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Abstract: Using monthly inflation data from January 2000 to December 2013, we find that SARIMA (1,1,1)(1,0,1)12 can 
represent the data behavior of inflation rate in Kenya well. Based on the selected model, we forecast seven (12) months 
inflation rates of Kenya outside the sample period (i.e. from January 2014 to December 2014). The observed inflation rates 
from January to November which were published by Kenya Bureau of Statistics fall within the 95% confidence interval 
obtained from the designed model. However, the confidence intervals were wider an indication of high volatility of Kenya’s 
inflation rates. 
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1. Introduction 
Inflation is a major economic challenge that faces most 

countries in the world especially underdeveloped and 
developing countries and is a major focus of economic policy 
worldwide since it causes global concerns because it can 
distort economic patterns and can result in the redistribution of 
wealth when not anticipated. Webster’s (2000) defines 
inflation as the persistent increase in the level of consumer 
prices or a persistent decline in the purchasing power of 
money. 

According to Mishkin (2008) inflation is the rate at which 
the general level of prices for goods and services is rising, and, 
subsequently, purchasing power is falling. Central banks 
attempt to stop severe inflation, along with severe deflation, in 
an attempt to keep the excessive growth of prices to a 
minimum. High inflation levels in many developing countries 
have been a cause of concern to their central banks. This has 
led to the adoption of monetary policy frameworks such as 
inflation targeting to help lower inflation to more sustainable 
levels. The determinants of inflation are important factors to 
consider when looking at the different monetary policy 
frameworks to adopt. One of the major determinants of 
inflation is exchange rate movements and the degree of 
sensitivity of domestic prices to these movements.  

Inflationary analysis or modeling is one of the most 
important research areas in monetary planning. This is due to 

the fact that a high and sustained economic growth in 
conjunction with low inflation is the central objective of 
macroeconomic policy. Achieving and maintaining price 
stability will be more efficient and effective if the causes of 
inflation and the dynamics of its evolution are well understood. 
It is a fact that monetary policy-makers and planners 
worldwide are more interested in stabilizing or reducing 
inflation through monetary policies (price stability). Inflation 
is usually defined as a sustained rise in a broadly based index 
of commodity prices over some period of time, (Fisher et al, 
2002).  

Major components of this definition are that the rise in 
prices takes place in a variety of sectors dealing with goods 
and services; also this increase spans from a rather lengthy 
period of time rather than two or more quarters. This means 
that when the price increases, each unit of currency buys fewer 
goods and services and as a result, inflation is an erosion of the 
purchasing power, which results in loss in real value in the 
medium and unit of account in the economy (Stokes, 2009). 

Kenya's economy is market-based, with a few state-owned 
infrastructure enterprises, and maintains a liberalized external 
trade system. The country is generally perceived as Eastern 
and central Africa's hub for Financial, Communication and 
Transportation services. As at May 2010, economic prospects 
are positive with 4-5% GDP growth expected, largely because 



 Science Journal of Applied Mathematics and Statistics 2014; 2(6): 122-129  123 
 

of expansions in tourism, telecommunications, transport, 
construction and a recovery in agriculture. 

High inflation has rendered the cost of loanable funds 
prohibitive. Subsequent high interest rates have in turn 
prevented productive sectors of the economy from accessing 
finance for growth and development (FIAS, 2002). 

Based on thisbackground the study sought to  
i. establish the trend of Kenya’s inflation (2000 – 2013) 

ii.  identify the Multiplicative SeasonalARIMA model that 
can best be used to forecast Kenya’s inflation rates 

iii.  estimate inflation in the next twelve (12) months of 2014 

2. Literature Review 
According to Mishkin (2008) inflation is the rate at which 

the general level of prices for goods and services is rising, and, 
subsequently, purchasing power is falling. Mishkin further 
asserts that high inflation levels in many developing countries 
have been a cause of concern to the central bank and has led to 
the adoption of monetary policy frameworks targeting to help 
lower inflation to more sustainable levels. On the other hand 
Akofio-Sowah (2009) defines it as the percentage change in 
the local currency import prices resulting from a one percent 
change in the exchange rate between the importing and the 
exporting country.  

For an open economy like Kenya, inflation comes from 
both internal pressures and external pressures. The external 
factors results from increase in the world prices of 
commodities or fluctuation in the real exchange rate. However, 
the influence of exchange rate on inflation is a function of the 
exchange rate in the country (Rotichet al, 2007).  

