
 

Science Journal of Applied Mathematics and Statistics 
2015; 3(1): 14-21 

Published online January 31, 2015 (http://www.sciencepublishinggroup.com/j/sjams) 

doi: 10.11648/j.sjams.20150301.13 

ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online) 

 

Estimating default correlations using simulated asset 
values 

Osei Antwi
1, *

, Dadzie Joseph
1
, Louis Appiah Gyekye

2
 

1Mathematics and Statistics Department, Accra Polytechnic, Accra, Ghana 
2Research & Innovations Center, Accra Polytechnic, Accra, Ghana 

Email address:  
oseiantwi@yahoo.com (O. Antwi), kobenagyesi@yahoo.com (O. Antwi), kwabenaappiahokubi@gmail.com (O. Antwi) 

To cite this article: 
Osei Antwi, Dadzie Joseph, Louis Appiah Gyekye. Estimating Default Correlations Using Simulated Asset Values. Science Journal of 

Applied Mathematics and Statistics.Vol. 3, No. 1, 2015, pp. 14-21.doi: 10.11648/j.sjams.20150301.13 

 

Abstract: We outline the ingredients necessary to compute the Joint Default Probability from which we obtain Default 

Correlation, an important risk quantity in the determination of Internal Rating Based Approach in Basel II and III documents 

on banking supervision and regulations. We discuss Merton’s structural approach of which one key drawback is the difficulty 

in tracking and calibrating asset value processes and the limitations of variant models which tend to be analytically too 

complex and computationally intensive. We address these issues by simulating all the possible asset value processes of a firm 

whose asset paths we assume to be Gaussian. By generating random values that simulate all the possible asset value processes, 

we are able to capture all the possible default horizons within a certain macroeconomic framework. Drawing standardised 

normally distributed assets values of obligors we obtain a range of values of Joint Default Probabilities at a specified asset 

correlation from which the corresponding range of default correlations are obtained. The results is a simplified approach to the 

determination of default correlation, easily implementable in Excel and less analytically complicated than existing procedures. 
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1. Introduction 

The recent crisis in credit markets that led to the collapse 

of several financial institutions and resulted in huge losses to 

major financial markets, leading to what has become 

infamously known as the credit crunch has given cause for 

improved credit risk management within financial institutions 

throughout the world. Credit risk, commonly defined as the 

loss resulting from failure of obligors to honour their 

payments has recently become a dominant source of risk 

component for banks, and is now a subject of strict 

regulatory oversight and policy debate [1]. In order to 

improve on credit risk management many financial 

institutions may have moved or are about to move towards 

Internal Ratings Based (IRB) Approach as regards risk 

management and supervision. However, the most important 

step in switching towards IRB Approach (whether 

Foundation or Advanced), is to determine as accurately as 

possible, the Probability of Default (PD) for a certain 

portfolio of credit instruments.  

Regulatory bodies are not the only institutions interested in 

the properties of probability of default estimates. PD’s are 

also inputs to the pricing of credit assets; bonds and loans to 

more sophisticated instruments such as credit derivatives. In 

addition, PD’s also forms a core part in allocation of capital, 

client judgment, regulatory compliance and finally better 

monitoring of high risk customers. Due to these significant 

reasons, financial institutions must ensure that the probability 

of default determination is sophisticated and more 

importantly, show the true picture of a portfolio in present as 

well as future scenarios. Although individual probability of 

default is important the issue of two or more obligors 

defaulting together has risen to become a subject of great 

concern in credit risk modeling and regulation due to the 

massive defaults that characterised the major economies 

during the crunch. 

For a financial institution that wants to assess the default 

risk of its loan portfolio, individual default probabilities are 

not enough. Consider the simplest case in which a portfolio 

comprises of only two obligors/borrowers, and the bank 

would like to know the probability that both obligors default 

in the next period. This cannot be measured with default 

probabilities alone. If we assume that the two borrowers are 
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independent then the probability that both of them default 

would then equal the product of the two individual default 

probabilities. However this is not always the case, default 

rates of firms fluctuate with macroeconomic or industry-

specific conditions, so we cannot rely on defaults being 

independent. What we need to know in this case is the default 

correlation.  

