
 

Pure and Applied Mathematics Journal 
2015; 4(2-1): 25-29 
Published online December 26, 2014 (http://www.sciencepublishinggroup.com/j/pamj) 
doi: 10.11648/j.pamj.s.2015040201.15 
ISSN: 2326-9790 (Print); ISSN: 2326-9812 (Online) 

 

Codons and codes 

Kalyan Chakraborty
1
, Shigeru Kanemitsu

2
, Y. Sun

3
 

1Sch. of Math.,Harish-Chandra Research Institute, Allahabad, India 
2Grad. School of Adv. Tech., Kinki Univ., Iizuka, Japan 
3Dept. of Electr. Engrg, Kyushu Inst. Techn., Tobata, Japan 

Email address: 
kalychak@gmail.com (K. Chakraborty) 

To cite this article: 
Kalyan Chakraborty, Shigeru Kanemitsu, Y. Sun. Codons and Codes. Pure and Applied Mathematics Journal. Special Issue: Abridging over 

Troubled Water---Scientific Foundation of Engineering Subjects. Vol. 4, No. 2-1, 2015, pp. 25-29. doi: 10.11648/j.pamj.s.2015040201.15 

 

Abstract: In this paper we assemble a few ingredients that are remotely connected to each other, but governed by the rule of 

coding theory ([1], [12]) and formal language theory, i.e. cyclic codes and DNA codes. Our interest arose from the remark that 

there exist both linear and circular DNAs in higher living organisms. We state the theory of codes in a wide sense due to [1] in 

order to understand the circular DNAs while we state rudiments of formal language theory as a means to interpret genes. We hope 

this will be a starter for unifying two approaches depending on the theory of codes and that of formal language. 
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1. Introduction 

1.1. Cartesian Product 

In Takahashi [14], Cartesian products are used to interpret 

and unify various phenomena effectively. In this paper, we are 

concerned with DNA codes as one of manifestations of the 

Cartesian product. We recall the passage from [3 p.44] which 

is also cited by Takahashi. 

In relation to homeostasis, a chemo-dynamical stability of a 

cell in a variable environment, a description is made of the 

equilibrium after replication. The cell is brought out of a stable 

regime, to become dynamically speaking an attractor, and the 

stability after replication is regained in a different framework: 

the dynamical features of the system reappear in the 

multiplicity of nearly identical cells represented by the 

Cartesian product of many copies of the attractor, and ensures 

the information by perpetuation. 

Herein we interpret cells to mean the DNA's. In the 

remainder of this section, we assemble fundamentals on group 

theory for readers' convenience. 

In [15] and [14], the notion of regiment is touched on, 

which is a nested PSO---Particle Swarm Optimization, for the 

purpose of balancing blocks of battery cells to obtain the 

optimal output power. This type of hierarchical structure may 

be thought of as arising from the Cartesian product, with each 

coordinate being a block and each block being the coordinate 

in (36 in the case of batteries) cells (cf. [2]). 

This new concept is taken from the ideas of Schoenheimer 

on life to the effect that it is a dynamic state of body 

constituents [13], where a simile is given of a military regime 

and an adult body. 

More elaborated, it leads to: 

Life is a flow in dynamic equilibrium. 

As with many other constructions, we express the relevant 

Cartesian product in a more convenient way according to the 

purposes. Thus the regiment is one for studying life activities. 

1.2. Oceanos Sapientisimus 

To formulate ``replicative stability of dynamical systems'' a 

slightly modified Carbone-Gromov suggestion [3, p.44] 

would be suitable: Different internal time-clocks might use 

dynamical time of variable fractal dimension taking into 

account the number of population in the species.  

2. Some Plausible Speculations 

2.1. DNA-Codes 

Example 1. Let 
4A
 denote the set of 4 genetic alphabets 

A, T, G, C (A for adenine, T for thymine, G for guanine, and 

C for cytosine). Then the Cartesian product 3

4A
 consisting 

of 64 elements is a genetic scheme for synthesizing amino 
acids. Each element written as a string, is called in a few 
different ways according to the disciplines: codon, 
trinucleotide (molecular biology), word (language theory), 
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coordinate (math.) 

