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Abstract: This research aims to design and implement of tree-structured multichannel filter banks using MATLAB. The 
multichannel filter banks analysis are evaluated by the Digital Signal Processing (DSP) techniques. The multi rate analysis is 
suitable for sampling rate reduction and sampling rate increase on the digital filter design. When increasing sampling rate, 
filtering follows the up-sampling operation. The role of the filter is to attenuate unwanted periodic spectra which appear in the 
new baseband. The performance evaluation for tree-structured multichannel filter banks design is described in this research 
work. The experimental results for implemented design are implemented in this paper. The use of an appropriate filter enables 
one to convert a digital signal of a specified sampling rate into another signal with a target sampling rate without destroying the 
signal components of interest. The performance of multirate filtering for implemented design is evaluated by using MATLAB. 
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1. Introduction 

Multirate signal processing techniques are widely used in 
many areas of modern engineering such as communications, 
image processing, digital audio, and multimedia. The main 
advantage of a multirate system is the substantial decrease of 
computational complexity, and consequently, the cost 
reduction. The computational efficiency of multirate 
algorithms is based on the ability to use simultaneously 
different sampling rates in the different parts of the system. 
The sampling rate alterations generate the unwanted effects 
through the system: spectral aliasing in the sampling rate 
decrease, and spectral images in the sampling rate increase. As 
a consequence, the multirate processing might produce 
unacceptable derogations in the digital signal. The crucial role 
of multirate filtering is to enable the sampling rate conversion 
of the digital signal without significantly destroying the signal 
components of interest. The multirate filtering makes the 
general concept of multirate signal processing applicable in 
practice. [1-10] 

For multirate filters, FIR (finite impulse response) or IIR 

(infinite impulse response) transfer functions can be used for 
generating the overall system. The selection of the filter type 
depends on the criteria at hand. An FIR filter easily achieves a 
strictly linear-phase response, but requires a larger number of 
operations per output sample when compared with an equal 
magnitude response IIR filter. The linear-phase FIR filter is an 
adequate choice when the waveform of the signal has to be 
preserved. An advantage of the multirate design approach is 
the ability of improving significantly the efficiency of FIR 
filters thus making them very desirable in practice [11-15]. 

2. Two-Channel Filter Banks 

The block diagram representing the analysis/synpaper 
two-channel filter bank with the processing unit between the 
analysis and synpaper parts is shown in Figure 2. In the 
analysis bank, the original signal x [n] is filtered using the 
lowpass/highpass filter pair [H0(z), H1(z)], and the lowpass 
and highpass channel signals x0[n] and x1[n] are obtained. 
Therefore, their z-transforms X0(z) and X1(z) are given by 

X0(z)=H0(z)X (z), and X1(z)=H1(z)X (z)           (1) 
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Figure 3 illustrates typical magnitude frequency responses 
of H0(z) and H1(z). The spectra of the filtered signals x0[n] 
and x1[n] occupy a half of the baseband of the original signal x 
[n], and according to this, x0[n] and x1[n] can be further 
processed at the half of the input sampling rate. The filtered 
signals x0[n] and x1[n] are then down-sampled 
by-a-factor-of-two, and subband signals v0[n] and v1[n] are 
obtained. If the sampling rate at the input is F0, the subband 
signal components v0[n] and v1[n] are sampled at the rate F0/2. 

Since v0[n] and v1[n] are the down-sampled versions of 
x0[n] and x1[n], the z-transforms V1(z) and V2(z) are 
expressible in terms of the z-transforms X0(z) and X1(z). It can 
be simply applied equation of T(z) to the z-transforms X0(z) 
and X1(z) with the down-sampling factor M = 2. Additionally, 
by introducing relations (3.1), it can be expressed V1(z) and 
V2(z) in terms of the z-transform of the input signal X(z), 

V0�z�=
1

2
�H0�z1/2�X�z1/2�+H0�-z1/2�X(-z1/2)�          (2) 

 

Figure 1. Proposed System Block Diagram. 

 

Figure 2. The two-channel analysis/synpaper filter bank. 

