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Abstract: As exploration and development of various types of oil and natural gas reservoirs underground continue to evolve, 

the more complex geological environment for seismic exploration in oil and gas reservoirs become focus increasingly. When the 

target reservoir is vertically interbedded and nested with various lithological strata, and exhibits poor lateral continuity, it 

becomes increasingly difficult for humans to distinguish oil and gas reservoirs from such complex backgrounds. It's also 

challenging to quantitatively assess and determine the accuracy of discrimination and achieve optimal reservoir identification 

results. In response to this issue, the Bayesian machine learning algorithm is introduced for automated target discrimination, 

enabling efficient differentiation between dolomite reservoirs, mudstones, and other lithological intercalations. The core of 

applying the Bayesian classifier is to establish a distribution model for target parameters, which is usually assumed to be a known 

distribution type such as Gaussian or Cauchy distribution. However, in petroleum seismic exploration, the distribution of oil and 

gas reservoir parameters is highly irregular and significantly different from these established distribution types, limiting the 

application of the Bayesian classification method. Therefore, we propose using a radial basis function neural network to estimate 

the prior distribution probability density of oil and gas reservoir parameters. This approach does not assume the prior distribution 

to be a certain predetermined model but instead builds the prior distribution model based on the numerical distribution 

characteristics of the target parameters themselves, enhancing the practicality of the Bayesian classification method. This method 

replaces manual reservoir identification processes, achieving high-precision, quantitative, and automated discrimination of 

reservoirs. Applied to actual seismic exploration data in oil fields for gas layer prediction, the discrimination results match with 

industrial gas wells, demonstrating the feasibility and effectiveness of the method. 
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1. Introduction 

Using seismic data to obtain geological parameters for 

underground oil and gas reservoir prediction is a necessary 

production process in the petroleum exploration industry. After 

identifying sensitive parameters that reflect the researched 

wells, constructing feature vectors that quantitatively 

characterize the objectives to be classified, and selecting and 

determining class boundaries in the feature space, the goal of 

identifying reservoir targets and predicting oil and gas can be 

achieved. However, the majority of software currently used in 

exploration and production only provides manual classification 

functions for data processing, such as delineating a linear 

boundary on the intersection plot of category sample points or 

delineating an elliptical or polygonal boundary for each 

category sample point [1-4]. These methods are subjective and 

significantly influenced by individual understanding, resulting 

in suboptimal accuracy when manually classifying categories 

and low work efficiency. Developing advanced and automated 

methods for classifying geological parameter sample points 

can efficiently and effectively complete reservoir prediction 

work, offering significant value in field applications. 
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Machine learning technologies have evolved from computer 

pattern recognition methods since the 1970s. [5]. Among them, 

the Bayesian machine learning classification algorithm has 

gradually shown good performance in adapting to the number 

of sample categories and sample capacity. The algorithm has 

stable classification results, high accuracy, and simple 

implementation steps, and provides classification results based 

on automatically calculated data category probabilities without 

requiring human intervention, theoretically representing the 

optimal classifier. Bayesian classification has been widely 

promoted in the field of information processing [6-8], and 

research has been conducted on the core prior distribution 

estimation methods [9]. Greenard et al. [10] applied the fast 

Gaussian transform technique to accelerate the basic kernel 

density estimation algorithm. Gray et al. [11] proposed a 

dual-tree recursion algorithm that uses a divide-and-conquer 

method to implement the basic kernel density estimation 

algorithm, greatly reducing the computational complexity. The 

sparse solutions proposed by Hall et al. [12] and Weston et al. 

[13] reduce the amount of computation by constructing a 

distribution estimate with a few representative sample points. 

This is suitable for situations where overall accuracy 

requirements do not need to be particularly high. Rui Ting et al. 

[14] described the most relatively stable sample points using a 

Gaussian model and applied basic kernel density estimation to 

the remaining small sample points, solving the efficiency 

problem of classification on dynamic backgrounds. Dong Min 

et al. [15] solved the kernel density estimation by solving the 

camera response inverse function through the nonlinear 

distribution of image edges in image authenticity identification 

applications. Qiao et al. [16] used the basic kernel density 

estimation algorithm and histogram for background 

segmentation and implemented target detection in reverse to 

meet the real-time requirements of the monitoring system. The 

above methods mainly improve application efficiency. 

