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Abstract: In this paper, we shall exhibit the use of two principles, “principle of decomposition into residue classes” and 

“binomial principle of analytic continuation” due to Ram Murty and Sinha and indicate a certain distribution property and the 

functional equation for the Lipschitz-Lerch transcendent at integral arguments ofs. By considering the limiting cases s n→ ,we 

can also deduce new striking identities for Lipschizt-Lerch transcendent, among which is the Gauss second formula for the 

digamma function, Lipschitz-Lerch transcendent 
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1. Introduction 

In1882, Hurwitz [5] defined the perturbed Riemann 

zeta-function, ( ),s xζ , by the Dirichlet series 
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for any x satisfying 0 1x< ≤ . This function is defined in 

the first instance for e 1R sσ = > and then can be continued 

meromorphically over the whole plane with a simple pole at

1s = with residue 1. The special case ( ,1)= (s)sζ ζ was 

introduced by Riemann [13] in1859 in his celebrated and 

unique paper on the distribution of primes that now bears 

Riemann’s name. He indicated how it can be used to study 

the distribution of primes. In his study of ( , )s xζ , Hurwitz 

was motivated by the problem of analytic continuation of 

DirichletL-functions. For any Dirichlet character (mod )qχ , 

we may write 
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and therefore the analytic continuation of the Hurwitz zeta 

function gives us the same for the ( , )L s χ . Thus, Hurwitz 

confined his attention to x rationals lying in the interval

(0,1) . A globally convergent series for 1s ≠ was given by 

Helmut Hasse in 1930 [4] and rediscovered by Sondow [14] 

(cf. [17] for further details): 
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hence it follows that at 1s = it has a simple pole with residue 

1, the constant term being given by 
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where Γ is the gamma function and ψ is the digamma 

function. 

Let C be the complex plane, and let 

1
: \ [1, ),= +∞C C { }2 : : Re 0 ,x x= >C

{ }3 : \ 0, 1, 2, .= − −C C ⋯  

We introduce the Hurwitz-Lerch zeta-function ( , , )z s xΦ
defined by Erdélyiet al in [3] originally as 
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In [7, p.5 Theorem 1], the function ( , , )z s xΦ extends to 

an analytic function in three variables , ,z s x for 

1 2,z x∈ ∈C C  

and s ∈ C or { }\ 1s ∈C according as 1z ≠ or  1z = ,by the 

contour integral representation 
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2 , arg( ) .x t π∈ − ≤C  

The contour starts at ∞ , encircles the origin once 

counter-clockwise and returns to its starting point. The initial 

and final values of arg( t)− are π− andπ respectively. 

The most general distribution property of the 

Hurwitz-Lerch zeta-function follows from the principle of 

decomposition into residue classes: 
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The uniformization of ( , , )z s xΦ is called the 

Lipschitz-Lerch transcendent and denoted by 
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which generalizes not only the Hurwitz zeta-function 

( , ) (1, , )s a L s aζ =             (1.7) 

but also the polylogarithm function (or the Lerch 

zeta-function) 
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Recently, Li-Hashimoto-Kanemitsu [10] applied the 

method of finite Fourier series to elucidate the existing 

results on the Lipschitz-Lerch transcendent. The general 

distribution property of the Lipschitz-Lerch transcendent 

(used in Srivastava’s first method) is a special case of (1.5) 
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([15, (15), p.339]). The functional equation for the 

Lipschitz-Lerch transcendent reads ([15, (29), p. 125]) 
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It has turned out that it is a combination of these two 

ingredients that captures the whole spectrum and gives an 

immediate proof of new intriguing limiting relations. It also 

gives all those types of linear combination expressions for a 

class of zeta-functions and as a special case for polynomials. 

However, we can make full use of intrinsic properties of the 

Hurwitz-Lerchzeta-function at integral arguments s instead to 

recover somewhat more general results with more ease. 

In Section 2, we shall apply Murty-Sinha’s method 

encoded in [12, Theorem3.1] as the binomial principle of 

analytic continuation to recover the continuation of 

( , , )z s xΦ from the polylogarithm Li ( )s z which is defined 

by 
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In fact, the derivation not only gives the analytic 

continuation of Li ( )s z , but also gives the analytic 

continuation of various Dirichlet series, such as ( )sl x ,

( , ),s xζ ( , , )L z s a and ( , )L s χ etc. 