The first terms in above equations represent the 
z-transforms of the desired decimated signal components, 
whereas the second terms represent the aliasing components 
that overlap in the basebands of the decimated signals. The 
signals v0[n] and v1[n] are processed in the processing unit, 

usually coded and compressed. Before inputting to the 
synpaper bank, signals are usually decoded and 
decompressed. The coding and quantization errors in the 
processing unit may cause derogation of the signals. In that 
case the resulting signals w0 [n] and w1[n] differ from the 
original signals v0[n] and v1[n] [16-20]. 

 

Figure 3. Typical magnitude responses of the lowpass filter H0(z), and the 

highpass filter H1(z). 

V1�z�=
1

2
�H1�z1/2�X�z1/2�+H1�-z1/2�X(-z1/2)�      (3) 

In order to examine the performances of the 
analysis/synpaper bank, the errors that may be produced in the 
processing unit are neglected. Hence, the future 
considerations of the analysis/synpaper filter bank in this 
section are evaluated under the assumption that 

w0[n]=v1[n], and w1[n]=v1[n]                  (4) 

In the synpaper bank, the two signal components are 
up-sampled-by-two first, then filtered by G0(z) and G1(z), and 
finally added together to compose the output signal y [n]. The 
z-transforms of the up-sampled signals u0[n] and u1[n] follow 
directly from equation T (z) when applied for the up-sampling 
factor L = 2. With the assumption given in (12.3), i.e., w0[n] = 
v0[n] and w1[n] = v1[n], the z-transforms U0(z) and U1(z) 
become expressible in terms of X0(z) and X1(z), 

U0�z�=V0�z2�= 1

2
[X0�z�+X0�-z�              (5) 

U1�z�=V1�z2�= 1

2
[X1�z�+X1�-z�              (6) 

With the up-sampling operation, the sampling rate increases 
from F0/2 to F0. In above equations, the terms X0(z) and X1(z) 
represent the desired signal component without aliasing, and 
the terms X0(−z) and X1(−z) represent the unwanted aliased 
signal components. In the second step, signals u0[n] and u1[n] 
are processed by the lowpass/highpass synpaper filter pair 
G0(z) and G1(z). Thereby, the z-transforms Y0(z) and Y1(z) of 
the output signals y0[n] and y1[n] are given by 

Y0�z�=G0(z)V0
�z2�= 1

2
[G0(z)X0

�z�+G0(z)X0�-z�]    (7) 

Y1�z�=G1(z)V1
�z2�= 1

2
[G1(z)X1

�z�+G1(z)X1�-z�] (8) 

Finally, in the third step the filtered signals y0[n] and y1[n] 
are added together to yield the output y [n]. Accordingly, the 
z-transform Y (z) is the sum of Y0(z) and Y1(z), 
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Y (z)=Y0(z)+Y1(z)                       (9) 

Introducing the simplification, it can be arrived to the 
expression, which relates the z-transform of the output Y (z) 
with the z-transform of the input X (z) and with its aliased 

component X (−z) 

Y�z�=
1

2
 

�H0�z�G0�z�+H1�z�G1�z��X�z�+
1

2
�H0�-z�G0�-z�+H1�-z�G1�-z��X�-z�                              (10) 

The first term in above equation represents the input/output 
relation of the overall analysis synpaper filter bank without 
aliasing and imaging effects. The second term represents the 
effects of aliasing and imaging. This second term has to be 
eliminated by the proper combination of the transfer functions 
H0(z), H1(z), G0(z) and G1(z). Conditions for the alias-free 
filter bank are considered in the next subsection. 

3. Tree Structure Filter Banks 

An approach for constructing a multichannel filter bank is 
based on a tree-structure, which uses the two-channel filter 
banks as building blocks. With the use of this approach, the 
multichannel filter banks with uniform and no uniform 
separation between the channels can be generated. If the 
two-channel filter banks satisfy the perfect-reconstruction 
(nearly perfect-reconstruction) property, the overall 
tree-structure filter bank also satisfies the perfect- 
reconstruction (nearly perfect-reconstruction) property. In 
this section, it could be shown examples of uniform and no 
uniform filter banks built on the basis of the two-channel 
filter banks. For the sake of simplicity, it could be used in this 
section the symbolic representations of the analysis and 
synpaper two-channel filter banks as shown in Figure 4. The 
single-input/two-output device A(k)(z) symbolizes a 
two-channel analysis filter bank, and 
two-input/single-output device S(k) (z) symbolizes a 
two-channel synpaper bank. 

