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Abstract: Fuzzy set, mathematical modelling in order to some uncertainty in 1965 was described by L. A. Zadeh [7]. In studies
on fuzzy sets, fuzzy numbers [5], fuzzy relations [5], fuzzy function [5], fuzzy sequence [4] is defined as concepts. After Norlund
fuzzy and blurry Riez summability have been identified [6]. In this study, fuzzy Generalized Norlund summability have been
defined and Generalized Norlund summability necessary and sufficient conditions to ensure the regular was investigated.
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1. Introduction

This section will be the basic concepts of fuzzy sets.
Definition 1.1. A fuzzy set A on the universe X is a set
defined by a membership function g/, representing a

mapping
Hy X - [071] .

Here the value 4, (x) for the fuzzy set 4 is called the

membership value or the grade of membership of x[1.X . The
membership value represents the degree of x belonging to the
fuzzy set 4. [5]

Definition 1.2. Let D denote the set of all closed and
bounded intervals X =[a;,a,] on the real line R. For

X,YOD, we define
d(X,Y)= maanl —bl|,|a2 —b2|)

where X =[a,,a,] , Y =[b,,b,].1tisknownthat (D,d) is
a complete metric space [6].

Definition 1.3. A fuzzy real number X is called convex if
X))z X(s)UX(7) =min(X(s), X (7)), where s<t<r.If
there exists t, IR, such that X(#;) =1, then the fuzzy real

number X is called normal. A fuzzy real number X is a fuzzy
set on R and is a mapping

X IR - I(=[0,1])

associating each real number t with its grade of membership

X(t) [6].

A fuzzy real number X is said to be upper-semicontinuous if
for each £>0, X_l([O,a +¢)), for all a0/ is open in the
usual topology of R [6].

The set of all upper-semicontinuous, normal, convex fuzzy
number is denoted by R(I) [6].

Definition 1.4. The a-level set of a fuzzy real number X, for
0<a<l denoted by X% is defined as
X7 ={tOR:X(t)=a}; for a=0 , it is the closure of the
strong 0-cut (that is, the closure of the set {t /R : X(¢) >0} ).
Throughout the article o means ¢ [(0,1] unless otherwise

stated [6].
Theorem 1.1. Let 4 is a fuzzy number if and only if there
exists a closed interval [a,b]# [0 such that

1, x0[a,b]

Hy(x) =11(x), xU(~,a)
r(x), x0(b, )

where / is a function from (—o,a) to [0,1] thatis monotonic
increasing, continuous from the right, and such that /(x) =0
for xO(-o,w,); ris a function from (b,) to [0,1] that
is monotonic decreasing, continuous from the left, and such
that 7(x) =0 for x0(w,,).[3]
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Figure 1.1. Fuzzy number [3]

Definition 1.5. The set R of all real numbers can be
embedded in R(/).Foreach »[R, ¥R is defined by

_ Lt=r
F(f)={ [6].

0,t#r
Definition 1.6. Let d : R(I)XR(I) - IR be defined by

d(X,Y)= sup d(X?,Y%)

0<asl ’
Then d defines a metric on R(I). It is well known that
(R(I ),c7 ) is a complete metric space. The additive identity

and multiplicative identity in R(/) are denoted by 0 and 1
respectively [6].

2. Preliminaries

Fuzzy sequence defined on fuzzy sets in this section will be
Reisz and Norlund averages. A fuzzy set of samples to be
explained.

Definition 2.1. A sequence A = (Zk) of fuzzy numbers is
said to be convergent to the fuzzy number 4, written as

lim Zk = Zo ,ifforevery £ >0 there exists a positive integer

k — o
N such that d(Zk,ZO)<£ forevery k>N .[1]
Example 2.1.

ce273k k-2,
k+2" k+2 k
109 = ko Skr2 o f, skt
k+2" k+2 k
o yp[3kc2 sk+2
k k

from of A =(Zk) Consider the fuzzy number sequence.
Limit of this sequence,

x=3 , x0O[34]

Ay(x)=4-x+5 , x0O[45] .
0 , x0O[35]

0 1 2 4 & 7

Figure 1.2. (4,)Fuzzy number sequence 4 the convergence of the fuzzy
number [2]

Definition 2.2. Let (p,) be a sequence of non-negative
real numbers which are not all zero and

Bo=pi+py+..tp,

forall nON .Asequence (s,) offuzzy real numbers is said

to be summable by Norlund mean (X/, p)to L ,if
d iZn: 5,,L -0
Pn e Pn-v+15y»

as n —» oo,
Definition 2.2. Let (p,) be a sequence of non-negative
real numbers which are not all zero and

Bo=pi+py+..*p,

forall nON . Asequence (s,) offuzzy real numbers is said

to be summable by Riesz mean (E, p) to L, if

J(%Zp;v,[} 50

n

as n - .

3. Generalized Norlund Summability of
Fuzzy Real Numbers
This section will be defined the fuzzy generalized Norlund
summability and explored regularity conditions on the
summability.
Definition 3.1. Let (p,) ,
non-negative real numbers which are not all zero and

n
Ty = z Pn—v4y
v=0

forall nON .Asequence (s,) offuzzy real numbers is said

(g,) be a sequence of

to be summable by Norlund summability (ﬁ, p.q) to L ,if
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[ an v+1quv’L} O
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as n - o,
Theorem 3.1. Let (p,), (g,)

defined in the defenition 2.1. Then, (N, p,q) regular if and

(r,) be sequences

only if lim 2z =0.
n-o p,
Proof: Sufficiency: Let (s,) be any any convergent

sequence of fuzzy real numbers, and lims, =L . Without

loss of generality, we may assume that L =0. For a fixed
£>0 there exists no such that, d (s, 0)<H for n= ny. If
lim£% =0 then for all £>0 there exists n OIN such

n-w p,

that,
Pono &
r,  2Hmax(ngy,n)
- - = &
for n>n;. Let n, =max(ny,n) and assume d(s,,0) <E

for all n>n,. Then,

Pu €

< —m—
r,  2Hmax(ny,n)’

So for all n>n, we obtain.

[ an v+1quv’0}

"’vl

zpn v 4yvS vﬁ_

Tn v=l Tn v=n,+1

&I

( zpn v+1quv50 +d

1 _ _ —
pnqlsl Tt pn—n2+1qn2 an )’O +
l"

1 _ =
+ d(r_(pn—nz 9, +15n,+1 t..+pig,s, )’Oj

n

= 2ot G5 0y + .+ Lt G5 D)+
T, r

n n

Puomyntt = = -
+Md(sn2+170)+"‘+%d(‘gn70)

n n

pn—n2+1qn2 H+ pn—nzqnzﬂ £+ + Pﬂ,,f

n

<Py 4

I

N I

N I

n

Generalized Norlund Summability of Fuzzy Real Numbers

< Heo+-S H+(p”_”2 +...+ﬂ)£

2Hn, 2Hn, 7, r, )2
E €&

<Z+Z=¢,
2 2

(N,p,q) to get regular and

e = (1,0,0,..) = (s,) consider the sequence. Then,

Necessity:  Let

lims, =0
and so
lim Dn _
n-o p,
since
P19y =
lim d e,0| .
"o [Z rn j
4. Results

In this section, fuzzy generalized summability Norlund
been identified and will be investigated regularity conditions
on the summability.

im P =0 we

(N, p,q) regular if and only if -
obtained.
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