Since there are 3 stop codons, there are 61 codons which 

determine amino acid synthesis. 

What are relevant to synthesis are A, U, G, C (U for uracil) 

instead of A, T, G, C, but we make an abuse of language to 

speak of the latter as the genetic code for synthesis. Those 

speculations made in [11, p. 1077] about the interpretation of 

RNA as a possible error-correcting code is not very 

persuasive in the following aspects. 
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In living cells the copying operation (transcription from 

DNA into mRNA) takes place before the construction phase 

(translation from mRNA into proteins), although in von 

Neumann's scheme of things these two operations are 

reversed. The reason is the life's strategy of saving the 

original design of DNA safely by making spares first. In 

many circumstances, we find this strategy of life to keep 

living on to the next generation. The problem occurs with the 

start codon, AUG, which corresponds to methionine and is 

uniquely works as a reading frame. There are three stop 

codons, UGA, UAA, UAG. 
Invoking the life's strategy of preparing spares first, it is 

quite natural to conclude that the stop codons are in spares so 
that the synthesis does not go on and on. There must be one 
of stop codons which stop the synthesis. How about the start 
codon? Its uniqueness puffs away the possibility of its being 

a ( )3,2 -code. If ever the codons are codes, then they must be 

( ),3n -code. In their paper [11], the authors consider ( )12,8

-codes, too. 
It is unlikely that the codons have any simple 

mathematical structures, a fortiori, a linear structure. We 
speculate more plausible structures including comma-free 
codes and free groups subsequently, Corollary 2 and §4. 

2.2. ( )3,2 -Cyclic Code Over ( )GF 4  

First we recall the field of 4 elements ( )GF 4 . It is 

obtained as the splitting field of an irreducible polynomial of 

degree 2  over ( ) 2GF 2 / 2= =F ℤ ℤ . Since 2 1X −  

( )2
1X= −  is reducible over GF(2), we try 

( ) 2 1X X XΦ = + + , which is irreducible and separable 

over ( )GF 2 . 

Let 
2ω ∈F  be a root of this polynomial, which is a 

primitive cube root of 1. The field  

2GF(2)( ) GF(2)[X] / ( 1)X Xω = + +  

2{0,1, , }ω ω=               (2.1) 

is GF(4), the field of 4 elements. 

E.g. the Fourier matrix 

( )( )( )1 1 2

2

1 1 1

1

1

i j
F ω ω ω

ω ω

− − −
 
 = =  
 
 

      (2.2) 

is a generating matrix for a (3,3)-cyclic code Cω  over 

GF(4). For basics on error-correcting codes, we refer e.g. to 
[12]. 

A canonical form of the generating matrix G  for a (3,2) 

-linear code C over GF(4) is of the form ( )( )GF 4ia ∈ . 

( ) 1 1 1 1

2 2 2 2

1 0

0 1
,

a a

a
G I A

a

     
= =     

    
= =



c e

c e
.  (2.3) 

Then 

2

1

GF(4) ,{ | }i i i

i

C λ λ
=

= ∈∑ c       (2.4) 

2

1 2 1 1 2 2

1

( , , )i i

i

a aλ λ λ λ λ
=

= +∑ c . 

Example 2. In [11] the authors denote A,T,G,C by 20,1, ,ω ω , 

respectively. 

One example is given with 1 21,a a ω= = . Then for the 

information bit ( ,0)ω , the codeword is (1,0,1)ω ω=
( ,0, )ω ω= . 

We find all 16 codewords for each fixed 1 2,a a . The rule is 

that 2 0a = for any GF(4)a ∈  and 3 1,ω = 2 1 0ω ω+ + = . 

There are 64 codes in all. 

There are 24 16= choices for 
1

2

a

a

 
 
 

: 

2 2

2 2 2 2

2 2

0 0 0 0 1 1 1 1
, , , , , , , ,

0 1 0 1

, , , , , , , .
0 1 0 1

ω ω ω ω

ω ω ω ω ω ω ω ω
ω ω ω ω

               
               
               

              
              

               

  (2.5) 

We find C for  
1

2

2

1a

a ω
   

=   
  

. Eqn. (2.4) reads 

2

1 2 1 2( , , )λ λ λ λ ω+ . 

