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Abstract:In model selection, the most effective method requires much time.The analysis of the bivariate B-spline model 

with a penalized term has many difficulties.It has many factors and parameters such the number of the knots, the locations of 

those knots, number of B-spline functions and the value of the smoothing parameter of the penalized term.For the 

determination of the model we have to compare a large amount of the combinations of those parameters. Various information 

criteria are considered and the cross validation (CV) criterion is excellent but it requires a large amount of computational 

costs. The effect of the influence function and the techniques of the generalized cross validation (CV) are considered. The 

influence function is related to the first term of a Taylor expansion. Some alternative methods are tested and a new method is 

proposed. For the verification of this method theoretical proof and the computational results are shown. 

Keywords: B-Spline Surface, Generalized Information Criterion, Influence Function, Generalized Cross-Validation, 

Cross-Validation, Kullback-Leibler Divergence, Surface Model Selection 

 

1. Introduction 

Because both parametric statistics and nonparametric 

statistics, in the establishment of the relationship between 

the response variables and the covariate variables, have a 

problem in the model selection, it is an important part for 

statistical modeling. One main purpose of model selection 

is to choose the true distribution. 

In this paper, the refined cross-validation value GCVIF 

for the model selection is proposed; for the approximation 

of experimental data, the spline function is smooth and 

useful because it has less oscillation. Its dominance 

becomes larger according to the appropriate locations of 

knots. In this paper the approximation of the two 

dimensional surface by bivariate B-splines is described. It 

has some additional difficulties than univariate spline 

function. 

In order to determine the smooth coefficients of 

B-splines, we use the maximum penalized likelihood 

estimator (MPLE; Good and Gaskins 1971; Green and 

Silverman 1994). Among some methods for the penalized 

term, we chose the method of integration as the most 

favorable one. 

An AIC-type criterion, which is the estimation of 

Kullback-Leibler divergence for the MPLE, is a 

generalized information criterion (GIC[1])which forms the 

empirical log-likelihood with the correction term for the 

bias, derived analytically with the influence function. The 

GIC can evaluate the models not only with MPLE but also 

with a robust estimator, maximum weighted likelihood 

estimator, etc. Cross-validation (CV[2]) is applicable to 

choose the value of an optimal parameter in the maximum 

penalized likelihood method. The CV requires less analytic 

calculations than the GIC, although the computational cost 

for the CV is much higher than the GIC. To overcome 

computational costs, the mGIC[3] was considered which 

utilizes the influence function. The first order influence 

function is useful because it requires less time. On the other 

hand the second order influence function takes too much 

time in comparison to its small profits. But mGIC is not 

sufficient to determine the optimal parameters. For better 

accuracy, we use the generalized CV (GCV[4]) and we 

proposed GCVIF, which is an improved GCV with the 

influence function. It is better for the model selection than 

the CV, AIC, GIC and mGIC. GCVIF is the criterion that 

includes the residual sum of squares, the number of 

samples and the number of parameters in the model. It is 

more stable and distinguishable than CV, GIC and mGIC. 

The computational result shows the excellence of our 

improved scheme GCVIF.  
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2. Generalized CV Criterion GCVIF 

The Kullbak-Leibler divergence KL measures the 

distance between the true probability density function p(x) 

and estimated probability density function q(x) as follows: 

KL��; �� � 	 ��
�log ��
���
� �
 

            � 	 ��
�log ��
��
 � 	 ��
�log��
��
 

This divergence is nonnegative and is equal to zero if 

and only if��
� � ��
�a.e..But this value includes the 

unknown function p(x) we can only estimate its value from 

the observed samples. The first term � ��
�log ��
� is 

constant and we only have to estimate the sencond term � � ��
�log ��
� . The negative log-likelihood is an 

approximation of KL divergence and it is asymptotically 

equivalent to KL divergence according to the law of large 

numbers, as follows: 

� 1� � log
�

���
��
�� � � 	 ��
�log ��
��
. 

The property of the leave-one-out cross-validation 

(LOOCV) is as follows 

E�LOOCV � E�� 	 ��
�log��!���
� �
  
where��!���
� is the probability density function of the 

distribution without the α-th data point. 