Buckman and Mintah (2013) applied Autoregressive 
Integrated Moving Average (ARIMA) to Model Ghana’s 
monthly inflation from January 1985 to December 2011 and 
used the model to forecast twelve (12) months inflation for 
Ghana. Using the Box Jenkins (1976) framework, the 
autoregressive integrated moving average (ARIMA) was 
employed to fit the best ARIMA model. The seasonal ARIMA 
model, SARIMA (1, 1, 2) (1,0, 1)12 was chosen as the best 
fitting from the ARIMA family of models with least Akaike 
Information Criteria (AIC) of 1156.08 and Bayesian 
Information Criteria (BIC) of 1178.52. The plots of actual 
values and the forecasted values of inflation were very close 
implying that the selected model best fit the data and hence, 
appropriate for forecasting. The forecast error of 3.4 also gave 
further evidence that the model selected had very strong 
predictive power. 

Otu et al. (2013) applied SARIMA Models in Modeling and 
Forecasting Nigeria’s Inflation Rates based on monthly rates 
for the period November 2003 to October 2013 by making use 
of Box-Jenkins methodology. In this research, ARIMA (1, 1, 1) 
(0, 0, 1)12 model was developed and was used to forecast 
Nigeria’s monthly inflation for the year 2014.  

Fritzer et al. (2002) evaluated the performance of VAR and 
ARIMA models to forecast Austrian HICP inflation. they 
further investigated whether disaggregate modeling of five 
subcomponents of inflation is superior to specifications of 

headline HICP inflation with the aim of finding the adequate 
VAR and ARIMA specifications that would minimize the 12 
months out-of-sample forecasting error. The study 
established that VAR models outperformed the ARIMA 
models in terms of forecasting accuracy over the longer 
projection horizon and that disaggregated approach improves 
forecasting accuracy substantially for ARIMA models 

3. Materials and Methods 
The time-series data corresponding to monthly observations 

of the inflation rates’ datasets for the time period 2000:1 – 
2013:12 as provided by Kenya Bureau of Statistics were used 
in the study. The data was fitted to the Seasonal ARIMA 
model. A time series is said to be seasonal if there exists a 
tendency for the series to exhibit a periodic behaviour after 
certain time interval. The usual ARIMA models cannot really 
cope with seasonal behaviour, it only models time series with 
trends. Seasonal ARIMA models are formed by including an 
additional seasonal terms in the ARIMA models and are 
defined by seven parameters.  

Let Xt = (X1, X2, …,Xn) be a time series of data. A seasonal 
ARIMA model with s observations denoted by  �����	(�, 	, 
)(�, 
, �)�is given as: 

Φ(BS)φ(B) (1 – B)d (1 – BS)DX t = Θ(BS) θ(B) εt  (0.1) 

WhereB is the lag operator given by Bk = Xt – k/Xt,  
φ(B) = 1 – φ1 B

1 – φ2 B
2 – ….– φpB

p is an autoregressive 
(AR) polynomial function of order p  
θ(B) = 1 + θ1B

1 + θ2B
2 + … + θqB

q is a moving average 
(MA) polynomial of order q  
Φ(BS) = 1 – φS,1 B

S – φ S,2 B
2S – ….– φ S,P B

PS 
Θ(BS) = 1 + θ S,1B

S + θ S,2B
2S + … + θ S,Q B

QS are seasonal 
polynomial functions of order P and Q, respectively, that 
satisfy the stationarity and invertibility conditions, d is the 
number of differencing passes needed to stationarize the series, 
D is the number of seasonal differences and εt are error terms 
assumed to be independent identically distributed random 
variables sampled from a distribution with a mean equal to 
zero and the variance σ2ε. In time series analyses, the variables 
εt are commonly referred to as white noises, and they are 
interpreted as an exogenous effect that the model is not able to 
explain.  

The SARIMA model of inflation rates 2000 to 2013 in 
Kenya was fitted using the Box-Jenkins modelling approach 
which emphasizes on four key stages: Model identification; 
Parameter estimation; Model adequacy checking and model 
forecasting. 

In model identification stage first, the data was examined 
for possible data patterns. But before that the series of monthly 
inflation rates was checked for the stationary using both the 
Kwiatkowski-Phillips-Schmidt-Shin(KPSS) test and the 
Augmented Dickey Fuller (ADF) test. 