There have been only a few applications [17, 18] of 

Bayesian machine learning classification algorithms in the 

field of oil and gas exploration, specifically in reservoir 

prediction. The main challenge lies in estimating the prior 

distribution of the target categories, which is limited by 

assumptions about the type of prior distribution, typically 

assumed to be Gaussian. Here, a radial basis function neural 

network is used to fit the histogram of the prior distribution 

of the target categories, thereby obtaining a continuous prior 

distribution estimate without assuming the distribution type. 

This approach demonstrates good adaptability to the data and 

has shown positive results when applied to practical reservoir 

prediction tasks. Through this research, it is also hoped to 

contribute to promoting and applying artificial intelligence 

technology in the petroleum industry. 

2. Principle of the Method 

2.1. Bayesian Machine Learning Classification Algorithm 

The to-be-classified data points are represented with their 

feature vectors as 

( )T

1 2 mX x x x= L ,          (1) 

where m  is the dimension, and ix , 1,2, ,i m= L  is each of 

component. The probability ( )|iP c X  of each data point X 

belonging to each class ic , 1,2, ,i K= L , where K  is the 

number of classes. The Bayesian probability formula is shown 

in equation (2) 
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where ( )| iP X c  is the conditional probability of data point 

X  belonging to class ic , which is the prior distribution; 

( )iP c  is the probability of class ic . ( )P X  is the 

probability of the data point being X . By calculating equation 

(2), the probability of the data point belonging to each class is 

obtained, and the data point is assigned to the class with the 

highest probability. To calculate ( )|iP c X , we need to 

calculate ( )| iP X c , ( )iP c , and ( )P X  separately. In 

general classification problems, the number of classes is 

usually finite and ( )iP c  can be estimated from the discrete 

distribution obtained through sampling. ( )| iP X c  is 

typically estimated using a non-parametric kernel density 

estimation method [19]. Conventional non-parametric kernel 

density estimation methods have a fixed number of kernels, 

equal to the number of data points, and noisy data points are 

also treated as kernel points. We use the radial basis function 

neural network algorithm to estimate ( )| iP X c , which allows 

for adjusting the number of kernels, has some noise resistance, 

and can obtain better probability density estimation results. 

2.2. Radial Basis Function Neural Network 

As shown in Figure 1, the Radial Basis Function Neural 

Network maps the input vector x  to a new vector y. For 

example, the first radial basis neuron ( )1 1,c b
v

 corresponds to 

the output of each input vector as 11p , 12p ,…, 1Np . 

For the j-th input jx , the output of the first radial basis 

neuron is 

( )1 1 1j jp x c bϕ= −v v
,          (4) 

where 1c
v

 is the center vector of the 1st radial basis function, 

and b1 is its width parameter. Both are collectively referred to 

as the weights of the radial basis neuron.   represents the 

Euclidean distance between two vectors; the radial basis 

function can be a Gaussian function. 
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( ) 2

e ttϕ −= .               (5) 

The layer that maps the vector x to the vector p is called the 

radial basis layer. After the mapping in the radial basis layer, a 

linear neuron is added as the second layer of the network. It 

combines the outputs of the radial basis layer linearly to obtain 

the final outputs y1, y2, …, yN. of the entire network. For example, 

for the j-th input, the final output of the entire network is 

2

1

S

j i ij

i

y a p b

=

= +∑ ,            (6) 

where the weights a
v

, b2, of the linear layer can be obtained 

using the conventional least squares method (LSM). For the 

weight 1b  of the radial basis layer, an appropriate value needs 

to be determined through experimentation specific to the 

problem. An important issue in training the radial basis 

network is determining the number of neurons S in the radial 

basis layer and the values of the weights 1c
v

, 2c
v

,…, Sc
v

. Chen 

et al. [20] proposed an Orthogonal Least Squares method 

(OLS) that effectively addresses this problem, known as the 

Radial Basis Network Orthogonal Least Squares Training 

Algorithm. This algorithm dynamically adjusts the number of 

kernel functions while controlling the fitting accuracy. 