Substituting the values from (2.5), we obtain  

2 2 2

2 2 2

2 2 2 2 2 2 2

(0,0,0),(0,1, ), (0, , ),(0, , ),(1,0,1),(1,1, ),

(1, ,0),(1, , ),( ,0, ),( ,1,1),( , , ),

( , ,0),( ,0, ),( ,1,0),( , , ), ( , )

.

,1

C

ω ω ω ω ω ω
ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω ω

=

 
 
 
 
 

 (2.6) 
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3. DNA Codes 

3.1. Linear and Circular DNAs 

On [3, p.19], there is a brief description of circular codes. 

In bacteria there is typically a unique circular DNA. Besides, 

there is extra genomic information contained in rather short 

circular DNA present both in eukaryotic (in organelles) and 

in bacteria---prokaryotic (in plasmids). 

Here eukaryotic organisms mean higher than yeast (S. 

cerevisae) in which the genome is organized into several 

units called chromosomes which are separate words of DNA. 

Thus considering the circular codes is meaningful and in 

[8]-[10] all circular trinucleotides have been identified. 

3.2. Circular and Linear Codes 

We confine to providing a candidate for a circular code by 

following the definitions and argument in [1]. The 

subsequent argument is a short-cut to Corollary 2 below. 

Materials can be found in [1]. 

Definition 1. A non-empty set on which there is defined a 

binary operation satisfying the associative law is called a 

semi-group. A semi-group with the identity element is called 

a monoid.  

LetA be a given non-empty set, called alphabets. We call 

any finite sequence 
1 2, , , na a a⋯  a word w  (or a string): 

written 
1 2 nw a a a= ⋯ , where we also call the void sequence 

a void word, written ∅ . 

Theorem 1. Let ∗
A denote the set of all words onA . On 

∗
A there is a concatenation operation, i.e. given two words 

1 1,n mw a a w a a′ ′ ′= =⋯ ⋯  we concatenate them to get a new 

word 
1 1n mww a a a a′ ′ ′= ⋯ ⋯ . Then ∗

A forms a monoid with 

∅  the identity, called the free monoid. The set of all 

non-empty words is denoted +
A  and is referred to as the 

free semi-group. 

Enough to check that the associative law holds true. 

Definition 2. A subset *X ⊂ A  is called a code over A  if 

any word X +∈  can be written uniquely as the product of 
words X∈ , or has a unique factorization in words X∈ . I.e. 

1 1 , ,m n i ix x x x x x X′ ′ ′= ∈⋯ ⋯           (3.1) 

implies 

, 1 .i im n x x i m′= = ≤ ≤           (3.2) 

For k ∈ℕ , the k -dimensional Cartesian product k
A  is 

called a uniform code of words of length k . 

A subset X +⊂A  is a circular code if for all ,m n ∈ℕ ,

,i jx x X′ ∈ , 1 ,1i m j n≤ ≤ ≤ ≤ , and *
p ∈A  and s +∈A , 

the equalities 

2 1 1,m nsx x p x x x ps′ ′= =⋯ ⋯        (3.3) 

imply 

, and 1 .i im n p x x i m′= = ∅ = ≤ ≤     (3.4) 

By definition, a circular code is a code, but not conversely. 

Indeed, given (3.1), we may view 
1x sp= with p = ∅ , 

which is of the form of (3.3), whence (3.4) follows, 

amounting to (3.2) 

Definition 3. 

(i) For 0 ,p q≤ ∈ℤ , condition ( ),C p q  for a sub 

-monoid of ∗
A  means that for any sequence

0 1{ , , , }p qu u u +⋯  of words in ∗
A , the assumptions 

1 (1 )i iu u M i p q− ∈ ≤ ≤ +           (3.5) 

imply pu M∈ . 

(ii) A code X is said to be limited if there exist

0 ,p q≤ ∈ℤ  such that X  is ( ),p q -limited. 

Definition 4. 

(i) A submonoid M  of *
A  is a free monoid if it is an 

isomorphic image of a free monoid, i.e. if there exists an 
isomorphism 

: Mα ∗ →B                   (3.6) 

of a free monoid ∗
B  onto M . 