We considered an information criterion GCVIF which is a 

generalized cross-validation with the influence 

function.From n observations theα-th data point �#� , 
�� 

is removed and the parameter vector % � �&', ()�'  is 

estimated based on the remaining n-1 observations. We 

denote the parameter as %*�!�� � �&+ �!��, , (-)�!���' .The 

corresponding estimated regression function is denoted 

as .- �!���
� .We use the log-likelihood for Cross 

Validation(ICCV) as 

/012 �  �2 � log 456
� , %�!��78
�

���
 

� ∑ :log62;(-)�!��7 < 6=>!?+�@>�7A
B+A�@>� CDE��  .              (1) 

Minimizing the equation (1) is the method of selecting 

the optimal model.Various alternative schemes are 

considered for the reduction of its computational cost, and 

another scheme is called the generalized CV (GCV)[4], 

which estimate the value of .�!���
��  directly, as 

follows : 

#� � .-!��F�� � #� � .-�F��1 � G��  , 
where the G�� is the �α, α�HIcomponent of the smoother 

matrix H. The matrix H transforms observed data # to 

predicted values #̂ where H does not depend on the data #, 

and it is referred to as a hat matrix, a smoother matrix. 

Then, in cross-validation, the estimation process performed 

n times by removing observations one by one is not needed, 

and thus the amount of computation required can be 

reduced substantially. Next, the generalized cross validation 

with influence function GCVIF is calculated by 

K0LMN �  ∑ Olog62;(-)�!��7 < P =>!?+�F>�
B+�@>���!QRHST�U

)V���� ,(2) 

Where G��  is replaced with 1/n trY , which is its 

average, and tr(H),which is called the effective number of 

parameters. The estimation (-)�!E� is approximated by the 

influence function Z����#�; K*� as follows [4] 

%*�!�� [ %* � 1� Z���6#�; K*7. 
3. Method of Regularization 

For the nonlinear statistical modeling, the maximum 

penalized likelihood methods are often used [5-7]. Suppose 

that we have nobservations \�#� , 
��; ] � 1, ^ , �_, where #� are the response variables generated from unknown true 

distribution G(z|x)having a probability density of g(z|x)and 
�  are the vectors of explanatory variables.We estimate &, 

which is a vector consisting of the unknown parameters and 

determines the model # � .�
|&� .Let 5�#�|
�; %�  be a 

specified parametric model, where %  is a vector of 

unknown parameters included in the model.The regression 

model with Gaussian noise is denoted as 

       #� � .�
�|&� < a� , a�~c�0, ()�, ] � 1, ^ , � 

5�#�|
�; %� � 1
√2;() exp P� \#� � .�
�; &�_)

2() U , 
where % � �&', σ)�j.The parameter will be determined by 

the maximization of the penalized log-likelihood function, 

expressed as: 

ℓl�%� � ∑ log 5�#�|
�; %� � �
)���� mY�&�    (3) 

As the regularized term or penalized termsY�&� with an 

m-dimensional parameter vector &, various types are used 

depending on the dimension of explanatory variables or the 

purpose of the analysis. For example, the discrete 

approximation of the integration of a second-order 

derivative, finite differences of the unknown parameters 

and the sum of the squares of wi are used, and those are 

Y��&� � �
� ∑ ∑ noA?�p>|q�

oprA s)tu������ , 

         Y)�&� � ∑ �∆w&u�)xu�wy� , 

Yz�&� � ∑ &u)xu�� . 

For the three dimensional approximation we use [8] 
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Y�&� � { n4oA?
opA8) < 4oA?

o|A8)s �
�} ,     (4) 

and it is represented in the quadratic form 

Y�&� � &'~& .             (5) 

Therefore the equation (3) will be 

ℓl�%� � � �
) log�2;()� � �

)BA �# � �&�'�# � �&� � �
) m&'~&, 

where# � �#�, ^ #��', .�
�|&� � &'��
�� and B is an 

n� � matrix composed of the basis functions as 

� � ���
��', ^ , ��
��'�' . 
With respect to% ,differentiatingℓl�%�  and setting the 

result equal to zero obtainstheir solution.As a result, the 

estimations of the parameters are 

&+ � ��'� < �m(-)~�!��'# , 
(-) � �

� �# � �&+�'�# � �&+� .           (6) 

At first we set the constant value of � � m(-) and 

determine &+  for a given value of �.After we obtain the 

variance estimator (-)we can then obtain the smoothing 

parameterm � �/(-). 

