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Abstract: A very plausible picture of the near future–some decades from now–would be the Green Grid Era and the emerging 

importance of EVs in the spectrum, where by Green Grid we mean the advanced Smart Grid in which essential part of the whole 

electric power is supplied by distributed generation, i.e. it is generated by renewable energy including solar energy, biogas, 

geothermal energy, etc. The crucial ingredients in this grid system are enhanced batteries and the participation of EVs in the grid 

as a pool of electricity. Our primary concern in this paper is the control of EV participation in the Green Grid, and in particular the 

study of linear systems and elucidation of various state equations in [HHP] etc.  
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1. Introduction and Preliminaries 

The biggest defect of electricity is that it cannot be stored in 

large quantity and therefore must be kept producing, which is 

one of two main excuses of big power companies for their 

bulldozing plans of building new power stations including 

Nukes. The only major storage unit in most power stations is 

the pumped storage systems, i.e. in the form of potential 

energy. Electricity can be stored in batteries (or 

super-capacitors) only in small quantity. 

The main ingredient of the cost of electricity is the cost of 

the high-voltage power lines, which compose a grid (system). 

In general, the operation cost of a grid depends highly on the 

PAR (peak-to-average ratio) in aggregate load demand. For 

example, there is usually at least one major peak in a daily 

(residential as well as industrial) load demand profile and 

some 10 hours peak during the whole year. 

Here arises the second of two main excuses of big power 

companies for building new power stations: To assure reliable 

service including the supply at peak hours, the companies 

must produce power superseding the peak value. This makes 

the value of PAR higher and can significantly increase the 

generation cost since the grid will be highly underutilized 

most of time. 

 

2. State Space Representation and the 

Visualization Principle 

Let and  be the 

state function, input function and output function, respectively. 

We write  for . 

Then a state equation for a linear system is usually given as 

the system of DEs (differential equations) 

                    (2.1) 

where are given constant matrices. 

It is usually the case that if we work in the frequency 

domain, the things are much easier. The Laplace transform has 

the effect of shifting from the time domain to frequency 

domain and as a version of the Fourier transform, it is 

invertible, i.e. it restores the information in the frequency 

domain into the time domain. Taking the Laplace transform of 

(2.1) with , we obtain 

           (2.2) 

n rx x(t) R , u u(t) R= ∈ = ∈ my y(t) R= ∈

xɺ
d

x
dt

x Ax Bu,

y Cx Du

= +
 = +

ɺ

n ,nA M (R), B,C, D∈

x(0) = ο

sX(s) AX(s) BU(s)

Y(s) CX(s) DU(s),

= +
 = +
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which we solve as 

,                (2.3) 

where 

             (2.4) 

and where  indicates the identity matrix, which is 

sometimes denoted  to show its size. 

In general, supposing that the initial values of all the signals 

in a system are 0, we call the ratio of output/input of the signal, 

the transfer function, and denote it by etc. We 

may suppose so because if the system is in equilibrium, then 

we may take the values of parameters at that moment as 

standard and may suppose the initial values to be 0. 

(2.4) is called the state space representation (form, 

realization, description, characterization) of the transfer 

function of the system (2.1), and is written as 

.             (2.5) 

2.1. Preliminaries 

The three main ingredients in (electrical) circuits are coil 

( ), condenser ( ) and resistance ( ). The inverse 

electromotive force generated by these component is given 

respectively by 

, , ,        (2.6) 

where = (t) and = (t) with subscript indicates the 

current and the voltage of the prescribed component resp. 

Hereafter we write for the voltage . 

The governing law of the circuits is the Kirchhoff laws 

which have two versions. The first law is the one used for node 

analysis to the effect that the sum of currents flowing into a 

node is 0 while the second law is the one used for loop analysis 

which is to the effect that the sum of all electro-motive forces 

in a closed circuit is 0. 

2.2. Control Plant I 

 

Figure 1. Control plant . 

Here PWM=Power Width Modulation and IB=Inverter 

Bridge. 

First consider the  filter consisting of  in Fig. 1. 