For the KPSS test, the hypotheses tested were:  ��: ��� = 0(Stationarity) Vs. ��: ��� > 0	(Non-stationarity).  
The test statistic was given by: 
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���� = ��� ∑ � !�"!#$%&�          (0.2) 

Where;  � '� = ∑ (&)')*� , and (&) is the residual of the regression of Xt 
on Dt. +̂� is the consistent estimate of the long-run variance of 
ut(Kwiatkowski et al. 1992) 

Under the ADF test, the unit root test is carried out under 
the null hypothesis - = 0 against the alternative hypothesis 
of - < 0.	the value for the test statistic is computed by the 
formula; 

Given that ∆Xt=ut, where ∆Xt = Xt- Xt-1, which can 
alternatively be expressed as  
∆Xt = γ1'2� + 4 + 56 + (' with µ=λ=0, and = φ − 1  , 

then  

�
:% = ;<�=(;<)             (0.3) 

If the test statistic is less than the critical value, then the null 
hypothesis of γ = 0 is rejected implying that no unit root is 
present (Dickey & Fuller, 1981). 

The Autocorrelation Function (ACF) and the Partial 
Autocorrelation Function (PACF) collelograms were observed 
to determine the possible model parameters. The ACF 
measures the amount of linear dependence between 
observations in a time series that are separated by a lag k. The 
PACF plot helps to determine how many autoregressive terms 
are necessary to reveal one or more of the following 
characteristics: time lags where high correlations appear, 
seasonality of the series, trend either in the mean level or in the 
variance of the series. 

The Akaike information criterion (AIC) and Bayesian 
Information Criteria (BIC) were employed to compare the 
goodness-of-fit of different models so as to determine the best 
fit model. Lower AIC values indicate better fit. The models for 
the AIC and BIC values are given as: 

��> = 2@ − 2log	(D)          (0.4) 

	E�> = −2 FGH(D) + @FGH(I) + @FGH(I)   (0.5)	
Where;  
k = Number of parameters in the statistical model = 

p+q+P+Q+1 
L = maximized value of the likelihood function 
n = Number of observations 
The adequacy of the model was verified by plots of the 

histogram and an autocorrelation (ACF) of the standardized 
residuals and the Ljung-Box test, which is a test for 
hypotheses of no correlation across a specified number of time 
lags. ACF of the residuals and Ljung-Box statistics are useful 
for testing the randomness of the residuals.  

4. Results 
4.1. Statistical Parameters of Historical Inflation Data 

The inflation rates for the 168 months of data ranged from a 

minimum of 0.461 to a maximum of 19.716.Mean inflation 
was 8.50% with a SE of 0.381. The sample standard deviation, 
S is 4.932 which indicate that the dispersal of the data points 
from the mean of 8.5 is large. The skewness index of 0.52 
indicates that the inflation data is positively skewed however 
the departure from a normal distribution is small. 

Table 1. Statistical parameters for Kenya’sinflation data. 

Variable N Mean SE Mean StDev Skew Kurt 
INFRATE 168 8.50 0.38 4.93 0.52 -0.78 

4.2. Analysis of Kenya’s Monthly Inflation Trend 

To understand the trend Kenyan inflation rates over time, 
the Ordinary least squares method was used: 

INFRATE (Y) = µ0 + µ1 t         (0.6) 

Where, µ0 = Intercept of the regression line 
µ1 = slope of the OLS line 
INFRATE=Monthly inflation rate 
t= time in terms of months, t=1, 2,3,4……….168 

μ&� = �!K�!! = ∑ 'LML2∑ !L ∑ KLN
∑ 'L�2(!L)�N

           (0.7) 
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Therefore the OLS equation of inflation rates on time in 
months is: 

INFRATE = 7.554 + 0.0112 ti         (0.8) 

The coefficient 0.0112 in the model implies that there was a 
positive trend in the rates of inflation. This implies that over 
time the Kenyan rate of inflation will be increasing. 

In order to determine the significance of the positive trend, 
the t-test for trend was applied as shown below 

HypothesesH0: μ&� = 0  
H1:μ&� ≠ 0 
Test statistic: 

T� = P<$QR(P<$)             (0.9) 

Decision Criteria: Reject H0 if the calculated t value (T0) is 
greater than the table value at∝⁄ 2 and (n-2) degrees of 
freedom (t�.��V,�WW) 

Computations: 

SY(μ&�) = Z[<�
Q\\            (0.10) 

2 2 2
iY nY 16200.48 168 8.5001 4062.2−= − = − × =∑SST  

SSE=SST-μ&�S]^ = 4062.2 − 0.0112 × 4416.81 = 4012.73 
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σ<� = SEEn − 2 = 4012.73168 − 2 = 24.173 

S�(μ&�) = hσ<�
S]] = h 24.173395122 = 0.0000612 

k� = 0.01120.0000612 = 183.01 

From the t tables, t∝� ,l2m = t�.��V,�WW = 1.960 

Since	T�(183.01) > t�.��V,�WW(1.960), we reject H0 and 
conclude that μ�  is significantly different from zero. We 
therefore conclude that there is a significant positive trend in 
Kenya’s monthly inflation rates. The presence of trend in the 
data implies that the inflation data is non-stationary. This is 
also observed in the time series trend plot in figure 1 below.  

