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Abstract: The concept of fractional order derivative (FOD) can be found in extensive range of many different subject areas. 
For this reason, the concept of FOD should be examined in wide range. There are lots of methods about FOD in the literature; 
however, none of them are FOD methods. Since all of them are curve fitting or curve approximation methods. In fact, the 
methods used in the literature are not FOD methods; they are approximation methods. In this paper, we redefined FOD for 
product and quotient. The obtained definition is same as classical derivative definition in case of fractional order is equal to 1. 
FOD of products and quotients were handled in this paper with some applications. The properties of both theorems were analysed 
in this paper. 
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1. Introduction 

Fractional calculus is an old calculus, but not very popular 
amongst science and engineering community. The fractional 
derivative is not a local property in mathematics. The 
fractional derivatives may translate the reality of nature better 
as similar to fuzzy logic. Therefore to make this subject 
available as popular subject to science and engineering 
community, the fractional derivative must be redefined 
analytically. The description of nature in this way may make 
us understand the nature well. 

The FODs are different approaches instead of classical 
derivatives. There are a lot of studies on this subject. The most 
of these studies have used Euler, Riemann-Liouville and 
Caputo FODs. Due to this case, this study focused on Euler, 
Riemann-Liouville and Caputo FODs. 

Some of studies on the FODs can be summarized as 
follows: 

A minimization problem with a Lagrangian that depends on 
the left Riemann–Liouville fractional derivative was 
considered in [1] such as finite differences, as a subclass of 
direct methods in the calculus of variations, consist in 
discretizing the objective functional using appropriate 
approximations for derivatives that appear in the problem. 
There is a study on fractional extensions of the classical Jacobi 
polynomials [2], and fractional order Rodrigues’ type 

representation formula. By means of the Riemann–Liouville 
operator of fractional calculus, new g-Jacobi functions were 
defined, some of their properties were given and compared 
with the corresponding properties of the classical Jacobi 
polynomials [2]. There is another study on the discussion of 
theory of fractional powers of operators on an arbitrary 
Frechet space, and the authors of this study obtained 
multivariable fractional integrals and derivatives defined on 
certain space of test functions and generalized functions [3]. 

Differential equations of fractional order appear in many 
applications in physics, chemistry and engineering [4]. There 
is a requirement for an effective and easy-to-use method for 
solving such equations. Bataineh et al used series solutions of 
the fractional differential equations using the homotopy 
analysis method [4]. Many recently developed models in areas 
like viscoelasticity, electrochemistry, diffusion processes, etc. 
are formulated in terms of derivatives (and integrals) of 
fractional (non-integer) order [5]. There is a collection of 
numerical algorithms for the solution of the various problems 
arising in derivatives of fractional order [5]. 

The fractional calculus is used to model various different 
phenomena in nature but due to the non-local property of the 
fractional derivatives, it still remains a lot of improvements in 
the present numerical approaches [6]. There are some 
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approaches based on piecewise interpolation for fractional 
calculus, and some improvement based on the Simpson 
method for the fractional differential equations [6]. There is a 
study on fractional order iterative learning control including 
many theoretical and experimental results, and these results 
shown the improvement of transient and steady-state 
performances [7]. 

Recently, many models are formulated in terms of fractional 
derivatives, such as in control processing, viscoelasticity, 
signal processing, and anomalous diffusion, and authors of 
this paper studied the important properties of the 
Riemann-Liouville derivative, one of mostly used fractional 
derivatives [8]. The philosophy of integer order sliding mode 
control is valid also for the systems represented by fractional 
order operators [9]. 

Here is just a small part of the work in this area is given. 
Except these, there are numerous studies. This area of work 
can be divided into two groups such as mathematical theory of 
FODs and the applications of FODs. There are important 
errors and deficiencies in both groups of studies. Due to this 
case, the FOD concept was redefined in [11, 12, 13, 14]. 

In this study, it is focused on the FODs of product and 
quotient. This paper is organized as follow. Section 2 
describes the FODs of any function, product and quotient. 
Section 3 describes the applications of FODs. Finally, section 
4 describes the conclusion of this study. 

2. Fractional Order Derivatives 

2.1. Analytic Definition for Fractional Order Derivatives 

The fractional order derivative (FOD) concept was 
redefined in [11, 12, 13, 14] and the reason of definition and 
definition can be given as follow. 

The meaning of derivative is the rate of change in the 
dependent variable versus the changes in the independent 
variables. There are many studies on this subject; however, all 
methods in the literature consist of some deficiencies and 
misleading information. At this aim, the derivative of f(x)=cx0 
is that 

 

In the case of identity function is 

 

So, the definition for FOD can be considered as follow. 
Definition 1: [11,12,13,14] f(x):R→R is a function, α∈R 

and the FOD can be considered as follows. 

 

In the case of very small value of h, the limit in the 
Definition 1 concluded in indefinite limit. 

 

In this case, the method used for indefinite limit (such as 
L’Hospital method) can be used, and the fractional order 
derivative can be redefined as follows. 

Definition 2: [11, 12, 13, 14] Assume that f(x):R→R is a 

function, α∈R and L(.) be a L’Hospital process. The FOD of 

f(x) is 

 

The existence of this definition can be verified by the 
Theorem 1. 

Theorem 1: Assume that f(x):R→R is a continue function 

and α∈R. The limit 

 

exists and is finite. 