As a consequence of the Kirchhoff law we have 

.                  (2.7) 

The potential difference and  are 

given respectively by 

          (2.8) 

and 

,            (2.9) 

where . 

Hence we conclude that 

 (2.10) 

whence that 

    (2.11) 

or 

  (2.12) 

on using the relation . 

Also for the grid filter consisting of , the potential 

difference  is given by 

,         (2.13) 

so that from (2.9), we obtain 

,     (2.14) 

whence 

.     (2.15) 

Finally 

.               (2.16) 

We may express the control plant  in [ZH, pp. 83-84] in 

the form of (2.1). Let 
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, ,       (2.17) 

be the state variable, the external input and the output, 

respectively. Hence, writing 

, 

, , , 

, , ,    (2.18) 

Then by viewing  in (2.1) as block decompositions, 

         (2.19) 

amounts to (2.1). 

2.3. Control Plant II 

It is a challenge to keep both the THD (Total Harmonic 

Distortion) low of the inverter local load voltage  and the 

gird current (the current  flowing through the grid interface 

inductor). The inverter LCL plant (control plant ) may be 

thought of as a cascaded control structure consisting of an 

inner loop voltage controller and an outer loop of current 

controller. 

 

Figure 2. The inner loop voltage controller. 

 

Figure 3. The outer loop current controller. 

, , 

,       (2.20) 

be the state variable, the external input and the output signal 

(which is the tracking error), respectively. 

The reasoning is similar to the one given for (2.1). Hence 

we conclude that 

 (2.21) 

whence that 

    (2.22) 

on using the relation . 

3. Unification 

In this section we shall unify linear systems (2.1) given 

above. For this we view (2.6) as impedance operators 

 with current  flowing through it, i.e. 

， ， ，   (3.1) 

where , and  indicate the coil, condenser and resister, 

respectively. We consider the cascade connection  of two 

impedances  with the potential  and , 

with the current I flowing from  to , thus the voltage 

difference is . Then we have 

，         (3.2) 

where the addition of impedances is in the sense of addition of 

operators, i.e. . 

Suppose  is a parallel connection of the coil with 

inductance  and a resister with resistance  and that the 

current flowing the coil is  and that  is a resistance with 

resistance .Then 
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, .   (3.3) 

Substituting the first equality in (3.3) into (3.2), we obtain 

 

or 

.         (3.4) 

Substituting this in (3.3), we obtain 

, 

whence 

.        (3.5) 

More generally, we consider the combination of two such 

cascade connections at node . Two impedances 

 with the potential  and  and 

with the current  flowing from  to . Then we have 

.             (3.6) 

We choose  (condenser) and  a resister 

with resistance . Then (3.6) becomes 

             (3.7) 

where  is the current flowing the impedances  in 

(3.2). Hence substituting (3.7) in (3.5), we conclude 

Theorem 3.1. If two cascade connections of two 

impedances ..., 4 are connected at the node  with 

voltage difference  and  flowing through it, then 

(3.3) in the form 

         (3.8) 

describes the whole paradigm as either 

 

       (3.9) 

or 

     (3.10) 

where  is described in Corollary 3.1. 

Corollary 3.1. The cascade connection (3.5) of two 

impedances  (resister) and  (the parallel connection of 

a coil and a resister) is a special case of (3.9) with and 

(therefore) . (2.11) is a special case with 

. 

 

Figure 4. The three-phase inverter system (represented as a single one). 

Example 1. We consider the three cascade connections 

= 1, 2, 3 connected at a node with the flowing-in 

currents  and flowing-out currents  (  is for 

harmonic distortion). And the configurations of each  are 

similar.  indicates the filter inductor with  a parallel 

connection of the coil with inductance  and a resistor with 

resistance  and that the current flowing the coil is  and 

that is a resister with resistance  . 

 

Figure 5. Cascade connection. 

Other two are similar as given Table 3.1 below. 