 

Figure 1. Trend analysis plot for Kenya’s Inflation rate. 

4.3. Building a Multiplicative Seasonal ARIMA  

Anderson Darling (AD) goodness of fit test for normal 
distribution is 2.902 (P<0.005) while for lognormal 
distribution was 1.472 (P<0.005). After the Box-Cox 
Transformation the AD value was 0.983 (P=0.013) while after 
the Johnson Transformation the AD value was 0.461 
(P=0.256). Based on the AD values the best-fitting 
distribution for Kenya’s inflation data is a normal distribution 
after the Johnson Transformation. Johnson transformation 
function for the data was given as: 

Z = 0.554878	 + 	0.847254	 × Ln p(q	2	�.rr�sW�)(	��.VstW	2	q	)u   (0.11) 

Where X is the observed value of the inflation rates. 
This is illustrated in figure 2 below: 
 
 
 
 

 

Figure 2. probability distribution plots for inflation rates data. 
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4.4. Model Identification 

From figure 1 it was established that the data was 
non-stationary. The time series plot after first difference as 
shown in figure 3 below show that the data fluctuates about a 
central value hence stationary. 

This is further illustrated in the trend plot in figure 4 below 
in which the trend is neither increasing nor decreasing an 
indication of stationarity in mean. This implies that the 
no-seasonal differences required to make the data stationary 
are 1 i.e. d=1 

 

Figure 3. Plot of differenced inflation data. 

 

Figure 4. Time Series Plot of Monthly Differenced inflation data. 

Further, the Augmented Dick-Fuller (ADF) test for 
Stationary as shown in Table2 below confirms the existence of 
unit root under the situation where either a constant or 
constant with linear trend were included in the tests.  

Table 2. ADF unit root test for inflation series in its level form. 

 Stat. P-Value C.V. 

No Constant -1.7 8.1% -2.0 

Constant Only -3.8 7.6% -2.9 

Constant Only -3.9 5.3% -1.0 

Since the series is non-stationary at the non-seasonal level, 
it makes it necessary for first non-seasonal differencing of the 

series to render it stationary. Considering the first 
non-seasonal differenced series, the ADF test results as shown 
in Table 3 show that the p-values were less than 5% level of 
significance hence we fail to reject the null hypothesis that the 
first differenced series is stationary thus confirming the 
non-existence of unit root under the situation where either a 
constant or both constant and linear trend were included in the 
test. Therefore, the difference order should be at least one at 
non-seasonal level. 

Table 3. ADF unit root test for inflation series after 1st Difference. 

 Stat. P-Value C.V. 

No Constant -7.2 0.1% -2.0 

Constant Only -7.1 0.1% -3.0 

Constant Only -7.1 0.0% -1.6 

The ACF plot as shown in Figure 5 slightly dies down in a 
sine wave fashion and the PACF plot as shown in Figure 6 
tails at lag 1. Therefore an AR (1)model is suspected 

 

Figure 5. ACF for Johnson Transformed inflation data. 

From figure 6 below, the PACF spike at lag 1, suggesting 
that a non-seasonal moving average of order 1. 

 

Figure 6. PACF for Johnson Transformed inflation data. 

After first difference the ACF in figure 7 below shows that 
the ACF spikes at lag 12 indicating the presence of seasonal 
moving average SMA(12) hence Q=1 
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Figure 7. ACF after 1st Difference. 

The PACF of the differenced data as shown in figure 8 
below shows that it spikes at seasonal lag 12 and drop to zero 
for other seasonal lags suggesting that and P=1 

Therefore, the seasonal part of the SARIMA model would 
be (P, D, Q) = (1, 0, 1)12. Thus ARIMA (1, 1, 1)(1, 0, 1)12is 
suggested as the probable model for the inflation data at both 
the non-seasonal and the seasonal levels.  

 

Figure 8.PACF after 1st Difference. 