 

Figure 4. Symbolic representation of two-channel filter bank: (a) Analysis 

bank. (b) Synpaper bank. 

4. Design of Tree-Structure Filter 

A multichannel analysis/synpaper filter bank can be 
developed by iterating a two-channel QMF bank. Moreover, if 
the two-band QMF bank is of the perfect reconstruction type, 
the generated multiband structure also exhibits the perfect 

reconstruction property. 
By inserting a two-channel maximally decimated QMF 

bank in each channel of another two-channel maximally 
decimated QMF bank between the down-sampler and the 
up-sampler, it can be generated a four-channel maximally 
decimated QMF bank, as shown in Figure 5. Since the analysis 
and the synpaper filter banks are formed like a tree, the overall 
system is usually called a tree-structured filter bank. It should 
be noted that in the four-channel tree-structured filter bank of 
Figure 5, the two-channel QMF banks in the second level do 
not have to be identical. 

 

(a) 

 

(b) 

Figure 5. (a) A two-channel QMF bank, (b) a three-channel QMF bank 

derived from the two-channel QMF bank. 

However, if they are different QMF banks with different 
analysis and synpaper filters, to compensate for the unequal 
gains and unequal delays of the two-channel systems, 
additional delays of appropriate values need to be inserted at 
the middle to ensure perfect reconstruction of the overall 
four-channel system. An equivalent representation of the 
four-channel QMF system of Figure 5(a) is shown in Figure 
5(b). 

The analysis and synpaper filters in the equivalent 
representation are related to those of the parent two-level 
tree-structured filter bank as follows: 

H00 (z) = H0 (z)H0(z
2), H01(z) = H0(z)H1(z

2)       (11) 

Because of the unequal passband widths of the analysis and 
synpaper filters, these structures belong to the class of 
nonuniform QMF banks. The tree-structured filter banks are 
also referred to as decade band QMF banks. Various other 
types of nonuniform filter banks can be generated by iterating 
branches of a parent uniform two-channel QMF in different 
forms. Nonuniform filter banks have been used in speech and 
image coding applications. 
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Figure 6. Flowchart of Tree-structure Filter Design Analysis. 

5. Analysis of Multirate Filters 

The analysis of single-stage multirate filters is performed at 
the rate the filter is operating. For decimators, the rate is equal 
to the input rate. For interpolators, the rate is equal to the 
output rate. For sample-rate converters, the rate of the filter is 
equal to the input rate multiplied by the interpolation factor. If 
a sampling frequency is given, it's assumed that it's the 
sampling frequency at which the filter is operating. The 
following plot overlays the magnitude response of a 
sample-rate converter, an interpolator, and a decimator. For 
the first filter, the input sampling frequency is 1000/5 and the 
output sampling frequency is 1000/3. For the interpolator, the 
input Fs is 1000/4 and the output Fs is 1000. Finally, for the 
decimator, the input Fs is 1000 and the output Fs is 1000/3. 

Analysis of multistage filters is possible for multistage 
filters of the following form. Any of the blue, red, or green 
sections is optional. So it can be performed analysis on a 
multistage interpolator, a multistage decimator, or a multistage 
sample-rate converter. In performing the analysis, an 
equivalent overall filter is computed for the interpolation 
section and/or the decimation section as follows: 

Where L = Lo*L1*L2*...*Lm; M = Mo*M1*M2*...*Mn;  
H(z)=H1(z^(Lo*L1*...*Lm))*H2(z^(Lo*L2*...*Lm))*...H
m(z^(Lo));and 
G(z)=G1(z^(Mo*M1*...*Mn))*G2(z^(Mo*M2*...*Mn))*..
.Gn(z^(Mo)) 
Finally, the filters H (z), G (z), and Ho (z) are all operating 

at the same rate and can be combined into a single filter on 
which the analysis is performed. If a sampling frequency is 
specified, it is assumed that this single overall filter is 
operating at that rate. 

