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Abstract: In this note, we shall give an explicit formula for the coefficients of the expansion of given generating function, 

when that function has an appropriate form, the coefficients can be represented by the higher-order Daehee and Changhee 

polynomials and numbers of the first kind. By the classical method of comparing the coefficients of the generating function, 

we show some interesting identities related to the Higher-order Daehee and Changhee numbers. 
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1. Introduction 

Throughout this paper let 
(r)

D
n

 be the Daehee numbers of 

order Nr ∈ are defined by the generating function[1,2] 
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where nn DD =)1( are called ordinary Daehee numbers, and let 

(r)
nCh be the thn − Changhee numbers of order N∈r are 

defined by the generating function[3] respectively. 
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The Cauchy numbers of the first kind of order r  denoted 

by (r)
nC are defined by the generating function[4] 
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We note that the Cauchy numbers of the first kind of order 

r , i.e., (r)
nC above are also called Nörlund polynomial with 

another notation (x)
nb , say, (x)

nC
(x)
nb = . The explicit formula 

for the (r)
nC (or (r)

nb ) and further results, readers may refer to 

[3-6]. 

The Bernoulli numbers of order N∈r are defined[7-9] by 
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and the Euler numbers of order N∈r are defined[10,11] by 
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In this paper, we shall consider several interesting 

identities related to the Higher-order Daehee and Changhee 

numbers. 

2. Generating Function Theorem 

First we state auxiliary theorems which are useful in 

investigation power series. 

Let )(tf  be a generating function (a power series) for a 

sequence }{ nA , we denote the sequence of coefficients of the 

expansion of rtf )(  by )(r
nA , where r is a fixed real nonzero 

number. By using the Stirling numbers ),( kns of the first kind 

which generated[12] by 
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or by means of the generating function 
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we may state the generating function theorem as 

Theorem A[13]. Let Ν∈≠ r0 , and let 

n

n

n t
n

A
tf ∑

∞

=

=
0

!
)( ,                                   (8) 

( ) n

n

r
nr

t
n

A
tf ∑

∞

=

=
0

)(

!
)(                                 (9) 

absolutely convergent in a neighborhood of the origin. 

Suppose )(tf  has a subsidiary generating function )(tg  so 

that 

1))(1()( −+= zgzf , 1|)(| <zg , and ( ) m

nMm

n
mn

t
m

tg ∑
∞

=

=
)(

)(

!
)(

α
.  (10) 
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−=  and )(1 mM −  

indicates the inverse function of m. 

The lines of the proof is not difficult by using binomial 

expansion and base change, by the classical method for 

obtaining the values of the Riemann zeta-function at even 

positive integral arguments, i.e., by comparing the 

coefficients of 
!n

tn

in the generating function rtf )( , Eq. (11) 

follows. 

By the Daehee polynomials of order N∈r are defined by 

the generating function[14] 

∑
∞

=
=+







 +

0 !
)(

)(
)1(

)1log(

n n

nt
x

r
nDt

r

t

t x ,                (12) 

and the Cauchy polynomials of the first kind of order r
defined (cf.[14]) by 

∑
∞

=
=+









+ 0 !
)(

)(
)1(

)1log( n n

n
t

x
r

nCt

r

t

t x ,               (13) 

we have the generating function Theorem B below 

Theorem B. Let Ν∈≠ r0 , we have 
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where )()(
,

n
m

r
mA α  and )(

1
mM

− are defined in Theorem A . 

Proof of theorem B. By the binomial expansion, we have 
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substituting Eq.(10) in Eq.(16), and change the order of 

summation, we obtain 

∑ ∑∑∑
∞

= =

∞

=

∞

=

−








−
=







−
=

0

)(

0

)(

)(

)(

0

1

!!
)(

m

mM

n

n
m

m
m

nMm

n
m

n

r

n

r

m

t
t

mn

r
tf αα

   (17) 

comparing the coefficients of 
!n

tn

in Eq.(9) and Eq.(17), we 

have 
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Note that 
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Replacing x by x− , and substituting 






−
n

x
in Eq.(18) 

We have 
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whence, by changing the order of summation, we have 

Eq.(14) and Eq.(15). 

We shall derive some explicit formulas of Daehee and 

Changhee numbers by using the argument of the interesting 

generating function theorems A and B. 

3. The Explicit Formulas of Daehee and 

Changhee Numbers 

In this section, we assume that t is in some neighborhood 

of origin, and ),( kns  denotes the Stirling numbers of the first 

kind defined by Eq.(6) or Eq.(7) . 

3.1. Identities Related to the Higher-order Daehee Numbers 

From Eq. (1) and Eq.(4), we have 
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By comparing the coefficients, one has 
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We have the recurrence 
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From the generating function rtf )( , and Eq.(7), 
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comparing the coefficients of 
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Using the associated Stirling numbers ),( knd defined by 

(cf.[5]), 

!
),()1(!))1(log(

2
n

t
kndktt

n

kn

knk ∑
∞

=

−−=−+ ,               (28) 

Applying the binomial expansion, we have 
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3.2. Identities Related to the Higher-order Changhee 
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3.3. Bernoulli and Euler Numbers Related to the Higher-

order Daehee and Changhee Numbers 
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or by generating function 
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Changing the order of summation, we have 
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By Eq.(7) and Eq.(36) and Theorem A gives 
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4. Remarks 

In the cases of Eq. (3), (r)
nC the Cauchy numbers of the 

first kind of order r , is called Nörlund polynomial of the 

second kind and denoted by (r)
nb , has well treated by several 

authors, a great deal of identities of (r)
nC (or ) has been 

derived. For example, readers may refer to Liu[6] . 
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