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Abstract: Fuzzy set, mathematical modelling in order to some uncertainty in 1965 was described by L. A. Zadeh [7]. In studies 
on fuzzy sets, fuzzy numbers [5], fuzzy relations [5], fuzzy function [5], fuzzy sequence [4] is defined as concepts. After Nörlund 
fuzzy and blurry Riez summability have been identified [6]. In this study, fuzzy Generalized Nörlund summability have been 
defined and Generalized Nörlund summability necessary and sufficient conditions to ensure the regular was investigated. 
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1. Introduction 

This section will be the basic concepts of fuzzy sets. 
Definition 1.1. A fuzzy set A on the universe X is a set 

defined by a membership function Aµ  representing a 

mapping 

]1,0[: →XAµ . 

Here the value )(xAµ  for the fuzzy set A is called the 

membership value or the grade of membership of Xx ∈ . The 
membership value represents the degree of x belonging to the 
fuzzy set A. [5] 

Definition 1.2. Let D denote the set of all closed and 
bounded intervals ],[ 21 aaX =  on the real line R. For 

DYX ∈, , we define 

( )2211 ,max),( babaYXd −−=  

where ],[ 22 aaX =  , ],[ 22 bbY = . It is known that ),( dD  is 

a complete metric space [6]. 
Definition 1.3. A fuzzy real number X is called convex if 

))(),(min()()()( rXsXrXsXtX =∧≥ , where rts << . If 

there exists IRt0 ∈ , such that 1)( 0 =tX , then the fuzzy real 

number X is called normal. A fuzzy real number X is a fuzzy 
set on R and is a mapping 

])1,0[(: =→ IIRX  

associating each real number t with its grade of membership 

)(tX  [6]. 

A fuzzy real number X is said to be upper-semicontinuous if 

for each 0>ε , )),0([1 ε+− aX , for all Ia ∈  is open in the 

usual topology of R [6]. 
The set of all upper-semicontinuous, normal, convex fuzzy 

number is denoted by )(IR  [6]. 

Definition 1.4. The α-level set of a fuzzy real number X, for 

10 ≤< α  denoted by αX  is defined as 

})(:{ αα ≥∈= tXRtX ; for 0=α  , it is the closure of the 

strong 0-cut (that is, the closure of the set }0)(:{ >∈ tXIRt ). 

Throughout the article α means ]1,0(∈α  unless otherwise 

stated [6]. 
Theorem 1.1. Let A is a fuzzy number if and only if there 

exists a closed interval ∅≠],[ ba  such that 









∞∈
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∈
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),(,)(

],[,1
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bxxr
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where l is a function from ),( a−∞  to ]1,0[  that is monotonic 

increasing, continuous from the right, and such that 0)( =xl  

for ),( 1wx −∞∈ ;  r is a function from ),( ∞b  to ]1,0[  that 

is monotonic decreasing, continuous from the left, and such 
that 0)( =xr  for ),( 2 ∞∈ wx . [3] 
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Figure 1.1. Fuzzy number [3] 

Definition 1.5. The set R of all real numbers can be 
embedded in )(IR . For each Rr ∈ , Rr ∈  is defined by 


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≠
=

=
rt

rt
tr

,0

,1
)(  [6]. 

Definition 1.6. Let IRIXRIRd →)()(:  be defined by 

),(sup),(
10

αα

α
YXdYXd

≤≤
= . 

Then d  defines a metric on )(IR . It is well known that 

)),(( dIR  is a complete metric space. The additive identity 

and multiplicative identity in )(IR  are denoted by 0  and 1  

respectively [6]. 

2. Preliminaries 

Fuzzy sequence defined on fuzzy sets in this section will be 
Reisz and Nörlund averages. A fuzzy set of samples to be 
explained. 

Definition 2.1. A sequence )( kAA =  of fuzzy numbers is 

said to be convergent to the fuzzy number 0A , written as 

0lim AAk
k

=
∞→

, if for every 0>ε  there exists a positive integer 

N such that ε<),( 0AAd k  for every Nk > . [1] 

Example 2.1. 
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from of )( kAA =  Consider the fuzzy number sequence. 

Limit of this sequence,  
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Figure 1.2. )( kA Fuzzy number sequence 
0A  the convergence of the fuzzy 

number [2] 

Definition 2.2. Let )( np  be a sequence of non-negative 

real numbers which are not all zero and 

nn pppP +++= ...21  

for all Nn ∈ . A sequence )( ns  of fuzzy real numbers is said 

to be summable by Nörlund mean ),( pN to L , if 
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as ∞→n . 

Definition 2.2. Let )( np  be a sequence of non-negative 

real numbers which are not all zero and 

nn pppP +++= ...21  

for all Nn ∈ . A sequence )( ns  of fuzzy real numbers is said 

to be summable by Riesz mean ),( pR  to L , if 
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as ∞→n . 

3. Generalized Nörlund Summability of 

Fuzzy Real Numbers 

This section will be defined the fuzzy generalized Nörlund 
summability and explored regularity conditions on the 
summability. 

Definition 3.1. Let )( np  , )( nq be a sequence of 

non-negative real numbers which are not all zero and 

∑
=

−=
n

v

vvnn qpr

0

 

for all Nn ∈ . A sequence )( ns  of fuzzy real numbers is said 

to be summable by Nörlund summability ),,( qpN  to L , if 
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as ∞→n .  
Theorem 3.1. Let )( np , )( nq  , )( nr  be sequences 

defined in the defenition 2.1. Then, ),,( qpN  regular if and 

only if 0lim =
→∞

n

n

n r

p
. 

Proof: Sufficiency: Let )( ns  be any any convergent 

sequence of fuzzy real numbers, and Lsn
n

=
∞→

lim . Without 

loss of generality, we may assume that 0=L . For a fixed 

0>ε  there exists no such that, Hsd n <)0,(  for 0nn ≥ . If 

0lim =
→∞

n

n

n r

p
 then for all 0>ε  there exists INn ∈1  such 

that, 

),max(2 10 nnHr

p

n

n ε<  

for 1nn > . Let ),max( 102 nnn =  and assume 
2

)0,(
ε<nsd   

for all 2nn > . Then, 

),max(2 10 nnHr

p

n

n ε< . 

So for all 2nn >  we obtain. 
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Necessity: Let ),,( qpN  to get regular and  

)(,...)0,0,1(1 vse ==  consider the sequence. Then, 

0lim =
∞→ v

v
s  

and so  
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since 
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4. Results 

In this section, fuzzy generalized summability Nörlund 
been identified and will be investigated regularity conditions 
on the summability. 

),,( qpN  regular  if and only if 0lim =
→∞

n

n

n r

p
 we 

obtained. 
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