By use AIC and BIC values Five tentative ARIMA models 
are tested for the inflation data series and the corresponding 
values for the models are presented in Table 4 below 

The model ARIMA (1, 1, 1) (1, 0, 1)12was identified as the 
best model since it has the lowest AIC and BIC values of 
172.541 and 182.652 respectively. The model indicators are p 

=0, d =1,q= 1,P =1, D = 0 and Q =1 with s =12. This implies 
that the model suggested for Kenya’s monthly inflation is a 
seasonal ARIMA model (SARIMA) of the form  SARIMA (1, 
1, 1) (1, 0, 1)12. 

Table 4. AIC and BIC Values of selected models. 

ARIMA model AIC Value BIC value 

ARIMA (0, 1, 1)(1, 1, 1)12 175.211 190.395 

ARIMA (1, 1, 0)(1, 1, 1)12 172.787 184.535 

ARIMA (1, 1, 1)(1, 0, 1)12 172.541 182.652 

ARIMA (0, 1, 0)(1, 1, 1)12 173.541 184.421 

4.5. Parameter Estimation 

The suggested model has four parameters whose 
estimations based on the Maximum Likelihood Estimation 
approach are given in the Table 5 below.  

Table 5. Final Estimates of Parameters for SARIMA (1, 1, 1) (1, 0, 1)12. 

Type  Coef  SE Coef T P 

AR1  -0.6767  0.1737 -3.90  0.000 

SAR12 0.2518  0.1232  2.40  0.043 

MA1 -0.8165  0.1349 -6.05  0.000 

SMA12  0.7577  0.0854  8.87  0.000 

In checking whether the parameters of the models have 
significant contribution which can provide the best forecast, 
the t-test values were used. The estimates of autoregressive, 
seasonal autoregressive, moving average and the seasonal 
moving average parameters were -0.6767 (t =-3.90, p<0.05), 
0.2518 (t=2.40, p<0.05), -0.8165(t=-6.05, p<0.05) and 0.7577 
(t=8.87, p<0.05) respectively. Based on 95% confidence level, 
the study concludes that all the coefficients of the ������	(1, 1, 1)	(1, 0, 1)��model are significantly different 
from zero.  

The general form of the model as suggested by the results in 
Table 4 is: 

v�(E)Φ�(E��)	(1 − E)(1 − E��)�1' = x�(E)Θ�(E��)	z' (0.12) 

(1 − ϕB)(1 − ΦB��)(1 − B)X] = (1 − θB)(1 − ΘB��)e]  (0.13) 

Which expands to: 

1' − (1 + ∅)1'2� + ∅1'2� − Φ1'2�� + (v + vΦ)1'2�r + vΦ1'2�s = z' − xz'2� − Θz'2�� + xΘz'2�r   (1.15) 

X]	 = (1 + ∅)X]2� − ∅X]2� + ΦX]2�� − (ϕ + ϕΦ)X]2�r − ϕΦX]2�s + e] − θe]2� − Θe]2�� + θΘe]2�r   (1.16) 

Substituting the values of v = −0.6767� = 0.2518, x = −0.8165	and � = 0.7577 the model simplifies to: 

12 1 2 13 14 1 12 130.2518 0.3233 0.6767 0.0814 0.1704 0.8165 0.7577 0.6187t t t t t t t t t tX X X X X X e e e e− − − − − − − −= + − − + ++ − −  (1.17) 

 
The model shows that this month’s rate of inflation depends 

on  
i. the inflation rate in the same month of the previous year, 
ii.  a trend component determined by the difference 

between the sum of previous two month's values and the 

sum of last year's previous two month's values 
iii.  the effects of the residual terms of periods t, t-1, t-12 and 

t-13 
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4.6. Diagnostics Checks of the Identified SARIMA (1, 1, 1) 
(1, 0, 1)12 Model 

Table 6. Modified Box-Pierce (Ljung-Box) Chi-Square statistic. 

Lag 12 24 36 48 
Chi-Square  10.5 27.3 41.4 60.2 
DF 8 20 32 44 
P-Value  0.233 0.126 0.124 0.053 

The p-values for the Ljung-Box statistic in Table 6 above all 
clearly exceed 5% for all lag orders, indicating that there is no 
significant departure from white noise for the residuals. The 

Ljung – Box statistics also show overwhelming evidence that 
the residuals are independent implying the model fits the data 
well 

4.7. Forecast Results by SARIMA (1, 1, 1) (1, 0, 1)12Model 

Table 7 below summarizes 12 months upfront inflation 
forecast from January 2014 to December 2014 with 95% 
confidence interval. The results show that there is a wide 
confidence interval indicating a high volatility in the inflation 
data which can be due to factors such as money supply, 
exchange rates depreciation and petroleum price increases. 