The default correlation gives an indication of the tendency 

of two loans to default at the same point in time. Default 

correlation is very important in understanding and predicting 

the behaviour of credit portfolios. It directly affects the risk-

return profile of investors in credit risk assets and is one of 

the most pervasive threats in financial markets and therefore 

very important to creditors and regulators. Accurate 

measurement of default correlation is therefore crucial 

especially in credit risk portfolio management and to credit 

investors such as banks making loans to individuals and 

corporations or fixed income managers allocating assets in 

the credit markets.  

Currently, in modeling credit risk, two classes of models 

exist: Structural and Reduced form models. Structural models 

originated with [2, 3] and reduced form models originated 

with [4], and subsequently studied by [5, 6] among others. 

These models are viewed as competing (see [7, 8, 9, 10]), 

and there is a heated debate in the professional and academic 

literature as to which class of models is best [11]. 

Structural models started with Merton (1974) in which the 

default of a firm is based on its asset value and its liabilities. 

If the assets value of the firm fall below its liabilities a 

default is triggered. The Merton model thus relies on the 

assumption that default is triggered by the value of the assets, 

therefore, the starting point is to set the diffusion process of 

the assets. The key postulate emphasized in the abstract form 

of the Merton’s model is that the information set 

t{G : t [0, 1]}∈ that the modeler observes contains the 

filtration generated by the firm’s asset value. Let the firm’s 

asset value be denoted by 
tV . Then, the filtration  

tst GtsVF ⊂≤= ):(σ . 

Let the firm’s asset value follow a diffusion process that 

remains non-negative, then the value of the assets is 

governed by the Geometric Brownian Motion process and 

can be shown as: 

ttt dWdtrVdV σδ +−= )(  

where δ  is the drift of the asset return, and σ is the 

volatility of the asset returns, suitably chosen so that the 

expression is well defined and the initial value of the assets 

00 >V . The process 
tW  is a standard Brownian motion under 

the (risk-neutral) martingale measure Q. The firm issues a 

single class of debt, a zero-coupon bond, with a face value 

B  payable at T . Default may happen only at dateT , and if 

default happens, creditors take over the firm without 

incurring any distress costs and realize an amount 
tV . 

Otherwise, they receive F . In short, the payoff to the 

creditors at date T  is a call option 

+−−== )(),min(),( ttt VBBBVTVD  

The representation of the payoff to creditors makes it clear 

that the creditors are sold a put option written on the assets of 

the borrowing firm with a strike price equal to B , the face 

value of debt. In addition, once we recognize that the 

borrower (equity holders in Merton’s model), (a) owns the 

firm, (b) borrowed the amount B at 0=t , and (c) owns a 

put option on the assets of the firm with a strike price equal 

to B . It is immediate, by a put-call parity relationship, that 

equity is a call option on the assets of the borrowing firm 

with a strike price equal to B , the face value of debt. We can 

therefore express, respectively, debt and equity values as 

follows: 

),,,,()(),( σtTrBVPutTtPtVD tBSt −−−=  

),,,,(),( σtTrBVCalltVE tBSt −=  

Merton’s insight makes it clear that the spread between 

credit-risky debt and an otherwise identical risk-free debt is 

simply the value of this put option. Define tT −=τ and 

N as the standard Gaussian cumulative distribution function 

given by: 

∫
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Then the corporate debt value is  
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and 

tTdd −−= σ12
 

This is the original risky debt model of Black and Scholes 

(1973) and Merton (1974), where the firm’s equity is viewed 

as a European call option on the firm’s assets with maturity T 

and a strike price equal to the face value of the debt. 

Because the Black–Scholes and Merton model has default 

only occurring on one date, the model has since been 

generalized to allow default prior to time T if the asset’s 

value hits some pre-specified default barrier, 
tL . The 

economic interpretation is that the default barrier represents 

some debt covenant violation. In this formulation, the barrier 

itself could be a stochastic process. Then, the information set 

must be augmented to include this process as well, i.e. 

):,( tsLVF sst ≤= σ .  

We assume that in the event of default, the debt holders 
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receive the value of the barrier at time T . In this 

generalization, the default time becomes a random variable 

and it corresponds to the first hitting time of the barrier [12]: 

}:0inf{ tt LVt ≤>=τ . 