3.1. B-splines 

We consist the B-spline function Mm,i(x)of required degree 

r-1 (order r) by the algorithm of de Boor-Cox[8-11].This 

calculation can be begun by the first step:  

��,��
� � :6�� � ��!�7!�6��!� � 
 � ��70                  �otherwise� ,� 
and the successive recurrence formula is below: 

��,��
� � �
 � ��!����!�,�!��
� < ��� � 
���!�,��
��� � ��!�   , 

 

Figure 1.Spline functions ( order four ) 

 

Figure 2.Three dimensional spline functions (order four) 

Where {ξw},k=1-r,…,n+r are the knots and n is the total 

number of intervals for the approximation.The univariate 

spline functions are shown in Fig. 1, 

where{ ξw },k=1-r,…,n+r ξ� � 1 , ξ) � 2 , ξz � 3 , ξ� � ξ� �ξ� � ξ� � 4. For the adequate approximation the selection 

of the knots is quite important.The division by equal 

intervals cannot always provide the best approximation. 

We set the approximation for the three dimensional 

surface as 

.�
, }� � � � &u��u�
�c��}� ,
�A

���

�Q

���
 

Where p1, p2 is the total number of basis B-splines 

{Mi(x)},{Nj(y)} respectively, and these functions have the 

support [ ξu!� , ξu ), [ η�!� , η��  for the x,y direction 

respectively.The shape of the three dimensional B-splines 

are shown in Fig. 2. The upper figure shows a one function 

with �u � �� � 1� � 10, �u � �� � 1� � 10, � �1, 2, ^ 5 .The lower figure shows four functions with 

p1=p2=2, ξu � �� � 1� � 10, ηu � �� � 1� � 10 , 

i=1,2,…,6.The Schoenberg-Whitney condition [12] has to 

be satisfied, because if there is no sample point in the 

domain {(x,y)| ξu!� � 
 � �u , ��!� � } � ��_ , then the 

parameter &u�   cannot be determined. 

In the equation of integration (4) 

4oA?
opA8) � 4∑ ∑ &u� tA�r�p�

tpA�A����Qu�� c��}�8),     (7) 

4oA?
o|A8) � �∑ ∑ &u��u�
� tA� �|�

t|A�A����Qu�� ¡).     (8) 

We 

set &u� � &¢w, � � �w , £ � £w, ���) � � ,
tA�r�p�

tpA c��}� �
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�¤�,w, �u�
� tA� �|�
t|A � �¤),w.Then, the equation (7) (8) can be 

rewritten as 

4oA?
opA8) � 6∑ &¢w�¤�,wxw�� 7)

, 

4oA?
o|A8) � 6∑ &¢w�¤),wxw�� 7)

. 

As a result, the integrations become 

{ �¤�,� �¤�,¥�
�} �
� tA�r¦�p�

tpA
tA�r§�p�

tpA �
 � c�¦�}�c�§�}� �},             (9) 

{ �¤),� �¤),¥�
�} �
� �u¦�
��u§�
� �
 � tA� ¦�|�

t|A
tA� §�|�

t|A �}.           (10) 

The sum of equations (9) and (10) will be Kpq which is 

the component of m � m nonnegative matrix K that is 

represented in the equation (5). 

3.2Higher Order Empirical Influence Function 

We can denote equations (6) as follows 

∑ ¨u�
�;���� %� � 0   �� � 1,2, ^ , ��, � � ���) < 1, (11) 

where % � �&', σ)�j. When we denote ¨ � 6¨�, ^ , ¨�7', 
the solution%*of the equation (11) is given by %* � Z�K*� 

which is the vector of the functional with degree p defined 

with distribution G as follows: 

� ¨�
, Z�K���K�
� � 0. 

