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Abstract: We classify almost C(a) —manifolds, which satisfy the curvature conditions Z (§,X)R =0, Z (§,X)Z =0,
Z (§,X)S=0and Z (§,X)P = 0, where Z is the concircular curvature tensor, P is the Weyl projective curvature tensor, S is
the Ricci tensor and R is Riemannian curvature tensor of manifold.
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1. Introduction

An odd-dimensional Riemannian manifold (M, g) is said
to be an almost co-Hermitian or almost contact metric
manifold if there exist on M a (1,1) tensor field ¢, a vector
field & (called the structure vector field) and 1-form 1 such
that

=1 $*C0 =-X+n00¢ (1.1)
9(@X,¢Y) = g(X,Y) —n(X)n(Y) (1.2)
$) =0, nop =0 (1.3)

for any vector fields X,Y on M.
The Sasaki form (or fundamental 2-form) ® of an almost
co-Hermitian manifold (M, g, ¢, &, 1) is defined by

DX, Y) = g(X, ¢Y)

for all X,Y on M and this form satisfies nAD™ # 0. This
means that every almost co-Hermitian manifold is orientable
and (n, ®) defines an almost cosymplectic structure on M. If
this associated structure is cosymplectic d® = dn = 0, then
M is called an almost co-Kéhler manifold. On the other hand,
when @ = dn, the associated almost cosymplectic structure
is a contact structure and is an almost Sasakian manifold. It is
well known every contact manifold has an almost Sasakian
structure.

The Nijenhuis tensor of type(1,1) —tensor field ¢ is type
(1,2) [¢, ¢p] defined by

(9, 1(X,Y) = ¢2[X, Y] + [pX, pY] — ¢p[9X, V]

—¢ [X, $Y]

where [X, Y] is the Lie bracket of X,Y € y(M).

On the other hand, an almost co-complex structure is
called integrable if [¢,¢] =0 and normal [¢p, ]+
2dn®¢& = 0. An integrable almost cocomplex structure is a
cocomplex structure. A co-Kéhler manifold (or normal
cosymplectic manifold) is an integrable (or equivalently, a
normal) almost co-Kdhler manifold, while a Sasakian
manifold is a normal almost contact metric manifold [3].

(1.4)

2. Preliminaries

In [2], N(k) — contact metric manifolds satisfying
Z(EX)Z =7 (EX)R =R(EX)Z = 0 were classified.
In[1],ZEXR=REX)R=Z(EX)S=Z(EX)C=00n
P —Sasakian manifolds and obtained the some results.
M. M. Tripathi and J. S. Kim gave a classification of
(u, ¥) —manifolds satisfying the conditions Z (€, X)S = 0 [7].
Definition 2.1. An almost C(a) —manifold M is an almost
co-Hermitian manifold such that the Riemann curvature
tensor satisfies the following property, 3a € R such that
RX,Y,W,Z) =R(X,Y,pZ, ¢W)
+a{—gX,2)g(Y, W) + gX,W)g(¥,2)
+9X,¢Z)g(Y, W)
—gX,pW)g(Y, p2)}. (2.1)
Moreover, if such a manifold has constant ¢p —sectional
curvature equal to ¢, then its curvature tensor is given by
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+ 3a

R(X,Y)Z = (c ){g(Y, DX = g(X, 2)Y}

+ () X 97 — gV, D)X
+29(X, 9pY)PZ —n(Xn(Z)Y

+ (@)X — gX, Z)n(Y)¢E
—g(Y, Z)n(X)¢}, (2.2)

forany X,Y,Z € y(M).

A normal almost C(a) — manifold is said to be a
C(a) —manifold. For example, Co-Kihlerian, Sasakian and
Kenmotsu manifolds are €(0), C(1) and C(—1) —manifolds,
respectively [3].

Theorem 2.1.

() An almost co-Hermitian manifold M is

a —Sasakian if and only if

(Vx)Y = a{g(X,Y)§ —n(X)Y},

forall X,Y € y(M).
(ii) If M is a —Sasakian, then ¢ is Killing vector field and
Vyé = —agpX (2.4)

(2.3)

(iii) An a —Sasakian manifold is a C(a?) —manifold [3].
Theorem 2.2.