Other formulations of Merton’s model are possible and the 

model has been refined in several forms. 

The real beauty of Merton’s model lies in the intuition of 

treating a company’s equity as a call option on its assets, thus 

allowing for applications of Black-Scholes option pricing 

methods. Structural models are particularly useful for 

practitioners in the credit portfolio and credit risk 

management fields. The intuitive economic interpretation of 

the model facilitates consistent discussion regarding a variety 

of credit risk exposures. Corporate transaction analysis is 

also possible with the structural model. If an analyst wants to 

understand the impact on credit quality of increased 

borrowing, share repurchases, or the acquisition of another 

firm, the structural model naturally lends itself to 

understanding the transaction's implications. In general, the 

ability to diagnose the input and output of the structural 

model in terms of understandable economic variables (e.g. 

asset volatility as a proxy for business risk, the market's 

assessment of an enterprise's value, and the market leverage) 

facilitates better communication among loan originators, 

credit analysts, and credit portfolio managers [13]. 

Reduced-Form (RF) models of credit risk on the other-

hand assume default is not directly based on firm’s cash 

flows or values, but estimate a jump rate (intensity) to default 

empirically and are thus mostly useful in estimating credit 

spreads and default probabilities. Reduced form models do 

not consider endogenous cause of defaults; rather, they rely 

on exogenous specifications for credit default and debt 

recovery. This feature is both a strength and a weakness—

while these models suffer from the lack of economic insights 

about default occurrence; they offer more degrees of freedom 

in functional form selection. Such flexibility contributes to 

analytical tractability and ease of implementation and 

calibration (compared to structural models). However, RF 

models dependence as shown in [14] relies on historical data 

which may result in good in-sample fitting properties but 

limited on out-of-sample predictive power. 

In the RF model, a firm’s default time is assumed 

inaccessible or unpredictable and driven by a default 

intensity that is a function of latent state variables. [5,6] 

present detailed explanations of several well known reduced-

form modeling approaches. Many practitioners in the credit 

trading arena have tended to gravitate toward this modeling 

approach given its mathematical tractability. [13] argues 

further that RF models are more appropriate in an 

information theoretic context given that we are unlikely to 

have complete information about the default point and 

expected recovery. Strictly speaking, most structural models 

assume complete information. [13] claim rests on the premise 

that a modeler only has as much information as the market, 

making the reduced-form approach more realistic. In practice, 

however, the complete information assumption in structural 

models is an approximation designed to facilitate a simpler 

way of capturing the various economic nuances of how a 

firm operates. The strength or weakness of a model should be 

evaluated on its usefulness in real world applications. A 

reduced-form model, while not compromising on the 

theoretical issue of complete information, suffers from other 

weaknesses including lack of clear economic rationale for 

defining the nature of the default process. 

The approach in this paper is to estimate the default 

correlation based on structural models, specifically, the one 

factor model. The one factor model assumes that a single 

factor common to all counterparties influences the economic 

fortunes of the obligors in a portfolio and that the asset 

correlation between obligors is uniform. The one factor 

model, although not ideal under certain circumstances has the 

advantage of reducing the computational effort regarding the 

calculation of correlated defaults. Also, all the underlying 

factors influencing the firm are considered as a single factor 

making the model simple to use. In factor models, we make 

the assumption that default can only occur at maturity. This 

assumption ignores credit migration. Estimating defaults 

based on Merton’s structured model is widespread in credit 

risk modeling and while many alternative models of 

measuring correlated default risk have been developed in 

literature, there is surprisingly little work on simulation of 

asset values to estimate default correlations. [15] evaluated 

default correlations utilising a particular theoretical structure 

of the default process. [16] estimated default correlations in a 

Bernoulli mixture model using single and multi group cases. 

Besides, [17] measured the average default correlations in 

various sectors of the US economy from 1981 to 1999 using 

methods of parameterization. [18] estimated default 

correlations using methods of moments and maximum 

likelihood approaches. [19] derived obligor default 

correlations by calculating the correlation matrix of the credit 

risk drivers and allowing the bivariate distributions to follow 

different kinds of distributions. Morten also studied actual 

default rates in the USA from 1920–2008 and concluded that 

obligors tend to default together which indicates that obligors 

are subject to the same underlying risk drivers i.e. economic 

variables.  