By replacing the distribution Gwith �1 � a�K < a©p,we 

obtain 

� ¨�#, Z��1 � a�K < a©p� �\�1 � a�K�#� < a©p�#�_ � 0.  (12) 

The first order influence function is given in [4].For the 

higher order influence function, we differentiate the 

equation (12) with respect to atwice and let a � 0, then 

we obtain 

2 	 ª¨�
, Z�K��'
ª% �\©p�#� � K�#�_ · ªªa \Z�Y¬�_|¬�­ 

                     < 	 ª)¨ª%ª% ªZ�Y¬�ªa |¬�­�K · ªZ�Y¬�ªa |¬�­ 

   < � o®
o¯ �K · oA°�T±�

o¬A |¬�­ � 0.          (13) 

Therefore the influence function contains a second order 

as 

oA
o¬A \Z�Y¬�_|¬�­ ² Z�)��#, #; K�. 

Recall the equation 

� o®6=,°�³�7,
o¯ �K�#� � 0, 

and the equation (13) can be rewritten as: 

2 ´ª¨�#, Z�K��'
ª% |=�p < µ�¨, K�¶ Z��� 

< ´	 ª)¨ª%ª% Z����
; K��K¶ Z��� � µ�¨, K�Z�)� � 0. 
Thus, we obtained 

Z�)�6#, #; K*7 �
 µ�¨, K*�!� 42 o®�=,°�³��,

o¯ |=�p <
� oA®

o¯o¯ Z����
; K*��K*8 Z��� < 2Z���. 

4. Other Information Criteria 

An information criterion for the model56#·
; %*7, obtained 

by maximizing the penalized log-likelihood function (3)is 

given by 

GIP� � �2 � log 56#�·
; %*7 < 2tr »µ6¨, K*7!�¼�¨, K*�½ ,
�

���
 

whereµ�¨, K*� and ¼�¨, K*� are (m+1)�(m+1) matrices [4]. 

We adopted the next approximation for the alternative 

CV [4] 

Z6G¾�!��7 [ Z�G� < 1� � 1 � Z����#u; G��

u¿�
 

  [ T6G¾7 � �
� Z����#�; G¾�. 

In the equation (1) of ICCV we replaced the %*�!�� with %* � �
� Z����#�; G¾� and its scheme was called the modified 

GIC (mGIC) [13], 

mGIC � �2 � log5 ´
�; %* � 1� Z���6
�; G¾7¶ .
�

���
 

5. Numerical Example 

5.1. Surfaces and Samples 

We assume two models of the equations of surface I and 

surface II as follows: 

I :# � sin�2;
� < 2cos �2;�
 < }�� 

II :# � �1 � 
� exp��
)� < 
}exp��y)� 

Those topographies are shown in Figure 3.For the 

estimation, we generated 300 sample coordinates data with 

the Gaussian noise according to the normal distribution c�0, ()�. 
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5.2. Estimation of Parameters 

Usually B-splines with order four (degree three) are used 

in the calculation. Along the x direction, we set the knots x1, 

x2,^,xpwith four-folded knots at both ends.So the total 

number of basis B-splines will be p-4.At every interval 

[xn-1,xn),n=5,6,  ^  ,p-3 there exists four basis B-splines 

which are below. 

 

Figure 3.The topographies of two surfaces 

��,��
� � ��
 � 
��z
�
� � 
�!z��
� � 
�!)��
� � 
�!�� , 

��,)�
�
� �
 � 
�!z��
 � 
���
 � 
���
� � 
�!z��
� � 
�!)��
� � 
�!��
< �
 � 
�!)��
 � 
���
 � 
�y���
�y� � 
�!)��
� � 
�!)��
� � 
�!��                  
< �
 � 
�!���
 � 
�y���
 � 
�y���
�y� � 
�!���
�y� � 
�!)��
� � 
�!��   , ��,z�
�
� �
 � 
�!)��
 � 
�!)��
 � 
���
�y� � 
�!)��
� � 
�!)��
� � 
�!��
� �
 � 
�!)��
 � 
�!���
 � 
�y���
�y� � 
�!)��
� � 
�!���
�y� � 
�!�� 

                 � �
 � 
�!���
 � 
�!���
 � 
�y)��
�y� � 
�!���
� � 
�!���
�y) � 
�!��   , ��,��
�
� �
 � 
�!��z

�
�y) � 
�!���
�y� � 
�!���
� � 
�!�� , 
According to the total number of sample data we set 10 - 

