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Abstract: This article is a review of our work on the modeling of lumber drying that we have started in 2003. We consider 
a lumber drying process in a kiln chamber where from mathematical point of views, this is an initial and boundary value 
problem. The Moisture Content (MC) is measured at the center of the lumber by applying a nail that thousands times of the 
pore size of the wood. This leads to apply macro modeling for the diffusion process of the water inside the lumber. MC acts as 
the state variable u of the thickness x and time t. The state variable satisfies a diffusion equation. The Equilibrium Moisture 
Content (EMC) of the air acts as the boundary condition. We report the progress on mathematical modeling and compared the 
results with data from industry. 
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1. Introduction 
This article is a review of our previous work reported in [1, 

2, 3, 4, 5] by elaborating recent understanding of modeling. 
From industrial point of view, a good drying process is very 
much of the interest, especially of lumber and timber 
industries. Good process prevents the lumber from 
developing surface cracks and several other defects. Drying 
may reduce lumber weight by a factor two or more meaning 
lower cost on transportation. Drying increases the lumber 
strength; nails, screws and glue hold better, paint and 
finishes adhere well. Dry lumber is a better thermal insulator 
than the wet one (see [14] for details). 

The moisture content (MC) of lumber is an important 
aspect on lumber drying. MC of lumber is defined as the 
ratio of the mass of water contained in the lumber to the 
mass of the lumber without water. MC of some fresh log cut 
from a tree may be above 100%. Industries dry lumbers to 
have MC around 6% to 20%, which is hard to achieve 
naturally. To have good control on lumber drying, middle 
and large sizes timber industries dry lumber in (kiln) ovens. 

This paper focuses on understanding the drying inside the 
lumber based on the process in a kiln oven of an industry, a 
review of our research focus started in 2003. Understanding 
the process better will be a starting point for an efficient 
process. Most previous and current researches are 
experimental tests or purely modeling and simulation; [10, 

11, 12, 13] are among others. In this paper we consider 
modeling, simulation and comparison with real data 
obtained in an industry. 

2. Industrial Process and Data 

Drying process decreases the cross-sectional dimension 
of the lumber up to ten percent. Fig. 1 show an illustrative 
results of lumber drying process. Lumber which is dried too 
quickly, leaving the surface much drier than the inside, may 
develop cracks on the surface. If one surface is significantly 
drier than the other, the lumber may bend. A good drying 
process should not develop these mal-forms, except 
reducing dimension. Therefore a good process should dry 
the lumber evenly. Understanding this mechanism is 
extremely important to find an optimal drying time. 

The moisture content (MC) of lumber is an important 
aspect on lumber drying. MC of lumber is defined as the 
ratio of the mass of water contained in the lumber to the 
mass of the lumber without water. MC of some fresh log 
cut from a tree may be above 100%. Some industries dry 
lumbers for MC around 10% to 15%. To have good control 
on lumber drying, middle and large sizes timber industries 
dry lumber in ovens. The moisture content of the lumber 
before entering the oven varies around 50% to 70%. The 
drying process in the oven is done by controlling the 
Equilibrium Moisture Content (EMC), i.e. the air humidity 
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in the oven. To make the process faster, the EMC should be 
lower, and vice versa. While drying process of the surface 
of lumber is directly controlled by setting the EMC, drying 
the inside part very much depends on the surface and also 
the type of lumber, hence is not easily controlled. 

 

Figure 1. Illustration of good drying and bad drying process of lumber in 
industry. 

Fig. 2 show illustrative plot of a kiln chamber (oven), 
devices used to measure MC and EMC, and controlling the 
process of drying by setting the EMC. The kiln chamber is 
equipped with heating and fans, where EMC can be set up 
by blowing up the humid air out of the chamber and/or 
increasing the temperature in it. Some fans are also used to 
create uniform EMC in the oven. EMC is automatically 
control by using computer software for drying. 

The data recorded from the drying process in the kiln 
chamber are EMC and MC as time series. We consider 
lumber durian wood (Durio zibethinus) of the dimension of 
5 cm x 40 cm x 250 cm. The process is recorded in the 
interval of 6 days. 

 

Figure 2. Drying process, measuring MC and setting EMC in industry. 

3. Mathematical Model 

We consider spatial variable 
nx ℜ∈ , and temporal 

variable ℜ∈t . A state variable representing the mass 

density (of water) at the point x inside the wood and time t 
is denoted by ),( txuu = . The flux of mass v at point x to 

the surrounding points is assumed linearly depends on the 
gradient of u  at x; the larger the gradient, the larger the 
flux. Hence, we have 

uK ∇⋅=v                    (1) 

where K is a factor that may be constant or a function x or 
u. 

Let nℜ⊂Ω  be bounded, and the boundary is denoted 
by Ω∂ . Assuming the mass conserved, the total mass 
leaving Ω  is given by  

∫
Ω∂

• dA nv                    (2) 

where nv •  denotes the component v in the direction of 
normal vector n. Applying Gauss divergence theorem, we 
have 

( )∫∫
ΩΩ∂

∇⋅•∇−=• dVuKdA   nv          (3) 

where u2∇  is a Laplace operator applied to u. 
On the other hand, the total mass in Ω  is the integral of 

the mass density over Ω  

∫
Ω

= dVum                   (4) 

The rate of change of the mass 

. ∫
Ω

∂
∂= dV

t

u

dt

dm
               (5) 

Positive sign of dm/dt refers to the increase of mass in Ω , 
on the contrary the negative sign refers to the decrease of 
mass. Assuming the mass conserved, the total mass leaving 
Ω  is equal to the decrease of mass inside Ω . Hence, we 
have 

( )∫∫
ΩΩ

∇⋅•∇−=
∂
∂− dVuKdV

t

u
               (6) 

which is equivalent to 

( ) 0 =






 ∇⋅•∇−
∂
∂

∫
Ω

dVuK
t

u
            (7) 

Since Ω  is any subset of nℜ  and restricting on a 
continuous integrand, we have 

( )uK
t

u ∇⋅•∇=
∂
∂

.             (8) 

Such derivation can be found in many standard textbooks 
including, the one well-known for engineering [8]. 