(i) An almost co-Hermitian manifold M is an & —Kenmotsu
manifold if and only if

(VxP)Y = a{g(dX,Y)§ —n(Y)pX},
forall X,Y € y(M).

(2.5)

(iii) An & —Kenmotsu manifold is a C(—a?) —manifold.

3. An Almost C(a) —Manifold Satisfying
Certain Conditions on the Concircular
Curvature Tensor

In this section, we will give the main results for this paper.
Let M be a (2n+1)— dimensional almost

C(a) —manifold and denote Riemannian curvature tensor of
R, then we have from (2.2), for X =

REY)Z = a{g(Y,2)§ —n(2)Y}. (3.1)
In the same way, choosing Z = & in (2.2), we have
R(X,Y)§ = a{n(¥)X —n(X)Y}. (3.2)
In (3.2), choosing Y = &, we obtain
R(X,$)§ = a{X —n(X)§}. (3.3)

Also from (3.2), we obtain

NRX,Y)Z) = a{g(Y,Z)n(X) — g(X,Z)n(¥)}. (3.4)

From (2.2), we can state
R(X,e;))e; + R(X, de;)e; + R(X,§)§
c+3a
= ( ){nX —gX, e)e; +nX
- g(X dedde, + X~ g(X. )
+(5) B pedde; — 2nn(X)§

+39(X, p*e)Pp?en(X)§
X}  (3.5)

for {eq, ey, ..., peq, Pe,, ..., pe,, & orthonormal basis of
M. From (3.5), for € y (M), we obtain

sSx,Y)
B (a(Sn -1 +cn+ 1))
B 2

() woonm, @)

which is equivalent to

QX
aB3n—-1)+cn+1)
S

(a—c)(n+1)
o(emgesn

)U(X)f- 3.7

From (3.7) we can give the following corollary.

Corollary 3.1.  An almost C(a) —manifold is always an
1 —Einstein manifold.

Also, from (3.6), we can easily see

t=nla(3n+1)+c(n+1)], (3.8)
5(X,$) = 2nan(X) (3.9)

and
Q¢ = 2naé. (3.10)

Definition 3.1. Let (M, g) be an (2n + 1) —dimensional
Riemannian manifold. Then the Weyl concircular curvature
tensor Z is defined by

Z(X, Y)W = R(X,Y)W
~In@nt 1 B WX

- gX, W)Y} (3.11)

for all X,Y,W € y(M), where T is the scalar curvature of
M[5].
In (3.11), choosing X = &, we obtain
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26w = (a ) a0, we

T
" 2n(2n+ 1)
—n(W)r} (3.12)
Theorem 3.1. Let M be a (2n + 1) —dimensional an almost
C(a) —manifold. Then Z(&,X)R = 0 if and only if M either
has ¢ — sectional curvature or the scalar curvature t =
2na(2n + 1).
Proof> Suppose that Z(&,X)R = 0. Then from (3.11), we
have
(Z'(E, XR)(U,W)Z = Z(EX)R(U,WZ — R(Z(E, X)U,W)Z
—R(U,Z(§,X)W)R — R(U,W)Z(§,X)Z
= 0. (3.13)

Using (3.12) in (3.13), we obtain
) (9, RW,WHD)E = nRW, W)X

~g(X, DR, W)Z +n(UR(X, W)Z
—gX,WYRWU,&Z + n(W)R(U,X)Z
~g(X,Z)R(U, W) +n(Z)RU, W)X}
= 0. (3.14)
Using (3.2), (3.3) and putting U = & in (3.14), we get
(a -— (anﬂ)) (RCX, W — al{g(U, W)X — g(X,W)U}}=0.
Therefore, manifold has either a — sectional curvature or
T = 2na(2n + 1). This implies that « = c.
Theorem 3.2. Let M be a (2n + 1) —dimensional an almost
C(a) —manifold. Z(&,X)Z = 0 if and only if M either has
a — sectional curvature or the scalar curvature T =
2na(Zn + 1).
Proof- Suppose that Z(&,X)Z = 0, we have
CZEXNDY, W = ZEXZY, U)W — Z(Z(EX)Y, D)W
=Z(Y,ZEX)U)W - Z(Y,NZ(E, X)W
=0. (3.15)
Using the equations (3.12) and (3.2), (3.3) in (3.15), we have
=ZEX)RY, )W — Z(R(E X)Y, U)W
—Z(Y,R(E, X)W — Z(Y,UD)R(E, X)W