 
Figure 1. Radial basis network structure diagram. 

2.3. Model Sample Classification Experiment 

2.3.1. Model Data 

 
Figure 2. Classification experiment of samples for model. 

The model sample points are a set of two-dimensional data 

points X=(x1, x2), divided into two categories as shown in 

Figure 2. Category 1c  is represented by symbols of red "+", 

and category 2c  green "*". They were generated by adding 

200 random points from two-dimensional Gaussian 

distributions with a standard deviation of 0.2 and randomly 

distributed center positions. The two categories overlap with 

each other to represent the common situation of overlapping 

sample categories in real-world problems. 

2.3.2. Distribution Estimation Based on Radial Basis 

Networks 

The prior distribution histograms of the categories can be 

obtained through frequency statistics. Figure 3a represents the 

prior distribution histogram of category 1c , and Figure 3b the 

histogram of category 2c . Radial basis networks are used to 

fit these two discrete prior distribution histograms, resulting in 

an estimation of the continuous prior distribution ( )| iP X c , 

as shown in Figure 4a, 4b. This estimation is used to calculate 

the category probabilities using the Bayesian formula. 

  
Figure 3. Statistic of prior distribution by means of histogram. 
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2.3.3. Classification 

Using the Bayesian probability formula, the probability of 

each sample point X=(x1, x2) belonging to each category can 

be calculated separately. Here, taking the identification of the 

"+" sign as an example, the sample points located in the region 

where ( ) ( )1 2| |P X c P X c>  are the target category, and the 

discriminant boundary is determined accordingly, as shown 

by the black line in Figure 2. The algorithm ensures the lowest 

possible misclassification rate and maintains good stability in 

case of sporadic noise in the discrete sample points. 

  

Figure 4. Statistic of prior distribution by means of histogram Estimation of prior PDF (possibility distribution function) for (a) class 1c  and (b) class 2c . 

3. Field Application 

3.1. Overview of the Target Stratum 

The target stratum for study is the Longwangmiao Formation 

in the Cambrian System of the Sichuan Basin, which is rich in 

natural gas. The Longwangmiao Formation averages 76m to 

100m thick. It is primarily composed of granular dolomite and 

fine-crystalline dolomite, with an increased occurrence of 

limestone in the lower part. Gypsum and salt rocks are 

commonly interbedded in the middle part, while a small amount 

of sandstone and mudstone can be found in the upper part. The 

overlying stratum is the Gaotai formation, mainly comprising 

clastic sedimentary rocks. It consists of purple-red heterogeneous 

sandstone and mudstone interbedded with dolomite, with a 

thickness ranging from 50m to 100m. The underlying 

Conglomerate Member of the Cambrian Series is a set of clastic 

sedimentary rocks, with purple-red shale interbeds in the lower 

part and carbonate rocks interbedded with shale at the top. Its 

thickness ranges from 130m to 200m (Figure 5) [21, 22]. 

 
Figure 5. Stratigraphic column. 
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The natural gas reservoirs developed in the Longwangmiao 

Formation are primarily characterized by intergranular and 

intercrystallite dissolution pores. Figure 6 demonstrates that 

the reservoir type is based on porosity. The core samples 

exhibit an uneven distribution of dissolution cavities, resulting 

in strong heterogeneity. The more developed the dissolution 

cavities in the reservoir, the better the reservoir's storage 

performance. Core analysis reveals that the porosity of the 

reservoir is mainly distributed between 4.0% and 6.0%. The 

maximum porosity is 11.28%, the minimum 0.32%, and the 

average 2.75%. Logging data from the study area indicate 

significant variations in reservoir thickness, ranging from 1m 

to 30m. The pink bands in Figure 6 represent reservoir 

intervals with porosity logs exceeding 2%, with segments 

measuring 22m and 5m in length [23]. 

 
Figure 6. Samples of rock and logs of reservoir in MX23. 