(ii) Let M  be a monoid and let N  be its submonoid. N  

is stable (in M ) of for all , ,u v w M∈  

, , ,u v uw wv N w N∈ ⇒ ∈ .        (3.7) 

Proposition 1 ([1, Proposition 2.4, p.44]). A submonoid of 
∗
A  is stable if and only it is free. 

Definition 5. 

(i) A submonoid M  of ∗
A  is called pure if for all 

u ∗∈A and n ∈ℕ  

nu M u M∈ ⇒ ∈               (3.8) 

or equivalently 

1/nu M u M∈ ⇒ ∈ .            (3.9) 

(ii) A submonoid M  of ∗
A  is called very pure if for all 

,u v
∗∈A  

, ,uv vu M u v M∈ ⇒ ∈ .        (3.10) 

Proposition 2 ([1, Proposition 2.1, p.329]).  Let 

0 ,p q≤ ∈ℤ  and let M  be a submonoid of ∗
A . If M  

satisfies ( ),C p q -condition, then M  is very pure. 

Corollary 1. If M  satisfies ( ),C p q -condition, then it 

has a basis X . 

Such an X is called a ( ),p q -limited code. 

Proposition 3 ([1, Proposition 2.2, p.330]). Any limited 

code is circular. 

Definition 6. 

(i) We may introduce a partial ordering on ∗
A , by the 
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relation being a left factor of, to the effect that w ∗∈A  is left 

factor of x ∗∈A  if w  is a prefix of x , i.e. there exists a 

u ∗∈A  such that x wu= . The factor is said to be proper if 

w x≠ . This relation is called prefix ordering. We write 

w x≤  if w  is a left factor of x  and write w x<  if 

w  is a proper left factor of x . In a completely analogous 

way we may introduce the suffix ordering by reversing the 
inequality signs above.  

(ii) A subset X  of ∗
A  is called a prefix set if no element 

of X  comes before any other words, i.e., if for ,x x X′ ∈ , 

x x′≤ implies x x′= , i.e. no two elements can be 

comparable in the prefix ordering. 
(iii) A prefix code is a prefix set which is a code different 

from the singleton consisting of the empty word. By 
changing the inequality sign we may introduce the suffix 
code. 

(iv) A biprefix code is a code which is both prefix and 
suffix. 

(v) The smallest s∈ℕ for which 

, , , ,s
x X u v uxv X ux xv X

∗ ∗ ∗∈ ∈ ∈ ∈⇒A   (3.11) 

holds is called the synchronization delay, denoted by  

( )Xσ . 

(vi) A code X +⊂A  is called a comma-free code if (i) X  

is biprefix and (ii) ( )s X = ∅ , i.e. X  is a comma-free code 

if and only if 

,uxv X u v X
∗ ∗⇒∈ ∈ .            (3.12) 

Proposition 4 ([1, Proposition 2.9, p.336]). A code

X +⊂A  is comma-free if and only if it is ( ),p q -limited for 

all ,p q  with 3p q+ =  and X X+ + ∩ = ∅A A . 

Corollary 2. A comma-free code is circular. 

Proof follows from Propositions 3 and 4. 
Comma-free codes are those which are the easiest for 

deciphering. Indeed, if in a word, some factor can be 
identified in X , then this term is one factor of the unique 

X -factorization of that word.  

In the case of codons, we have 
4 { , , , }A T G C=A  and 

*

4A
 is the set of all (single-stranded) DNA's. We refer e.g. to 

[5], where the difference between circular and linear DNA's 
is remarked and also that the present language theory deal 
with linear strings. Therefore, the codons are treated in pairs 
as in the following subsection. 

3.3. An Example from a Language Theory 

We recall the setting in §3.1, cf. Example 1. ∗
A  is a finite 

set, called an alphabet. In English there are 226 25 5≈ = , in 

Japanese there 249 7= , and in the genetics, there are 24 2=  

alphabets { }4 , , ,A T G C=A . Any sequence that can be 

constructed using alphabets in A  is called a word or a 

string and their totality is denoted by ∗
A . The number of 

alphabets contained in a word is called its length. We assume 

that the length 0  string (the null string) is included in ∗
A , 

denoted by ∅ . Any subset of ∗
A  is called a language over 

the alphabet A . In ∗
A , the concatenation is defined: For 

two words ,x y  of length ,m n  we denote by xy  the 

new word of length m n+  which is obtained by 

concatenating the left end of y  to the right end of x , 

calling it the concatenation of ,x y . For the set 
4A
 of 

nucleotides, *

4A
 indicates the set of all possible 

nucleotides----primary structure of DNA. 