In this case, (3.4) reads 

       (3.11) 

 

 

Hence from Theorem 3.1 it follows that 

，  (3.12) 

2

di
Z I L r(I i)

dt
= − = − − 0 1

u u R I r(I i)− = − − −

0 1
u u (R r)I ri− = − + +

0

1 1

r 1
I i (u u)

R r R r
= − −

+ +

0

1 1

di r r
L r 1 i (u u)

dt R r R r

 
= − − − + + 

1

0

1 1

R rdi r
i (u u)

dt (R r)L (R r)L
= − − −

+ +

0
u

i i
Z Z (t), i 3,4= = u 0= 0

u

2
I u

0
u

0 3 4 2
u (Z Z )I= +

3 C C
Z Z u= =

4
Z

4
R

0 C 4 1 2
u u R (I I ),= + −

1
I

1 2
Z , Z

i
Z ,i 1,=

0
u

0
u u− i

0 1

di
u u R I L

dt
− = − −

1 4 1

1

di 1
(rR i R I )

dt (R r)L
= − −

+

4

2 C

1 1

R 1
I (u u).

(R r)L (R r)L
− − −

+ +

1 4 4

1 2 C

R R Rdi 1
I I (u u),

dt L L L

+
= − + − −

C
u

1
Z

2
Z

1 2
I I=

C 0
u u=

1 1 2 2
I i , I i= =

i
Z ,i Z

f gi , i
d

i, i d

i
Z

1
Z

2
Z

f
L

f
r

1
i

1
Z

f
R

f

f 1 0

f f f f

r 1
i i (u u),

R r R r
= − −

+ +

g

g 2 0 g

g g g

r 1
i i (u u ),

R rg R r
= − −

+ +

3 0

r 1
i i u .

R r R r
= −

+ +

1 f f f
1 0

f f f f f f

di R r r
i (u u)

dt (R r )L (R r )L
= − − −

+ +



42 Fuhuo Li et al.:  Emerging Importance of EVs in the Green Grid Era  

 

， 

. 

We want to add one more state variable  which is the 

electro-motive force  generated by the condenser . 

Since the current flowing the condenser is , we have 

.           (3.13) 

At the node , we have by the Kirchhoff law, 

, 

whence 

               (3.14) 

Hence (3.13) amounts to 

.         (3.15) 

Substituting (3.11) in this, we deduce that 
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Table 3.1. Components of . 

Connection Coil C.resist C.current Resistance Current 

      

      

      

4. -Controllers 

4.1. -Control Problem 

Following [Kim, p. 7, p. 67], we first give the definition of a 

chain scattering representation of a system. Suppose 

and  denote errors to be 

corrected, observation output, exogenous input, and control 

input, respectively and that they are related by 

,                  (4.1) 

where 

.                 (4.2) 

According to the embedding principle, this is to be thought 

of as corresponding to the second equality in (2.1). (4.1) 

means that 

, .       (4.3) 
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where  is a controller. Multiplying the second equality in 

(4.3) by  and incorporating (4.4), we find that 

 

whence 

. 

Substituting this in (4.3), we find that 

,                  (4.5) 

where  is given by 

         (4.6) 

and is referred to as the closed-loop transfer function . (4.6) 

is sometimes referred to as a linear fractional transformation 

and denoted by . 

-controller problem 

Find a controller  such that the closed-loop system is 

internally stable and the transfer function  satisfies 

                  (4.7) 

for a positive constant . 

 

Figure 6.    Control plant 

4.2. Chain Scattering Representation 

Assume that  is a (square) regular matrix (whence 

). Then from the second equality of (4.3), we obtain 

.     (4.8) 

Substituting (4.8) in the first equality of (4.3), we deduce 

that 
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, 

whence we deduce that the closed-loop transfer function is 
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(4.12) yields  i.e. 

, ,   (4.13) 

which is referred to as the cascade connection or the cascade 

structure of and . 

Thus the chain-scattering representation of a system allows 

us to treat the feedback connection as a cascade connection. 