20 knots along the every axis. We denote the total number 

of knots (n1,n2) where n1and n2 are the total number of 

knots along x and ydirections respectively.Also, for every 

(n1,n2), we tested 100 sets of randomized knots generated 

uniformly.However, some of them didn't satisfy the 

Schoenberg-Whitney condition so another set of knots was 

generated again. Furthermore the equations of matrices 

made from ill-conditioned sets cannot be solved properly, 

so we also generated another sets of knots again, testing 

100 solvable sets for every (n1,n2).The total number of the 

basis will be (n1-4)(n2-4) and the total number of the 

parameters will be (n1-4)(n2-4)+1 which consists of the 

coefficients of the basis and the variance.For the 

regularization term, we used (4) and for the numerical 

calculation, we used (9) and(10). We tested the estimation 

with various β's which are from10
-1

 to 10
-10

 in principle.  

5.3. Evaluation of Models 

For the evaluation of the obtained parameters we test 

some criteria such as GICP, mGIC, CV and GCVIF.Those 

results are shown in Figures and Tables below. Fig. 4 

summarize the results of GICP, mGIC, CV and GCVIF 

over the various values of � for surface I. And Fig. 5 

shows the results of four criteria for surface II. The GICP 

values are monotone decreasing so we cannot determine the 

optimal parameters in this case.Table 1 and 2 summarize 

the results of CV in the various values of �.The optimal 

value, which minimizes the information criterion 

Cross-Validation (1), determines the number of knots and 

the value of �. We can determine the optimal parameters 

which minimize CV,but the repetition is 12100 and it takes 

about 800 minutes in our simulation for every � and for 

every surface. 

In the calculation of mGIC we use the influence function 

to estimate the value of parameters.This method can obtain 

almost the same result in parameters as CV and it takes 

very little time. It takes almost 35 minutes for every � and 
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it is 1/23 of the CV.In this approximation of parameters the  

 

Figure 4. Four criteria of Surface I 

 

Figure 5. Four criteria of Surface II 

difference between the mGIC and CV is quite small. The 

correlation coefficient is almost 1.0.For example, when � =10-5, n1= n2=20, the average of the correlation 

coefficients over 100 sets of knots is 0.99999611.However, 

the values of mGIC are monotone decreasing so we cannot 

determine the optimal parameters in this case. 

The results of an alternative method GCVIF with 

influence function (2) for model selection are shown in 

Table 3 and 4. For the estimation of variance we use the 

influence function.The selected models with optimal 

parameters determined by the GCVIF are shown in Fig. 6 

and Fig. 7 for surfaces I and II respectively.In Fig. 6 the 

estimated surface is based on the (13,11) knots. In Fig. 7 

the estimated surface is based on the (14,17) knots. In those 

figures the locations of knots and samples and the residuals 

are also shown. 

5.4. Comparison between the Distributions of Criteria 

We compare the distributions of four information criteria 

for the two surfaces I andII.The criteria are improved 

versions of GICP, CV, mGIC and GCVIF.On the surface I, 

we show the Boxplots of four criteria 

over�=10
-4

,10
-5

,10
-6

,10
-7

 inFig.8and 9. Similarly on the 

surface II, we show the Boxplots of four criteria 

over�=10
-4

,10
-5

,10
-6

,10
-7

 inFig. 10 and 11. We can find 

from these figures that mGIC is larger than GICP and 

GCVIF is closer to the CV than others. 

 

Figure 6. SurfaceI 

 

Figure 7. SurfaceII 
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Table1. CV results for Surface I 