The involution on ∗
A  is a function :f ∗ ∗→A A

satisfying 

( ( )) , ( ) ( ) ( )f f x x f xy f y f x= = .     (3.13) 

An involution must be a one-to-one mapping. Hence in 

particular, if a ∈A , then ( )f a ∈A . Since 

1 2 2 1( ) ( ) ( ) ( )n nf a a a f a f a f a=⋯ ⋯ , it follows that the 

values of f  are determined uniquely by those on A . We 

also write ( )f a a ′= . Under this notation, (3.13) reads 

, ( )x x xy y x
′ ′ ′′′ = = .         (3.14) 

Since DNA is double-stranded, *

4A
contains a word of the 

form 

5 3

4 5

N G A A T T C N

N C T T A A G N

′ ′

′ ′

⋯ ⋯

⋯ ⋯
          (3.15) 

In view of the limitation of the developing state of 

language theory, we are to interpret this as a word in a single 

string. Denoting 

A G C T

T C A G
 

by 

[A/T], [G/C], [T/A], [C/G],             (3.16) 

we see that the DNA in (3.15) reads 

,[ / ],[ / ],[ / ],[ / ],

[ / ],[ / ],[ / ],[ / ]

N N G C A T A T

T A T A C G N N

⋯

⋯
       (3.17) 

and we may apply language theory. 

The DNA alphabet 

[ ] [ ] [ ] [ ]{ }: / ,  / ,  / ,  /D A T G C T A C G=     (3.18) 

has the natural involution 

[ / ] [ / ],[ / ] [ / ],

[ / ] [ / ],[ / ] [ / ]

A T T A G C C G

T A A T C G G C

′ ′

′ ′

= =

= =
.       (3.19) 

4. Free Groups 

We referred to codes and formal language theory for 
possible candidates for codons. In this section as a third 
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candidate, we briefly mention the notion of free groups. The 
case of free semi-groups goes parallel with the following. 

Given a family of groups { }Gλ λ∈Λ
, A  is the disjoint union 

of Gλ 's and ∗
A  is the set of all words on A . ∗

A  is a 

monoid as above. To introduce the group structure, we define 

the relation w w′→   if either (i) the word has successive 

members ,a b  in the same group Gλ and 'w  is obtained 

from w  by replacing ,a b  by their product, or (ii) some 

members of w  is an identity and 'w  is obtained by 

deleting them. For two words , 'w w  we write w w′≡  if 

there is a finite sequence 
0, , nw w w w′= =⋯  such that for 

each ,1j j n≤ ≤ , either 
1j jw w −→  or

1j jw w− →  holds. 

Then we may prove that this relation is an equivalence 

relation and so we may construct the quotient set /G ∗= ≡A  

on which we may define the multiplication and G  becomes a 

group, the free product of Gλ 's. 

Thus, as stated in [7, p. 13], in order to multiply the word

w  by another word 'w , we write them down in 

juxtaposition and carry out the necessary cancellations 
(multiplications in a group) and contractions (deleting 
identities). 

On [1, p. 20, p. 56 etc.], one finds some interesting 
arguments on the single-stranded DNAs as words in the free 

group 
2F  generated by two alphabets A  and G  with 

1T A−= , 1C G−= . The abelianized group 
2 2 2F /[F ,F ] , where 

the modulus is the commutator group, is isomorphic to 2
ℤ , an 

infinite cyclic group and would result in excessive 
cancellation (hybridization). In addition to these 4 natural 

alphabets, there are synthesized ones including ,X Y . It 

would be an interesting problem to find the reason why 
creatures use only 4 alphabets. We may need to use formal 
language theory developed so that it can treat both circular 
and linear strings to consider such a problem and we hope to 
return to this at another occasion. 
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