3.2. Reservoir Prediction Measures 

Analysis of the basic data of the target stratum indicates 

that the challenges in predicting the gas reservoirs in the 

Longwangmiao Formation are as follows: 1) Complex 

lithology with strong heterogeneity; 2) Large differences in 

production rates from individual well tests, ranging from dry 

wells to high-yield industrial gas wells with millions of cubic 

meters of production. Additionally, there are difficulties in 

hydrocarbon detection. To address these challenges in 

reservoir prediction, the following measures have been taken 

in data processing. Firstly, using both P-wave and S-wave 

seismic data as a basis, precise calibration and comparative 

interpretation of multi-wave well-seismic data were 

conducted to determine the seismic stratigraphy of the 

Longwangmiao Formation. Then, combined with the analysis 

of multi-wave seismic responses of the reservoir, optimized 

multi-wave elastic parameters were selected, and a detailed 

rock physics analysis model was established. Finally, the 

method proposed in this study was used to accurately identify 

and predict gas-bearing reservoir samples in the 

Longwangmiao Formation. 

3.3. Reservoir Prediction Based on Bayesian Classification 

Figure 7 is a collection of sample points of characteristic 

vectors composed of P-wave impedance and S-wave 

impedance, which were calculated from the logging data of 

eight wells in the Longwangmiao Formation within the work 
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area. The green points represent samples of argillaceous 

dolomite in the Longwangmiao Formation, the blue points 

represent samples of dense dolomite, and the red points the 

samples of gas-bearing reservoirs. It can be observed that the 

characteristic vectors composed of P-wave impedance and 

S-wave impedance have good discriminative ability for 

distinguishing gas-bearing reservoirs and other lithologies. 

Using the radial basis function neural network, prior 

distribution density estimation for three categories was 

established. The contour lines of the prior distributions are 

plotted in Figure 7 with red, blue, and green representing the 

prior distribution estimates for gas reservoir samples, dense 

dolomite samples, and argillaceous dolomite samples, 

respectively. By applying the Bayesian probability 

classification method, the probability of each sample point 

belonging to each category can be calculated. Finally, for a 

batch of samples, the sample point with the highest probability 

of being a gas-bearing reservoir can be determined as a 

reservoir type. 

 
Figure 7. Prior distributions for 3 lithological types. 

For the entire work area, a three-dimensional data volume 

of characteristic vectors composed of P-wave impedance and 

S-wave impedance obtained through multi-wave joint 

inversion forms a three-dimensional data volume. By applying 

the gas probability determination method above, a spatial data 

volume of gas probability for the target formation is obtained. 

Figure 8 shows two profiles extracted along the survey line at 

the locations of two industrial gas-producing wells from the 

gas probability data volume. Warm colors represent high gas 

probability, while cool colors represent low gas probability. 

The reservoir in Well MX23 is mainly at the top of the 

Longwangmiao Formation, with gas production of 110.8 x 10
4
 

m³/d and a predicted gas probability exceeding 60%. On the 

other hand, the gas reservoir is not developed in Well MX208 

with a low gas probability. This indicates that the Bayesian 

learning method effectively identifies gas-bearing reservoirs 



41 Zhiguo Fu et al.:  Research on the Application of Bayesian Machine Learning in Reservoir Prediction  

 

automatically. 

 
Figure 8. Probability section along the line at well MX23 and MX208 respectively. 

4. Conclusion 

This study has developed the Bayesian machine learning 

algorithm and gained the following insights: 

1) Bayesian machine learning classification demonstrates 

good adaptability, as it can simultaneously recognize 

multiple categories and effectively adapt to the needs of 

reservoir prediction in geologically complex formations. 

2) The use of radial basis function neural networks to fit 

prior distributions of categories eliminates the need to 

assume distribution types, making it highly practical for 

handling geological parameters. 

3) The application of Bayesian machine learning 

techniques enables automated identification of reservoirs, 

thus improving production efficiency.  

This method is a strong suit for multi-target recognition. 

In the next steps, the proposed method can be further 

extended to predict oil and gas reservoirs under more 

complex geological conditions. However, for weak signals, 

such as thin interbeds and tight reservoirs, which have 

minimal contrast with the background, recognizing these 

types of targets poses a challenge to the accuracy of the 

Bayesian method. 
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