One drawback of Merton’s model to estimate default 

correlations lies in the simplicity of the model in applying the 

Black and Scholes formula to value firm’s equity and debt. 

This comes at the cost of too simplistic assumptions 

regarding the asset value process, interest rate, and the capital 

structure. Another key disadvantage of these models lies in 

the difficulty of tracking and calibrating asset processes using 

publicly available information. Furthermore, although 

improved structural models have addressed several 

limitations of earlier models, they tend to be analytically 

complex and computationally intensive. In this paper, we 

give an alternate approach to solving this problem by 

simulating all the possible asset value scenarios of the firm. 

To do this we consider a portfolio of two obligors and 

assume that their possible asset value paths are Gaussian. By 
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generating random values that simulate all the possible asset 

value processes, we are in a position to capture all the 

possible default horizons within a certain macroeconomic 

framework. We proceed to determine the Joint Default 

Probability and subsequently the Default Correlation. The 

approach here is simple to implement in Excel and does not 

require rigorous mathematical formulations that characterises 

most of the approaches to determine default correlation. 

2. Methodology 

We will begin by explaining the various components of 

credit risk. 

2.1. Default of an Obligor 

There are various definitions of default. Throughout the 

text we shall refer to default as failure to pay promptly 

interest or principal on a loan agreement when due i.e. 

payment default. Basically, there are two methods of 

measuring losses due to credit risk. These are mark-to-market 

method and default method. The mark-to-market paradigm 

recognises losses when the credit quality of the obligor (also 

referred to as debtor), is an entity that has an obligation to 

pay all principal and interest on a debt deteriorates, i.e. 

migrates to a lower credit rating. Such losses are not paid out, 

but only recognised when the portfolio of the bank is 

marked-to-market. Credit migration is the approach used by 

JP Morgan Chase Bank. Throughout the text we shall focus 

on defaults only and ignore the defaults related to credit 

migration.  

2.2. Default Correlation of Two Loans 

In this paper, we will examine a widely used way of 

modeling, the so called asset value approach. The standard 

definition of the correlation coefficient of two random 

variables 
1X and 

2X : 

                                     
)()(

),cov(

21

21

21 XX

XX
xx σσ

ρ =                        (1) 

Where cov denotes the covariance, and σ the standard 

deviation. In our case, the random variable is a default 

indicator iy that takes the value 1 if obligor i defaults or 0 

otherwise. Thus, the default correlation we are searching is 

therefore: 

                                   
)()(

),cov(

ji

ji

ji
yy

yy

σσ
ρ =                            (2) 

Inserting our notation into the standard definition of 

variance leads to:  

2 2
i i i

2
i

(y ) Pr ob(y 1)(1 E(y ))

Pr ob(y 0)(0 E(y ))

σ = = −

+ = −
                    (3) 

Denoting the default probability Prob )1( =iy by iP  and 

exploiting the fact that Prob )1( =iy is the same as )( iyE we 

get: 

2 2 2
i i i i i

2 2
i i i i

i i

(y ) p (1 p ) (1 p )(0 p )

p (1 p ) p (1 p )

p (1 p )

σ = − + − −

= − + −
= −

              (4) 

Which is the familiar result for the variance of a Bernoulli 

variable with success probability .iP
 

To express the covariance in terms of default probabilities 

we utilise the general result 
 

),cov()()()( 212121 XXXEXEXXE +=  

In our case, this implies: 

i j i j i j

ij i j

cov(y , y ) E(y y ) E(y )E(y )

p p p

= −

= −
                (5) 

Where ijρ denotes the joint default probability 

)1,1(Pr == ji yyob  [19]. 

Thus, the default correlation is completely specified by the 

individual iP s and the joint default probabilities: 

                 
)1()1( jjii

jiji

ij
pppp

ppp

−×−

−
=ρ                         (6) 

2.3. Probability of Default (PD) 

The Probability of Default (PD) indicates the degree of 

likelihood or the probability that promised payments such as 

interest and coupon payments and principal repayments will 

not be paid by the obligor when due. The assignment of a 

default probability to every customer in a credit portfolio is 

far from an easy task. The pioneers of estimation of default 

probabilities are rating agencies like Moody’s and S&P. 