Total number of knots 

x-axis y-axis 
ββββ σσσσ

2222
 

λλλλ CV 

19 13 1.000E-01 1.85E+00 5.4025E-02 1050.1 

19 13 1.000E-02 1.67E+00 5.9798E-03 1021.1 

20 17 1.000E-03 9.38E-01 1.0665E-03 859.3 

20 17 1.000E-04 3.16E-01 3.1645E-04 560.3 

13 11 1.000E-05 3.16E-01 4.4643E-05 468.1 

10 11 1.000E-06 2.29E-01 4.3673E-06 475.1 

10 11 1.000E-07 2.28E-01 4.3939E-07 478.0 

10 11 1.000E-08 2.24E-01 4.4721E-08 478.8 

10 11 1.000E-09 2.20E-01 4.5520E-09 479.8 

10 10 1.000E-10 2.20E-01 4.5354E-10 486.1 

Table2.CV results for Surface II 

Total number of knots 

x-axis y-axis 
ββββ σσσσ

2222
 

λλλλ CV 

13 13 1.000E-01 3.85E-03 2.60E+01 31.0 

18 18 1.000E-02 5.35E-02 1.87E-01 40.2 

20 15 1.000E-03 3.22E-01 3.10E-03 537.9 

17 20 1.000E-04 1.66E-01 6.03E-04 367.4 

20 15 1.000E-05 4.87E-02 2.05E-04 74.3 

16 14 1.000E-06 6.37E-03 1.57E-04 -346.1 

16 14 1.000E-07 2.30E-03 4.34E-05 -441.1 

19 13 1.000E-08 2.77E-03 3.61E-06 -244.2 

13 13 1.000E-09 3.85E-03 2.60E-07 25.9 

13 13 1.000E-10 3.85E-03 2.60E-08 31.0 

Table3.GCVIF results for Surface I 

Total number of knots 
ββββ σσσσ

2222 λλλλ GCVIF 
x-axis y-axis 

19 13 1.000E-01 1.850993 5.40E-02 1050.1 

19 13 1.000E-02 1.672307 5.98 E-03 1021.4 

20 17 1.000E-03 0.937645 1.07 E-03 857.2 

20 17 1.000E-04 0.316010 3.16 E-04 556.9 

13 11 1.000E-05 0.224000 4.46 E-05 470.0 

12 10 1.000E-06 0.214460 4.66 E-06 478.4 

10 11 1.000E-07 0.227586 4.39 E-07 481.9 

10 11 1.000E-08 0.223611 4.47 E-08 484.3 

10 10 1.000E-09 0.220486 4.54 E-09 487.3 

10 10 1.000E-10 0.220486 4.54 E-10 487.3 

Table4.GCVIF results for Surface II 

Total number of knots 
ββββ σσσσ

2222 λλλλ GCVIF 
x-axis y-axis 

18 11 1.000E-01 0.407434 2.45 E-01  596.9 

20 19 1.000E-02 0.397532 2.52 E-02  591.1 

20 15 1.000E-03 0.355688 2.81 E-03  536.8 

17 20 1.000E-04 0.165862 6.03 E-04  363.9 

10 10 1.000E-05 0.227627 4.39 E-05   60.3 

14 17 1.000E-06 0.005844 1.71 E-04 -463.0 

14 17 1.000E-07 0.001890 5.29 E-05 -659.3 

14 17 1.000E-08 0.001712 5.84 E-06 -582.7 

13 13 1.000E-09 0.003851 2.60 E-07 -549.8 

13 13 1.000E-10 0.003851 2.60 E-08 -549.5 
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Figure 8.Boxplotsfor four criteria of surface I 

 

Figure 9. Boxplotsfor four criteria of surface I 

 

Figure 10. Boxplotsfor four criteria of surface II 

 

Figure 11. Boxplots for four criteria of surface II 
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7. Conclusion 

As the value of �  decreases, the residual variance 

reduces and the information criterion GICp also reduces 

monotonously. As a result, the GICp cannot determine the 

optimum model in both surfaces.The method for 

minimizing the cross-validation (CV) can determine the 

optimal values for two surfaces.The result of computation 

shows the excellence of the criterion CV, but it requires a 

large amount of computational costs. 

For the parameter estimation the alternative method 

mGIC by the information function works well.However, 

the total number of parameters is so many (more than 36 

and less than or equal to 257) that occasionally the 

estimated values are quite different from the sample 

value.Those samples make the value of mGIC worse and 

consequently we cannot determine the optimum model by 

this criterion in both surfaces.To overcome this difficulty 

the GCV is quite useful.To improve the property of GCV 

we use the influence function to estimate the variance of 

n-1 samples.We can recognize the superiority of GCVIF 

which can determine the optimum model and can 

approximate the distribution of the CV very well and it 

requires small computation. 

We propose GCVIFas an improved GCV criterion. This 

conclusion is a theory obtained through a large number of 

simulation tests.From the results of these tests of GCVIF 

criterion on surface I and surface II, we can see that the 

GCVIF criterion is more stable than the CV, GIC and 

mGIC, and we can also see that the GCVIF criterion 

includes their informations. 
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