In Section 3, we show the distribution property of the 

Hurwitz-Lerchzeta and Lipschitz-Lerch transcendent at 

integral arguments n, in the sense of ,s n n→ ∈ N . Some 

known results via Hurwitz-Lerch zeta-function will be 

illustrated in Section 4. In Section 5, we give an illustrative 

example. 

2. Analytic continuation of the 

Hurwitz-Lerchzeta-function revisited 

In this section, we shall recover the analytic property of 

the Hurwitz-Lerch zeta-function in the spirit of 

Murty-Sinha’s [12, Theorem 3.1] and give an elementary 

proof of the analytic property of the polylogarithm function

( )Lis z , where we use the equation (2.4) (below) 

corresponding to (1.2) and(1.9). 

Theorem 1. ([7, Theorem 3.1]) 

The Hurwitz-Lerch zeta-function ( , , )z s xΦ defined by (1.4) 

can be analytically continued to a meromorphic function in 

three complex variables ,  ,  z s x  for 1 2,  ;z x∈ ∈C C

s ∈ C or {1}\s ∈ C according as 1z ≠ or 1z = , and the 

special case 1, ,1( ) ( )s sζΦ = has a simple pole with residue 

1.
 
Proof. Without loss of generality, we may suppose that

0 1| |x< < . (If not, we may begin our summation of the 



32 Tomihiro Arai et al.: Applications of the Hurwitz-Lerch Zeta-Function 

 

series from 0n with 0 | |n x> ).For Re 1s > , we write 

( ), ,z s xΦ as 
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expand the summand by the binomial theorem and 

interchange summations to get 
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Clearly, for sufficiently large r , )Li ( s r z+ is bounded. 

Applying ther-throot test, together with the observation 
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shows that the series converges absolutely for | 1|x < and

Re 1s > since )Li ( s r z+ is absolutely convergent there. The 

sum from 0r = to infinity being a moromorphic function, we 

deduce that ( ), ,z s xΦ has a meromorphic continuation for

 Re 0s > . 

The second part of the assertion is trivial since the possible 

poles of ( ), ,z s xΦ can only occur among the integer 

translates of the poles of ( )Li
s

z , completing the proof. 

It is to be noted that the expansions of this kind were also 

discovered by many authors, for instance, readers may refer 

to [4], [14]. 

Applying the method encoded in Theorem 1, we may show 

the analytic continuation of Li ( )s z . 

Putting
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we have 

Proposition 1.We have 
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Eq. (2.2) gives the analytic continuation of  Li ( )s z by 

induction. For clearly, it is valid in the half-plane Re 1s > of 

absolute convergence and it allows us to obtain inductively a 

meromorphic continuation of  Li ( )s z . 

Furthermore, putting (0 ),
a

x a q
q

= < < (2.1) gives an 

analytic continuation of ( , , ) Li ( )sz s
a

z
q

Φ − for Re 0s > , 

with possible poles in the set 
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Rewriting (1.4) as (1.5), putting  1x = in (1.5) and 

incorporating (1.11), we have 

Proposition 2.We have 

1
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Taking  2,3q = , we find that  Li ( )s z extends analytically 

for Re 0s > except for a possible pole at 2 3S S∩ , but the 

only element is 1 in the intersection 2 3S S∩ . Now, we 

consider 1 Li ( )z for 1z < and 1z = separately. Since

1Li log( ) (1 )z z= − − is analytic in the region 1z < , the 

remainder follows from 1z = and (2.2) gives an analytic 

continuation of 2 2 Li( ) ( )s

s z− for Re 0s > . A simple 

calculation shows that 
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Combining this with (2.2) and using induction, we 

immediately deduce 

Theorem 2.The polylogarithm  Li ( )s z defined by (1.11) 

can be extended to an analytic function for s C∈ or

{ }\ 1s C∈ according as 1z ≠ or 1z = , in the special case 

1,  1s z= = it has a simple pole with residue1. 