Proof: f(α)(x+h)-f(α)(x)<∞ and (x+h)(α)-x(α)<∞. 
f(α)(x+h)-f(α)(x)≠0 and (x+h)(α)-x(α)≠0. Then 

 

And . 

The definition of derivative has been handled for α=1 until 
today. While α=1 for definition 2, the obtained results are 
same to results of classical derivative. While α=2, the FOD is 

different from . Since 

 

The fractional order derivative definition can be 
demonstrated that it obtained same results as classical 
derivative definition for α=1. 

2.2. FODs of Products and Quotients 

The new derivation definition can be applied to products 
and quotients. In order to give the FOD of real functions, the 
derivatives of products and quotients must be given for α=1. 
Assume that h(x)=f(x)g(x), and the derivative of h(x) is 
h(α)(x)=h(1)(x)=h’(x) [10]. 
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The same process can be illustrated for quotient, and 

assume that . The derivative of h(x) [10] is 

 

By using this knowledge from literature, the FOD of 
product and quotient can be rephrased in Theorems 2 and 3. 

Theorem 2: Assume that f(x), g(x):R→R are continuous 

functions, α∈R and h(x)=f(x)g(x). The FOD of h(x) is as 

follows. 

. 

Proof: f(x) and g(x) are real functions, so, h(x) is also a real 
function. FOD of h(x) 

 

. 

Theorem 3: Assume that f(x), g(x):R→R is a continue 

functions, α∈R and . The FOD of h(x) is as 

follows. 

. 

Proof: f(x) and g(x) are real functions, so, h(x) is also a real 
function. FOD of h(x) 

 

 

. 

The results of theorem 2 and theorem 3 can be used for a 
closed loop form system. In order to apply FOD to closed loop 
system, the integration must be redefined in case of FOD. 

Theorem 4: Assume that f(x) is a continuous function, α∈R 

and FOD of f(x) is f
(α)

(x). The fractional order integral (FOI) 

of f
(α)

(x) is 

 

Proof: The FOD of f(x) is f(α)(x), and 

represents the FOI of any function and  

The FOI of f(α)(x) is 
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. 

FOI of any function is different from classical integration, 
and the mathematical term 1/x means integration in the closed 
loop system modeling, however, the mathematical term 1/x is 
just a mathematical term in FOI, not integration. 

Theorem 5: Assume that f(x) and g(x) are monotonic 
increasing functions and α1, α2, …, αn and α1≤α2≤…≤αn. 

Then . 

Proof: Assume that f(x) and g(x) are monotonic increasing 
functions, so, f(x)g(x) is also a monotonic increasing function. 
It was shown that in theorem 2, the fractional order derivative 
of product is 

 

The term  is same in all orders of 

fractional order derivatives. So, the term  

determines the relation ≤ between two or more different orders 
fractional order derivatives. If αi≤αj for any 1≤i,j≤n, and i≠j, 

then . 

The similar comments can be drafted for monotonic 
decreasing functions. 

Theorem 6: Assume that f(x) and g(x) are monotonic 
decreasing functions and α1, α2, …, αn and α1≥α2≥…≥αn. 

Then . 

Proof: Assume that f(x) and g(x) are monotonic decreasing 
functions, so, f(x)g(x) is also a monotonic decreasing function. 
It was shown that in theorem 2, the fractional order derivative 
of product is 

 

The term  is same in all orders of 

fractional order derivatives. So, the term  

determines the relation ≥ between two or more different orders 
fractional order derivatives. If αi≤αj for any 1≤i,j≤n, and i≠j, 

then . 

If any function is a monotonic increasing and the other is a 
monotonic decreasing, how we can determine the less than or 
equal relationships between different orders fractional order 
derivatives. The theorem 7 determines this case. 

Theorem 7: Assume that f(x) is a monotonic increasing 
function, and g(x) is a monotonic decreasing function. Let 

h(x)=f(x)g(x) and αi≤αj, and there are two cases. 
a) If h(x) is a monotonic increasing function, then 

 

b) If h(x) is a monotonic decreasing function, then 

 

c) Proof: The proofs of Theorem 5 and Theorem 6 can be 
used for proving this theorem. 

d) The fractional order derivative depends on h(x) where 
h(x) is the quotient of f(x) and g(x). If h(x) is a 
monotonic increasing function and αi≤αj, then 

 If h(x) is a monotonic decreasing 

function and αi≤αj, then  

 

Figure 1. Application of FOD to product for different α values. 

 

Figure 2. Application of FOD to product for different α values. 

3. Applications of FODs 

In this section, the applications of FOD of product and 
quotient are handled. Assume that f(x)=x+2 is a monotonic 
increasing function and g(x)=2x-7 is also a monotonic 
increasing function, so f(x)g(x) is also monotonic increasing 
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function. Figure 1 and Figure 2 depict the application of FOD 
to product. Figure 1 and Figure 2 depict the cases in Theorem 
5 and Theorem 6. 

4. Conclusions 

The FOD concept is an important concept to make 
development in mathematics. Due to this reason, the FODs of 
product and quotient were verified and their applications to 
some functions were implemented in this study. It can be seen 
from the proves of Theorem 2 and Theorem 3 that when the 
order of derivation is 1, the result of derivation is same as 
classical derivation; however when order is different from1, 
the result contains a coefficient for each case. The properties 
of FOD for product and quotient were handled in this paper. 
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