Today, other popular names of credit risk models are Credit-

Metrics (JP Morgan), CreditPortfolioView (McKinsey), 

PortfolioManager (KMV) and CreditRisk+ (Credit Suisse). 

They started to publish not only the ratings of companies but 

also their estimated default probabilities. These estimates are 

produced from historical data. Due to the limitations of 

historical data, models were developed which described real 

world activities via assumptions on explaining variables. The 

estimates are produced within the context of the underlying 

model. There are essentially two approaches to the 

assignment of probability of default: Calibration of default 

probabilities from market data developed by KMV 

corporation and Calibration of default probabilities from 

ratings where ratings are assigned to customers either by 

external rating agencies like Moody’ Investors Services, 

Standard & Poor (S&P) or FITCH, or by a bank internal 

rating methodologies. Quantitative as well as qualitative 

information is used to evaluate the client.  
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2.4. Joint Default Probability  

The Joint Default Probability is the probability that two 

obligors default at the same time horizon. The Joint default 

probability gives us the frequency measure of how defaults 

of obligors occur together in a credit portfolio. As explained 

earlier, a one factor model incorporates the idea that every 

firm admits a process of asset values, such that default or 

survival of the firm depends on the state of the asset values at 

the planning period. An obligor defaults on its obligations as 

soon as the value of the obligor’s assets falls below a certain 

threshold which is considered as a function of the value of 

the obligor’s liabilities. The Joint Default Probability of the 

two obligors is the probability that the value of their assets 

drops below their liabilities simultaneously. At this stage, the 

asset value (i.e. the value of the firm) is not sufficient to 

cover the firm’s liabilities. In effect the default of a firm is 

triggered by a decline in the firm’s asset value. Let the firm’s 

asset value at time t be )(tVi
. For each firm i , there exist a 

time–dependent value )(tCi
such that the firm continuous to 

operate and meets its contractual obligations as long as 

)()( tCtV ii > . However, if )(tVi
 falls to the threshold level 

)(tCi
, the firm defaults on all its obligations immediately, 

and some form of corporate restructuring takes place. 

Following [20], we assume that the time dependence of 

)(tCi
 takes an exponential form  

i

t

i ketC iλ=)( . 

There are many interpretations of the default boundary

)(tCi
. Black and Cox (1976) interpreted )(tCi

as the minimum 

firm value required by the safety covenant of a debt contract. 

If the value of the firm falls to )(tCi
, its bond-holders are 

entitled to force the firm into bankruptcy and obtain 

ownership of the firm’s assets. According to [20], )(tCi
takes 

an exponential form in t  because the expected value usually 

takes this form. In many practical applications, )(tCi
is set to 

a weighted average of the firm’s long-term and short–term 

liabilities, and iλ can be interpreted as the growth rate of the 

firm’s i ’s liabilities. 

2.5. Asset Correlation 

To determine the Joint Default Probability of the two 

obligors, we first need to calculate the Asset Correlation of 

the two obligors. Asset Correlation plays a principal role in 

determining probabilities of defaults within a portfolio. A 

lower asset correlation implies lower joint default 

probabilities. The financial concept of asset correlation is 

important as it allows the allocation of assets so as to 

diversify and lower the portfolio volatility. Combining asset 

categories that have a low correlation and subsequently low 

default correlations reduces the volatility of the portfolio as a 

whole. 

The Merton (1974) framework allows the calculation of a 

host of default and survival probabilities for a portfolio of 

obligors. Let’s represent defaults as a function of continuous 

variables and then impose structure on these variables. Let us 

name these variables iA 1=i to N . The default indicator 

can be represented as: 

iiii dAyDefault ≤⇔=⇔ 1  

iiii dAyDefaultNo >⇔=⇔ 0  

Where id is the critical value which marks the default of 

borrower i if the variable iA falls below it. 