3. The distribution properties of 

Lipschitz-Lerchtranscendent at 

integral arguments 

The value of the Hurwitz-Lerch zeta-function ( ), ,a s aΦ at

s N= − is given by 
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in [7, p.14,Theorem 6], where ,( )S n r are the Stirling 

numbers of the second kind, or by 

1B ( , ) ( 1) ( , , ), 0 ,N a z N z N a a+ = − + Φ − <  
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in [15, p.126,(40)], where  1,  1,  0,1,2,z z N≤ ≠ = ⋯

and ,( )NB a z denote the Lipschitz-Lerch-Bernoulli functions 

defined by 
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In this section, we shall give some distribution properties 

of the Lipschitz-Lerch transcendent at integral arguments s, 

in the sense of s N→ . 

Let
2 / (1, ,), ,0j ij q

qi e j N j qπω= − = ∈ ≤ < we 

recall the inverse formula of (1.5) (cf. T. Nakamura[11, 

Theorem 2.2]) 
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where ,x s and z satisfy the conditions 

1/
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and s ∈ C or { }\ 1s ∈C according as 1z ≠ or 1z = . 

This follows from the finite Fourier transform pairs as 

follows. 
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where
,k k qχ χ= is the characteristic function of the set of 

residue class mo  ( )dj k q≡ . By [8, (4.22),p.74] 
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the inner sum being 
1/( , , ),k qz s xωΦ (3.2) follows. 

The combination of (1.5) (or (3.2)) and (1.10) leads to 

Theorem 3.For 1 q< ∈ Z and 0 1, Re 0x a< < > , we 

have 
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Theorem 4.For1 q< ∈Z and q p> ∈ N , we have 
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Theorem 5.The limiting case  1s → of 
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implies Gauss's second formula for the digamma function 
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The limit s n→ gives similar identities. 

4. Gamma, Psi, Bernoulli function via the 

Hurwitz-Lerch zeta-function 

The functional equation relates the values of the 

zeta-function in the left and right-hand sides of the complex 

plane. For integers1 m n≤ < , 
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and on [15, p.106] we have 
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where ( )G x is the G-function. Use of this would make the 

argument in [15]about the log sine integral
0

log sin 
x

tdt∫
much simpler and more lucid. 

Theorem 6.For 1 q Z< ∈ and 0 1, Re 0x a< < > , we 

have the identity 
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except at the singularities of L , in which case, the identity is 

to mean the limit. 

Specializing the parameter a suitably, Theorem 6 gives rise 

to all the known partial formulas. 

5. An Example 

We shall illustrate the above situation by the following 

concrete example. Put m qr k= + with 0,1, , ,r = ∞⋯

(0,1, 1),k q= −⋯ , with r and k not simultaneously zero. 

Then 
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Ishibashi [6] was the first who gave a computational proof 

of the generalized inverse Eisenstein formula 
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for all s n N= ∈ , and referred to the generalized Eisenstein 

formula (with a slight misstatement corrected) 

2
1

1

s, ,

pq k
sq

s

k

k p
e l q

q q

π
ζ

−
−

=

   
=   

   
∑         (5.3) 

valid for all complex 1s ≠ , as another formula implying the 
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and the generalized inverse Eisenstein formula 
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are the genuine generalizations of the Eisenstein and the 

inverse Eisenstein formula and not only represent a relation 

between the two bases 
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and 

, 0, , 1 .
a

s a q
q

ζ
   = −  

   
⋯  

For1 q< ∈Z and q p> ∈N , we have the identities 

2

1

2 2
1

,

(1 )
1 , 1 ,1 ,

(2 )

aq i p
s q

s

a

is is

s

a p
q e s l

q q

s p p
i e s e s

q q

π

π π

ζ

ζ ζ
π

−

=

−

−

    
= =    

    

    Γ −  = − − − −    
     

∑
 (5.6) 

and 

2
1

1

1 2 2
1 11

,

(1 )
1 ,

(2 )

aq i p
sq

s

a

is is

s

s ss

a p
e l q s

q q

s p p
q e l e l

q q

π

π π

ζ

π

−
−

=

−−
− −−

    
= =    

    

    Γ −  = − −    
     

∑
  (5.7) 

where, for non-negative integer values of =s n , say, (5.6) 

and (5.7) are to mean the limit as →s n . 
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