+ (a N 2n(2Tn+1)) lo(, W)Z(f’ U
—-n(NZX, W + g(X,U)Z(Y,HW
—nWZY, X)W + g(X, W)Z(Y,U)§
—n(W)Z(Y, U)X}

T
“- 2n(2n+1)

=0.
Putting Y = £ in (3.16), we get
(a -— (;nm) {R(X, )W — alg(U, W)X — g(X, W)U}}=0.
This tell us that M has either & —sectional curvature or the
scalar curvature T = 2na(2n + 1).
The converse is obvious.
Theorem 3.3. Let M be a (2n + 1) —dimensional an almost
C(a) —manifold. Then Z (%,X)S = 0 if and only if M reduce
an Einstein manifold.
Proof: We suppose that Z (§,X)S = 0, which implies that

(3.16)

S(ZEX)U,wW) =+s(U,Z(EX)W) = 0. (3.17)

Using (3.12) in (3.17), we get

T
S (R(f.X)U - m{g()(. U)§ —nU)X}, W)
T
+5 (U REXOW — 5o (g (X, W)E ~ (W)X}
—0 (3.18)
Using (3.1), (3.9) in (3.18), we obtain
= 2na’g(X, \)n(W) — an(U)S(X, W)
T
~ Itz T 1) Zneg X, nW) ~nU)SK, W)
+2na’g(X,W)n(U) — an(W)S(X, U)
T
~ Iz T 1) Zneg X Win() ~nW)SX, 1))
=0. (3.19)
Putting U = § in (3.19), we get
T T
SX, W) {m - a} +gX,W) {Znaz - azn n 1}
= 0,

T
2n(2n+1)’

SX, W) =2nag(X,W).

under the condition « #

Therefore, the manifold is Einstein manifold.
The converse is obvious.
If M is an Einstein manifold, the scalar curvature T of M is

T =2na(2n+ 1). (3.20)

By corresponding (3.8) and (3.20) we obtain & = ¢ which
implies that M is of constant sectional curvature c.
Definition 3.2. Let (M,g) be a (2n + 1) — dimensional
Riemannian manifold. Then Weyl projective curvature tensor
P is defined by

P(X,Y)Z = R(X,Y)Z

—%{S(Y,Z)X—S(X,Z)Y}, (3.21)
where R is Riemannian curvature tensor and S is Ricci
tensor [5].
Theorem 3.2. Let M be a (2n + 1) —dimensional an almost
C(a) — manifold. Then, Z (§,X)P =0 if and only if M
reduce an Einstein manifold.
Proof: Suppose that Z (£, X)P = 0. Then we have,
ZEXOP)(Y, W = Z(EX)PY, D)W — P(Z(E X)Y, U)W
—P(Y,Z(&,X)U)W —P(Y,)Z(§, X)W
=0, (3.22)
for X,Y,U,W € y(M). Using (3.12) in (3.22), we get

T
(“ B m) {agX, Un(W)¢ — ag(U, W)X +
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1
o SW W)X + SX, Win(U)§ — SWU, X)n(W)$}

—ag(X,W)n(U)§ + P(U, X)W}

= 0. (3.23)

Taking inner product both sides of (3.23) by § € y(M),
we obtain

(a- m) {ag (X, U)nW) — ag(U,W)n(x) +

1
2 W W)nX) + SX, WinU) — SU, X)mW)}

—ag(X,W)n(U) +n(P(U,X)W)}

=0. (3.24)
Also making use of (3.21), we obtain
n(P(U,X)W) = af{g(X,W)n(U) — g(U, W)n(X)}
— - (SX, W) - SW,WnX)}. (3.25)

Using (3.25) in (3.24) and choosing W = &, we have

provided that a # ;,
2n(2n+1)

S(U,X) = 2nag(U,X).

So, the manifold is an Einstein manifold. The converse is
obvious.
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