The analysis of a multistage interpolator is presented. It 
would be cascaded four interpolators to form a four-stage 
filter. The last interpolator will be a CIC filter. In this case, the 
sampling frequency specified corresponds to the output of the 
four-stage interpolator because this is the rate at which the 
equivalent filter is operating. It should be added some 
decimation stages to form a multistage sample-rate converter. 
The sampling frequency specified once again corresponds to 
the rate of the equivalent filter. This is the fastest rate in the 
entire system in this case. In addition to the multistage filter 
shown, analysis of a multistage filter where decimation occurs 
prior to interpolation is possible provided the overall 
interpolation and decimation factors are the same. Notice that 
this does not necessarily mean that there is an equal number of 
decimation and interpolation stages. Because the overall 
interpolation factor L is equal to the overall decimation factor 
M, both equivalent filters are operating at the same rate. If a 
sampling frequency is specified, it is assumed to be the rate at 
which both filters are operating. This would also be equal to 
the input and output rate for this case. 

 

Figure 7. Flowchart of Multirate Analysis. 

6. Design of Decimators/Interpolators 

Typically lowpass filters are used for decimation and for 
interpolation. When decimating, lowpass filters are used to 
reduce the bandwidth of a signal prior to reducing the sampling 
rate. This is done to minimize aliasing due to the reduction in 
the sampling rate. When interpolating, lowpass filters are used 
to remove spectral images from the low-rate signal. 

6.1. Design of Decimators 

The specifications for the filter determine that a transition band 
of 2 Hz is acceptable between 23 and 25 Hz and that the 
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minimum attenuation for out of band components is 80 dB. Also 
that the maximum distortion for the components of interest is 
0.05 dB (half the peak-to-peak passband ripple). An equiripple 
filter that meets these specs can be easily obtained as follows: 

M = 4; % Decimation factor 
Fp = 23; % Passband-edge frequency 
Fst = 25; % Stopband-edge frequency 
Ap = 0.1; % Passband peak-to-peak ripple 
Ast = 80; % Minimum stopband attenuation 
Fs = 200; % Sampling frequency 
Hf = fdesign. Decimator (M,'lowpass', Fp, Fst, Ap, Ast, Fs) 
Hm = design (Hf,'equiripple'); 
hfvt = fvtool (Hm,'DesignMask','on','Color','White'); 
measure (Hm) 
It is clear from the measurements that the design meets the 

specs. It may be preferable to use a multistage approach to 
obtain a more efficient design that meets the specs.  

Nyquist filters are attractive for decimation and 
interpolation due to the fact that a 1/M fraction of the number 
of coefficients is zero. The band of the Nyquist filter is 
typically set to be equal to the decimation factor, this centers 
the cutoff frequency at 1/M*Fs/2. The transition band is 
centered around 1/4*100 = 25 Hz. A Kaiser Window design 
can be obtained in a straightforward manner. A more efficient 
design can be obtained through multistage techniques which 
results in two halfband filters cascaded. 

It can be supposed the signal to be filtered has a flat 
spectrum. Once filtered, it acquires the spectral shape of the 
filter. After reducing the sampling rate, this spectrum is 
repeated with replicas centered on multiples of the new lower 
sampling frequency. An illustration of the spectrum of the 
decimated signal can be found from: 

NFFT = 4096; 
[H, f] = freqz (Hmn (1), NFFT,'whole', Fs); 
Note that the replicas overlap somewhat, so aliasing is 

introduced. However, the aliasing only occurs in the transition 
band. That is, significant energy (above the prescribed 80 dB) 
from the first replica only aliases into the baseband between 
24 and 25 Hz. Since the filter was transitioning in this region 
anyway, the signal has been distorted in that band and aliasing 
there is not important. On the other hand, notice that although 
it has been used the same transition width as with the lowpass 
design from above, it is actually retained a wider usable band 
(24 Hz rather than 23) when comparing this Nyquist design 
with the original lowpass design. To illustrate this, let's follow 
the same procedure to plot the spectrum of the decimated 
signal when the lowpass design from above is used. 