4.3. Siegel Upper Space 

Let * denote the conjugate transpose of a square matrix: 

 and let the imaginary part of  defined by 

. Let  be the Siegel upper half-space 

consisting of all the matrices  (recall Eq. (4.4)) whose 

imaginary parts are positive definite (Im > 0—imaginary 

parts of all eigen values are positive) and satisfies : 

        (4.14) 

and let Sp( ,R) denote the symplectic group of order : 

Sp( ,R) = .                   (4.15) 

The action of Sp( ,R) on  is defined by (4.12) which 

we restate as 

,    (4.16) 

Theorem 4.1. For a controller  living in the Siegel upper 

space, its rotation  lies in the right half-space RHS. 

i.e. stable having positive real parts. For the controller Z, the 

feedback connection 

                (4.17) 

is accommodated in the cascade connection of the chain 

scattering representation  (4.13), which is then viewed as 

the action (4.13) of Sp( ,R) on : 

             (4.18) 

or ,where  is subject to 

the condition 

,              (4.19) 

with .  controller (see below), 

being a unity feedback connection, is also accommodated in 

this framework. 

Remark 4.1. With action, we may introduce the orbit 

decomposition of  and whence the fundamental domain. 

We note that in the special case of , we have  

and Sp(1;R) = SL (R) and the theory of modular forms of one 

variable is well-known. Siegel modular forms are a 

generalization of the one variable case into several variables. 

As in the case of the sushmna principle in [7], there is a need to 

rotate the upper half-space into the right half-space RHS, 

which is a counter part of the right-half plane RHP. In the case 

of Siegel modular forms, the matrices are constant, while in 

control theory, they are analytic functions (mostly rational 

functions analytic in RHP). A general theory would be useful 

for controlling theory. 

4.4. FOPID 

“FO" means “Fractional order and "“PID" refers to 

“Proportional, Integral, Differential", whence “Proportional" 

means just constant times the input function , “Integral" 

means the fractional order integration  of  ( > 

0), and “Differential" the fractional order differentiation of 

 (  > 0). The FO  controller (control signal in 

the time domain) is one of the most refined feed-forward 

compensator defined as the operator 

,            (4.20) 

where 

 , ,        (4.21) 

where  is the input function,  is the deviation and 

 are constant parameters which are to be specified 

(  the position feedback gain,  the velocity 

feedback gain). DE (4.21) translates into the state equation 

                (4.22) 

where  indicate the Laplace transforms of , 

respectively and  is the compensator continuous transfer 

function 

.         (4.23) 

The derivation of (4.23) from (4.21) depends on the 

following. The general fractional calculus operator  is 

symbolically stated as 

JS S ,′ ′ ′ ′= ΦΦ = ΘΘ

J ′= ΘΘ HM( ;HM( ;S)) HM( ;S)′ ′Θ Θ = ΘΘ

Θ ′Θ

* tS S= S

*1
ImS (S S )

2j
= −

n
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{ }t

n n
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n n
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          (4.24) 

where  and t are the lower and upper limits of integration 

and  is the order of calculus. 

More precisely, the definition of the fractional 

differo-integral is given by the Riemann-Liouville expression 

  (4.25) 

where  indicates the fractional part of , with 

[ ] the integral part of . Thus we are also led to the 

Riemann-Liouville fractional integral transform: 

       (4.26) 

For more details we refer to [10]. 

5. Cyber Attack Impact on Smart Grid 

However, wherever there is light, there is shadow. Since the 

smart gird highly depends on the information technologies 

based on communications systems, it has the same 

vulnerabilities as the present Internet has. The complexity of 

integration (of information technology in traditional power 

grid), diversity of system vendors, urge for timely solutions 

etc. all lead to increased risk of cyber attack. 

We apply the theory of graph-based dynamical systems [2], 

[9]. 

,             (5.1) 

where  indicates the state and an input, respectively. This 

is quite suited for the purpose of assessing the cyber-attack 

impact on the smart grid. For there is a need of relating a 

cyber-attack to physical consequences in the electrical 

network. A dynamical system paradigm gives a flexible 

framework to model the cause-effect relationships between 

the cyber data and electric grid states signals. The work is in 

progress. 
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