Notes: 
The relation of the water density and the moisture content 

is given by 
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),(),( Wood txuutxu = , 

where ),( txu  is water content at point x and time t, and 

Woodu  is the wood density. The wood density is assumed to 

be constant, it does not depend on x. On substituting (9) 
into (8), we have 

( )uK
t

u ∇⋅•∇=
∂
∂

. 

Dropping the bar, ),( txu  stands for the moisture content 

at (x, t). Hence, either moisture content or mass (of water) 
density is governed by (8). 

4. Method 
We will compare the solution of our model with real data 

of MC of the lumber during the drying process. Note that the 
measurement of MC at center of the lumber, however, 
includes its surrounding area, but small, about hundreds or 
thousands of the pore size of wood. Hence, the MC does not 
refer only at a single point. Rather, it refers to an average 
quantity in its neighborhood. This technique is known as 
Representative Elementary Volume (REV), (see [7]). 

The numerical solution of the model (8) is computed 
numerically using a finite difference method. This method 
has been widely discussed in standard books such as [9]. For 
the numerical computation we use ∆x = 0.1, and the time 
step ∆t = 0.01. The boundary condition is taken from the 
linear interpolation of the industrial data of EMC. The 
information of initial condition is limited in three points, two 
on the boundary and one in the center of the lumber. We may 
interpret the initial condition in two ways. The first, it is 
assumed to be constant equals to the initial data of MC in the 
center. Second, it is assumed to be quadratic function taken 
from the initial data of MC at the center and the EMC at the 
two boundary points. This illustrated in Fig. 3. 

 

Figure 3. Quadratic initial condition and constant initial condition. 

5. Results and Discussion 
Fig. 4 shows the real (industrial data) of EMC, MC and 

numerical result of the state variable at the center for the 
case that the initial condition is constant and equals to the 

initial MC. Note that EMC acts as boundary condition of the 
simulation. Observe that the model gives a mismatch of the 
real data and numerical solution in the beginning of drying 
process. This mismatch is removed by applying quadratic 
interpolation of MC in the center and EMC at the two 
boundary points as the initial condition as presented in Fig. 5. 

 

Figure 4. EMC, MC and numerical result of the state variable at the center 
for the case of constant initial condition. 

 

Figure 5. EMC, MC and numerical result of the state variable at the center 
for the case of quadratic initial condition. 

We have presented mathematical model development of 
drying process of wood. We have also compared with real 
data from an industry. Our discussion, however, is a direct 
problem of initial and boundary value problem meaning 
given the diffusion equation accompanied with the initial 
and boundary conditions. The problem faced by the 
operators and technicians in an industry is how to determine 
EMC (boundary condition) such that they get the prescribed 
MC (state variable). This means that given 

( )uuK
t

u
xx ∂⋅∂=

∂
∂

)( , 0 < x < d and t > 0. 

The initial condition is given by 

u = f(x), in 0 < x < d 

( ) ( )tgtdu =,2 . 
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Find the boundary condition u(0,t) = u(d,t) = h(t). 
On the other hand, the function K for specific wood is still 

unknown. This also yields another inverse problem below. 
Given 

( )uK
t

u
xx ∂⋅∂=

∂
∂

, 0 < x < d and t > 0. 

The initial and boundary conditions are given by 

u = f(x), in 0 < x < d 

u(0,t) = u(d, t) = h(t). 

An additional signal is also known, say 

( ) ( )tgtdu =,2 . 

Find the diffusion rate K. For the case K constant and a 
function of x, it is already discussed in [6, 15, 16]. For the 
case of wood drying in general, K = K(x, u) a function that 
depends on the spatial and state variables x and u. 

6. Conclusion 
We have discussed a development of mathematical model 

of wood drying for a lumber. The model based on an 
assumption where the width and the length are significantly 
larger than the thickness. Hence, the drying process is 
governed by a 1-D diffusion equation. The state variable 
represents the moisture content (MC) of the lumber at spatial 
variable and temporal variable x and t, respectively. 
Industrial data indicate that the diffusion rate depends on the 
type of wood, and also MC itself. Therefore, the model is 
governed by a nonlinear diffusion equation accompanied by 
initial and boundary conditions. 

The mathematical expression of the diffusion rate as a 
function of the state variable is still unknown. The 
development of the model partly is the approximation of the 
diffusion rate, starting from a step function to a smooth one. 
On the other hand, initial condition from industry merely 
give data at the center and outside of the lumber. We 
considered two cases of initial conditions; assuming it is 
constant and equals to the MC at the center, and quadratic 
function connecting the MC at boundary points and the 
center. 

We solved the diffusion equation numerically using a 
finite difference method. The boundary condition is a linear 
interpolation of the industrial data of Equilibrium Moisture 
Content (EMC). The solution at the center of the wood has 
been compared to the industrial data of MC. We show that 
the solution is a good approximation for the industrial data 
of MC. Moreover, the numerical solution is smoother than 
the industrial data which is more preferable in the industries. 
For the case of constant initial condition, there exist 
significant mismatch at the beginning of the process. This 
mismatch is not observed when we applied the quadratic 
initial condition. 
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