The joint default probability between the obligors is  

Prob === )1,1( ji yy Prob ),( jjii dAdA ≤≤     (8) 

The variables iA are latent variables that determine an 

observed, discrete outcome. In the credit risk literature, the 

latent variables are usually interpreted as the firm’s asset 

values. As explained in the literature, in the Merton’s option-

theoretic approach, a firm defaults if its asset value falls 

below a critical threshold associated with the value of 

liabilities. The asset values are assumed to be normally 

distributed with correlations that go back to a single common 

factor. Formally, borrower si' asset value iA  depends on the 

common factor Z and an idiosyncratic factorε : 

                           

2
i i i

i j

i

A wZ 1 w ,

cov( , ) 0,

i j cov(Z, ) 0, i

= + − ε
ε ε =

≠ ε = ∀

                                   (9) 

where Z and iε are standard normal variables. By 

construction, iA is also standard normal. From 9, the asset 

correlation is completely determined by the factor 

sensitivities iw and jw  (also called systematic factors) and 

is given by 

      

i, jasset i j

i j

2 2
i j j

i j i j i j

cov(A , A )

(A ) (A )

cov(wiZ 1 w , w Z 1 w

1 1

cov(w Z, w Z) w w var(Z) w w

ρ =
σ σ

+ − ε + − ε
=

×
= = =

          (10) 

The asset correlation between the two obligors is thus a 

function of their sensitivity to the volatility of the systematic 

factor. 

The Joint Default Probability is a function of the sPD' of 

the obligors and their asset correlation. The probability of 

default of obligor i  denoted by iP  is 

)()( iiiii ddAPP Φ=≤=  
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Where )( idΦ denotes the cumulative standard normal 

distribution function with correlation ρ . The Joint Default 

Probability is 

,( , ) ( , , )ji
asset

ij i i j j i jP P A d A d d dΦ ρ= ≤ ≤ =    (11) 

Where ),,( , jiasset

ji dd ρΦ denotes the bi-variate standard 

normal distribution function with asset correlation jiasset ,ρ [17]. 

We evaluate the JDP by determining the volume under the 

asset value distribution up to the default threshold of the two 

obligors. Now let our obligors assume the designation 

obligor i and obligor j , then mathematically, the JDP  is a 

double integral established by the Joint Probability Density 

function:  

                                 
22

ji i i

22
i i j j

i j

f (x, y)

yx x y1 1
exp 2 dxdy

2(12 1−∞

=

     − µ   − µ − µ − µ  − − ρ +           σ σ σ σ− ρ    πσ σ − ρ       
∫∫

                        (12) 

Where
iKx ≤≤∞− , 

jKy ≤≤∞−  .  

Generally, ∞≤≤∞− x , .∞≤≤∞− y  

We shall approximate this integral by a Visual Basic 

program in Excel. This is illustrated in the Figure 1.

 

Figure 1. Asset value threshold of obligor i and obligor j. 

Figure 1 shows the asset values of obligor i and obligor j . 

The default threshold is the white line running from left to 

right. iK and jK are the default points of obligor i and 

obligor j . If the asset values of an obligor falls below the 

obligor’s default threshold, the obligor defaults.  

To estimate the JDP  we need to establish the volume 

under the asset value probability distribution of the two 

obligors where their assets are less than their default 

thresholds. To do this we proceed as follows: 

� Draw random numbers (0, 1) for the two obligors, 

obligor i and obligor j .  The random number values 

generated (0, 1) are not normally distributed but the 

inverse (NORMSINVRAND ( )) is standard normally 
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distributed. 

� Set the default thresholds of obligor i and obligor j . 

The default thresholds of the obligors are given by 

)(1

ii PK −Φ= and )(
1

jj PK
−Φ= . 

� Specify the asset correlation jiasset ,ρ between obligor i

and obligor j where 10 , ≤≤ jiassetρ  

� Simulate the model to generate Joint Default Probability 

of obligor i and obligor j . The Joint Default Probability 

is a function of the PD’s of the obligors and their asset 

correlation ),,( , jiasset

ji PPJDPJDP ρ=  

By simulating in Excel we can obtain the JDPs  for a 

given default probability for obligor i and obligor j .  

To do this we set the following parameters. 

