 

as the projection onto the subspaces 1S and ∗S  such that 

disp m

m

x

Sm Px ∗−( ) is minimized. i.e., 
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where the coefficients’ are estimated such that the dispersion 
error is minimized. The resulting error of the estimate is 
evaluated as  
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Now squaring both sides and taking expectations, we 
obtain the dispersion error as 
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By minimizing the dispersion with respect to the 
coefficients the optimal linear estimate is 
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3. Methodology 

Three methodologies were used in this study, each 
corresponding with the estimation method used. These 
methods included optimal linear interpolation, artificial 
neural network and exponential smoothing. However, the 
time series data used and performance measures applied were 
the same for all the methods. 

For optimal linear interpolation, the estimates of the 
missing values for bilinear time series models with normal 
innovations were derived by minimizing the dispersion error. 
The estimates of missing values using non parametric 
methods of ANN and exponential smoothing were also 
obtained. 

3.1. Data Collection 

Data was obtained through simulation using computer 
codes written in R-software. These codes are shown in the 
Appendix. The time series were simulated from different 
simple bilinear models which have normal. The seed in the R 
program code was changed to obtain a new sample for the 
general bilinear model BL (1,0,1,1). For each program code, 
a set of 100 samples of size 500 were generated. These were 
to be used in the analysis. 

3.2. Missing Data Points and Data Analysis 

Three data points 48, 293 and 496 were selected at random 
from a sample of size 500. Observations at these points were 
removed to create a ‘missing value(s)’ at these points to be 
estimated. Data analysis was done using statistical and 
computer software which included Excel, TSM and R and 
Matlab7. 

3.3. Performance Measures 

The MAD (Mean Absolute Deviation) and MSE (Mean 
Squared Error) were used. These were obtained as follows 

MAD=∑│et│/n                               (3) 

and 

MSE=∑│et│
2 /n                              (4) 

4. Results 

4.1. Derivation of the Optimal Linear Estimates of Missing 

Values 

Estimates of missing values for pure bilinear time series 
models whose innovations have a Gaussian innovation were 
derived by minimizing the h-steps-ahead dispersion error. 
Two assumptions were made. The first one was that that the 
series are stationary and thus their roots lie within the unit 
circle. Secondly, the higher powers (of orders greater than 
two or products of coefficients of orders greater than two) of 
the coefficients are approximately negligible.  

4.2. Bilinear Time Series BL (1,0,1,1) with Normally 

Distributed Innovations 

The stationary bilinear time series model BL(1,0,1,1) with 
normally distributed innovations order BL(1,0,1,1) is given by  

ttttt eexbxx ++= −−− 111111φ                      (5) 

where 
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Theorem 4.1 

The best linear estimate for the bilinear time series model 
with normal errors, BL (1, 0, 1, 1), is given by 
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Proof 

Performing recursive substitution of (5), the stationary BL 
(1,0,1,1) can be expresses as 
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The h-steps ahead forecast is given by 
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and the h-steps ahead forecast error is given by 
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Substituting (6) in (1) we have 
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Simplifying each of the terms on the rhs of (7), we obtain 
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Hence equation (8) becomes 
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Differentiating (8) with respect to the coefficient
ka , we 

get
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minimizes the error dispersion error of the estimate is thus 
given as 
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4.3. Estimating Missing Values for BL (p,0,p,p) with 

Normal Innovation 

The bilinear time series model of BL (p,0,p,p) is given by 
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The missing value estimate is based on the following 
theorem 4.2. 

Theorem 4.2 

The best linear estimate for one missing value xm for the 
general bilinear time series model BL (p, 0, p ,p) is given by 
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Proof 

Through recursive substitution of (9), the stationary 
bilinear time series model BL (p, 0,p,p) is expressed as 
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The h-steps ahead forecast is given by 
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and the forecast is 
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The forecast error is 
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Substituting in (10) in (1), we obtain 
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The terms on the right hand side of (11) are simplified as 
follows 
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differentiating (12) with respect to ka  and setting to zero we 
obtain  
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Solving for ka  we get 
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The optimal linear estimate is therefore given by 
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4.4. Simulation Results 

In this section, the results of the estimates obtained from 
the optimal linear estimate, artificial neural networks and 
exponential smoothing are presented. Simulation results are 
given in table1. These graphs are characterized by sharp 
outburst as clearly evident in BL (1,0,1,1).Sharp outburst is 
one of the characteristics of nonlinearity in bilinear models.  

Table 1. Efficiency Measures obtained for Normal-BL(1,0,1,1). 

MISSING MAD MSE 

POSITION OLE ANN EXP OLE ANN EXP 

48.000 0.793 1.135 0.982 1.043 2.621 1.542 
293.000 0.760 0.870 0.812 0.906 1.603 1.079 
496.000 0.803 0.863 0.933 0.976 1.215 1.369 
Total 2.356 2.869 2.726 2.925 5.439 3.990 
Mean 0.785 0.956 0.909 0.975 1.813 1.330 

From table 1, it is clear that the OLE estimates of missing 
values were the most efficient (mean MAD=0.785 for the 
different missing data point positions. This was followed by 
EXP smoothing estimates (mean MAD=0.908818). The 
estimates based on ANN were the least efficient. 
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5. Conclusion 

In this study we have derived the estimates of missing 
values for bilinear time series models BL(p,0,p,p) whose 
innovations are normally distributed by minimizing the 
dispersion error. The study found the optimal linear estimate 
of the missing value is a function of both the data 
observations before and after the missing value position. 
Further , the study also found that optimal linear estimates 
were the most efficient estimates for the bilinear model 
BL(1,0,1,1)with normally distributed errors. The study 
recommends that for bilinear time series data with normal 
innovations which have missing values, OLE estimates be 
used in estimating the missing values. 

A more elaborate research should be done to compare the 
efficiency of several imputation methods such as K-NN, 
Kalman filter and estimating functions, genetic algorithms, 
besides the three used in this study. 
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