[H, f] = freqz (Hm (1), NFFT, 'whole', Fs); 
In this case, there is no significant overlap (above 80 dB) 

between replicas, however because the transition region 
started at 23 Hz, the resulting decimated signal has a smaller 
usable bandwidth. 

6.2. Design of Interpolator 

When interpolating a signal, the baseband response of the 
signal should be left as unaltered as possible. Interpolation is 
obtained by removing spectral replicas when the sampling rate 

is increased. 
It can be supposed a signal sampled at 48 Hz. If it is 

critically sampled, there is significant energy in the signal up 
to 24 Hz. If it could be wanted to interpolate by a factor of 4, it 
would be ideally designed a lowpass filter running at 192 Hz 
with a cutoff at 24 Hz. As with decimation, in practice an 
acceptable transition width needs to be incorporated into the 
design of the lowpass filter used for interpolation along with 
passband ripple and finite stopband attenuation.  

L = 4; % Interpolation factor 
Fp = 22; % Passband-edge frequency 
Fst = 24; % Stopband-edge frequency 
Ap = 0.1; % Passband peak-to-peak ripple 
Ast = 80; % Minimum stopband attenuation 
Fs = 192; % Sampling frequency 
Hf = fdesign. Interpolator (L,'lowpass', Fp, Fst, Ap, Ast, Fs) 
An equiripple design that meets the specs can be found in 

the same manner as with decimators 
Hm = design (Hf,'equiripple'); 
Notice that the filter has a gain of 12 dB which corresponds 

to a gain of 4 in linear units. In general interpolators will have 
a gain equal to the interpolation factor. This is needed for the 
signal being interpolated to maintain the same range after 
interpolation. The flowchart of decimator/interpolator is 
illustrated in Figure 8. 

 

Figure 8. Flowchart of Decimation/Interpolation. 

7. Simulation Results of Tree-Structure 

Filter Bank 

The passband of the cascade is the frequency range where 
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the passbands of the two filters overlap. On the other hand, the 
stopband of the cascade is formed from three different 
frequency ranges. 

In two of the frequency ranges, the passband of one 
coincides with the stopband of the other, while in the third 
range, the two stopbands overlap. As a result, the gain 

responses of the cascade in the three regions of the stopband 
are not equal, resulting in an uneven stopband attenuation 
characteristic. This type of behavior of the gain response can 
also be seen in Figure 9 and should be taken into account in the 
design of the tree-structured filter bank.  

 

Figure 9. Gain Responses of the Two Analysis Filters. 

By continuing the process of inserting a two-channel 
maximally decimated QMF bank, QMF banks with more than 
four channels can be easily constructed. It should be noted that 
the number of channels resulting from this approach is 
restricted to a power of 2; that is, L = 2ν. In addition, as 

illustrated by Figure 10, the filters in the analysis (synpaper) 
branch have passbands of equal width, given by π/L. 
However, by a simple modification to the approach it can be 
designed QMF banks with analysis (synpaper) filters having 
passbands of unequal width. 

 

Figure 10. Reconstruction Error in dB. 
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8. Simulation Results of Multirate Filter 

Analysis 

All interpolators and decimators exhibit a lowpass 
response. The simplest interpolators, like the CIC interpolator 
and the hold interpolator have a poor lowpass response. 
However, they are easy to implement and do not require any 
multiplications to be performed in real-time. The following 
plot compares the lowpass response of four different 
interpolators. All of them have an interpolation factor of 4. 

One can easily see the difference in the quality of the lowpass 
filter, depending on which type of interpolator is used. The 
CIC interpolator has more gain than the other interpolators. 
The comparison response for tree-structure filter with 
conventional filter is shown in Figure 11. The blue color 
response is for conventional FIR filter design and the other 
color responses are given the implemented filter design. The 
magnitude response for two channel tree-structure filter bank 
with respect to various operating frequency is illustrated in 
Figure 12. 

 

Figure 11. Comparison Response for Tree-structure Filter with Conventional Filter. 