Default Probability of Obligor i  = 2% 

Default Probability of Obligor j = 3% 

Asset Correlation i, j = jiasset ,ρ = 8% 

3. Results and Discussion 

The results of the Joint Default Probability for the asset value 
obligor i  and asset value obligor j is shown in Table 1. 

Table 1. Joint Default Probability of obligor i and obligor j 

 
-3.00 -2.75 -2.50 -2.25 -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 

-3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-2.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-2.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

-2.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

-1.75 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

-1.50 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.03 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 

-1.25 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.07 0.07 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.00 0.00 0.00 

-1.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.06 0.08 0.09 0.09 0.10 0.09 0.08 0.07 0.06 0.04 0.03 0.02 0.01 0.01 0.00 0.00 0.00 

-0.75 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.06 0.08 0.09 0.11 0.12 0.12 0.12 0.10 0.09 0.07 0.05 0.04 0.02 0.02 0.01 0.00 0.00 0.00 

-0.50 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.09 0.11 0.13 0.14 0.14 0.14 0.12 0.10 0.08 0.06 0.04 0.03 0.02 0.01 0.01 0.00 0.00 

-0.25 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.09 0.12 0.14 0.15 0.15 0.15 0.14 0.12 0.09 0.07 0.05 0.03 0.02 0.01 0.01 0.00 0.00 

0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.10 0.12 0.14 0.15 0.16 0.15 0.14 0.12 0.10 0.07 0.05 0.03 0.02 0.01 0.01 0.00 0.00 

0.25 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.09 0.12 0.14 0.15 0.15 0.15 0.14 0.12 0.09 0.07 0.05 0.03 0.02 0.01 0.01 0.00 0.00 

0.50 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.06 0.08 0.10 0.12 0.14 0.14 0.14 0.13 0.11 0.09 0.07 0.05 0.03 0.02 0.01 0.01 0.00 0.00 

0.75 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.05 0.07 0.09 0.10 0.12 0.12 0.12 0.11 0.09 0.08 0.06 0.04 0.03 0.02 0.01 0.01 0.00 0.00 

1.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.06 0.07 0.08 0.09 0.10 0.09 0.09 0.08 0.06 0.05 0.03 0.02 0.01 0.01 0.00 0.00 0.00 

1.25 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.07 0.07 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.01 0.00 0.00 0.00 

1.50 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.05 0.05 0.05 0.05 0.04 0.03 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00 

1.75 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 

2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

2.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Fig 1.1 shows a cross section of the distribution of results 

for the joint default probability for asset values i and j . The 

distribution of joint default probability shows that: 

16.00 ≤≤ JDP . 

As expected, the values of JDP are distributed 

symmetrically about a centre. This follows from the fact that 

the asset values were generated from the Gaussian 

distribution which is symmetric about the mean. 

We will now proceed to determine the default correlation 

by specifying 

Probability of Default of Obligor i  = 2%   

Probability of Default of Obligor j  = 3%  

If the Joint Default Probability between obligor i and 

obligor j = 0.08% 
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Then default correlation =

i j i j

ij

i i j j

ij

ij

ij

p p p

p (1 p ) p (1 p )

0.0008 0.02 0.03

0.02(1 0.02) 0.03(1 0.03)

0.008374

0.837%

−
ρ =

− × −

− ×ρ =
− × −

ρ =

ρ =

 

4. Conclusions 

We have provided a model that simplifies the 

mathematical routes to the computation of default 

correlations under varying macro-economic scenarios. By 

generating random values to simulate possible asset value 

processes, we address a critical setback in Merton’s model 

regarding tracking and calibrating asset processes and using 

that to estimate a critical credit risk component-default 

correlation. By providing the Excel outputs, we are able to 

compute default correlations at different asset value levels. 

This makes it possible to estimate portfolio risk for a range of 

asset values. All that is required is the standardisation of the 

asset values which does not involve any extensive 

mathematical rigour. The approach here is simple to 

implement in Excel and does not require the analytically 

complex and computationally intensive formulations that 

characterises most of the structural approaches in 

determining default correlation. Further studies can be done 

in using real asset values (if it’s possible to track them) or 

employing a proxy (usually stock prices) for the asset values. 

We believe our discussion will provide a constructive 

alternate approach for analysts that incorporates default 

correlation their daily credit risk management. 
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