Table 7. SARIMA (1, 1, 1) (1, 0, 1)12 Forecasting Results. 

Month Period  Forecast inflation rate 95% Lower confidence interval 95% upper confidence interval Actual Inflation rate 
Jan. 169 6.47 0.77 19.14 7.21 
Feb. 170 6.57 0.80 19.22 6.86 
Mar. 171 6.67 0.78 19.22 6.27 
Apr. 172  6.78 0.79 19.24 6.41 
May  173  6.82 0.82 19.29 7.30 
Jun. 174  7.03 0.88 19.36 7.39 
Jul. 175 7.12 0.91 19.41 7.67 
Aug. 176  7.27 0.93 19.45 8.36 
Sep. 177  7.25 0.92 19.45 6.60 
Oct. 178 7.23 0.91 19.45 6.43 
Nov. 179  7.17 0.90 19.46 6.09 
Dec. 180  7.32 0.91 19.14  

 
5. Conclusions and Recommendations 

The first objective of the study sought to analyze the trend 
of inflation rates in Kenya. The study established some 
monotonic trend in the Kenya’s inflation rates. 

The second objective sought to identify the Multiplicative 
Seasonal ARIMA model that can best be used to forecast 
Kenya’s inflation rates. Box-Jenkins Seasonal Autoregressive 
Integrated Moving Average (SARIMA) was employed to 
analyze monthly inflation rates of Kenya from January 2000 
to December 2013. Before the modelling, examination of the 
data revealed that it fit a normal distribution after the Johnson 
Transformation. The data was non-stationary at non-seasonal 
levels. However, after first difference, the data became 
stationary. By observing the ACF and PACF, SARIMA (1, 1, 
1) (1,0,1)12 was identified as one of the tentative models. 

The model had the least AIC and BIC values and thus was 
selected as the best fitting model. 

The third objective sought to estimate inflation in the next 
twelve (12) months of 2014. The forecast values established 
were within the confidence intervals. However, the 
Confidence intervals became wider as the time period 
increased. Based on this it was concluded that there was high 
volatility in the inflation data hence the SARIMA (1, 1, 
1)(1,0,1)12 model could be applied for short term forecasting. 
The forecast results revealed a slow increasing pattern of 
inflation rates in the 12 months of 2014. In light of the 
forecasted results, policy makers should develop more 
appropriate economic and monetary policies in order to 
combat such increase in inflation rates. 

Appendix 
Kenya’ s Monthly Inflation Rates (2000:1 – 2013:12) 

 
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Jan 9.63 11.97 0.46 6.37 9.14 14.87 8.15 4.63 7.93 13.33 7.52 5.42 18.31 3.67 

Feb 7.52 10.17 1.20 7.44 9.85 13.94 8.89 3.12 11.04 14.62 5.18 6.54 16.70 4.45 

Mar 5.90 9.46 2.03 10.12 8.32 14.15 8.26 2.31 12.53 14.44 3.97 9.19 15.61 4.11 

Apr 7.20 9.10 0.86 11.64 7.57 16.02 4.94 2.00 16.83 12.10 3.66 12.05 13.06 4.14 

May 8.60 6.94 1.71 14.92 4.65 14.78 3.99 2.09 18.70 9.88 3.88 12.95 12.22 4.05 

Jun 11.21 4.61 2.85 13.74 5.94 11.92 4.06 4.05 16.79 9.86 3.49 14.48 10.05 4.91 

Jul 11.46 4.26 2.12 10.91 8.54 11.76 4.04 5.39 15.33 10.33 3.57 15.53 7.74 6.02 

Aug 11.31 4.03 1.81 8.27 15.80 6.87 4.81 5.19 15.98 9.76 3.22 16.67 6.09 6.67 

Sep 11.59 3.08 1.78 7.89 18.96 4.27 5.79 5.45 16.32 9.19 3.21 17.32 5.32 8.29 

Oct 11.28 3.21 1.89 9.08 18.29 3.72 6.31 5.32 16.70 8.80 3.18 18.91 4.14 7.76 

Nov 11.63 2.15 2.57 8.97 17.40 4.64 6.13 5.98 17.56 7.14 3.84 19.72 3.25 7.36 

Dec 11.78 1.60 4.25 8.35 17.08 4.91 7.32 5.60 15.48 8.02 4.51 18.93 3.20 7.15 

Source: Kenya Bureau of Statistics 
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