 

Figure 12. Magnitude Response for Two Channel Tree-structure Filter Bank. 
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.

9. Simulation Results of 

Decimator/Interpolator for 

Tree-Structure Filter Bank 

When decimating, the bandwidth of a signal is reduced to 
an appropriate value so that minimal aliasing occurs when 
reducing the sampling rate. Suppose a signal that occupies the 
full Nyquist interval has a sampling rate of 200 Hz. The 
signal's energy extends up to 100 Hz. If the sampling rate is 
reduced by a factor of 4 to 50 Hz, significant aliasing will 
occur unless the bandwidth of the signal is also reduced by a 
factor of 4. Ideally, a perfect lowpass filter with a cutoff at 25 

Hz is used. The components of signal between 0 and 25 Hz is 
slightly distorted by the passband ripple of a non-ideal 
lowpass filter; there was some aliasing due to the finite 
stopband attenuation of the filter; the filter would have a 
transition band which would distort the signal in such band. 
The amount of distortion introduced by each of these effects 
can be controlled by designing an appropriate filter. In 
general, to obtain a better filter, a higher filter order will be 
required. The screenshot result for response of two channel 
filter bank using decimation/interpolation methods is shown 
in Figure 13. 

 

Figure 13. Screenshot Result for Response of Two Channel Filter Bank Using Decimation and Interpolation Methods. 

When the decimation factor is 2, the Nyquist filter becomes 
a halfband filter. These filters are very attractive because just 
about half of their coefficients are equal to zero. Often, to 
design Nyquist filters when the band is an even number, it is 
desirable to perform a multistage design that uses halfband 
filters in some/all of the stages. As with other Nyquist filters, 
the halfbands are used for decimation, aliasing will occur only 
in the transition region. The frequency spectrum for 
constructed filter bank is illustrated in Figure 14. 

Note that although the filter has a gain of 4, the interpolated 
signal has the same amplitude as the original signal. Similar to 
the decimation case, Nyquist filters are attractive for 
interpolation purposes. Moreover, given that there is a 
coefficient equal to zero every L samples, the use of Nyquist 
filters ensures that the samples from the input signal are 

retained unaltered at the output. This is not the case for other 
lowpass filters when used for interpolation (on the other hand, 
distortion may be minimal in other filters, so this is not 
necessarily a huge deal). 

In an analogous manner to decimation, when used for 
interpolation, Nyquist filters allow some degree of imaging. 
That is, some frequencies above the cutoff frequency are not 
attenuated by the value of Ast. However, this occurs only in 
the transition band of the filter. On the other hand, once again 
a wider portion of the baseband of the original signal is 
maintained intact when compared to a lowpass filter with 
stopband-edge at the ideal cutoff frequency when both filters 
have the same transition width. The discrete time signal 
response of implemented filter design is illustrated in Figure 
15 
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Figure 14. Frequency Spectrum for Constructed Filter Bank. 

.  

Figure 15. Discrete Time Signal Response of Implemented Filter Design. 
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10. Conclusion 

Design and realization of the comb-based filters for 
decimators and interpolators has been developed. In this work, 
the structures of the CIC-based decimators and interpolators, 
discuss the corresponding frequency responses, and 
demonstrate the overall two-stage decimator constructed as 
the cascade of a CIC decimator and an FIR decimator. The 
condition coincides with the known one for the fractionally 
spaced equalizers when K = 1. The condition is not difficult to 
check when the ISI transfer function is known. In particular, it 
obtained a simplified version of the condition for an FIR 
non-maximally decimated multi-rate filter-bank pre-coder 
with N channels and the largest decimation, i.e., K = N -1 
which corresponds to the case of the smallest bandwidth 
expansion in the pre-coding. The condition can be stated as 
follows: All rotations of the zero set of the FIR transfer 
function H (z) at samples l*N for l = 0, 1, 2, 3, …, N-1 are 
disjoint from each other. These conditions are basically easy to 
satisfy. Thus, the approach in this paper suggests that the 
sampling rate that is times faster than the baud rate for the 
receiver may be good enough. 
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