
 
Pure and Applied Mathematics Journal 
2015; 4(1-2): 19-23 
Published online January 10, 2015 (http://www.sciencepublishinggroup.com/j/pamj) 
doi: 10.11648/j.pamj.s.2015040102.15 
ISSN: 2326-9790 (Print); ISSN: 2326-9812 (Online) 

 

On the explicit parametric equation of a general helix with 
first and second curvature in Nil 3-space 

Şeyda Kılıçoğlu 

Faculty of Education, Department of Elementary Mathematics Education, Baskent University, Ankara, Turkey 

Email address: 
seyda@baskent.edu.tr 

To cite this article: 
Şeyda Kılıçoğlu. On the Explicit Parametric Equation of a General Helix with First and Second Curvature in Nil 3-Space. Pure and Applied 

Mathematics Journal. Special Issue: Applications of Geometry. Vol. 4, No. 1-2, 2015, pp. 19-23. doi: 10.11648/j.pamj.s.2015040102.15 

 

Abstract: Nil geometry is one of the eight geometries of Thurston's conjecture. In this paper we study in Nil 3-space and the 
Nil metric with respect to the standard coordinates (x,y,z) is gNil₃=(dx)²+(dy)²+(dz-xdy)² in IR³. In this paper, we find out the 
explicit parametric equation of a general helix. Further, we write the explicit equations Frenet vector fields, the first and the 
second curvatures of general helix in Nil 3-Space. The parametric equation the Normal and Binormal ruled surface of general 
helix in Nil 3-space in terms of their curvature and torsion has been already examined in [12], in Nil 3-Space. 
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1. Introduction 

In mathematics, Thurston's conjecture proposed a complete 
characterization of geometric structures on three-dimensional 
manifolds. The conjecture was proposed by William Thurston 
(1982), and implies several other conjectures, such as the 
Poincaré conjecture and Thurston's elliptization conjecture. 
Thurston's geometrization conjecture states that; Certain 
three-dimensional topological spaces each have a unique 
geometric structure that can be associated with them. It is an 
analogue of the uniformization theorem for two-dimensional 
surfaces, which states that every simply-connected Riemann 
surface can be given one of three geometries (Euclidean, 
spherical, or hyperbolic). In three dimensions, it is not always 
possible to assign a single geometry to a whole topological 
space. Instead, the geometrization conjecture states that every 
closed 3-manifold can be decomposed in a canonical way into 
pieces that each have one of eight types of geometric structure. 
Thurston's conjecture is that, after you split a three-manifold 
into its connected sum and the Jaco-Shalen-Johannson torus 
decomposition, the remaining components each admit exactly 
one of the following geometries 

Euclidean geometry,  
Hyperbolic geometry,  
Spherical geometry,  
The geometry of S2 × R,  
The geometry of H2 × R,  
The geometry of the universal cover SL_2R~ of the Lie 

group SL_2R,  
Nil geometry,  

 Sol geometry. 
For more detail see [13]. 
A nilmanifold is a differentiable manifold which has a 

transitive nilpotent group of diffeomorphisms acting on it. In 
the Riemannian category, there is also a good notion of a 
nilmanifold. A Riemannian manifold is called a homogeneous 
nilmanifold if there exist a nilpotent group of isometries acting 
transitively on it. The requirement that the transitive nilpotent 
group acts by isometries leads to the following rigid 
characterization: every homogeneous nilmanifold is isometric 
to a nilpotent Lie group with left-invariant metric (see [4]).  

The two-parameter family of metrics first appeared in the 
works of Bianchi, Cartan and Vranceanu, these spaces are 
often referred to as Bianchi-Cartan-Vranceanu spaces, or 
BCV-spaces for short. Some well-known examples of 
BCV-spaces are the Riemannian product spaces S²×R, H²×R 
and the 3-dimensional Heisenberg group [5]. Let κ and τ be 
real numbers, with τ≥0. The Bianchi-Cartan-Vranceanu 
spaces, (BCV-spaces) M³ (κ,τ) is defined as the set 

{(x,y,z)∈IR³:1+(κ/4)(x²+y²)>0} 

equipped with metric 

ds²=((dx²+dy²)/((1+(κ/4)(x²+y²))²)) 

+(dz+τ((ydx-xdy)/(1+(κ/4)(x²+y²))))². 
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* if κ = τ=0, then M³(κ,τ) ≅IE³ 

* if κ =0 and τ≠0, then M³(κ,τ) ≅Nil₃. 

More details can be found in [4 ] and [1]. 
In [5], it is restricted to the 3-dimensional Heisenberg group 

coming from R² with the canonical symplectic form 
ω((x,y),(x₁,y₁))=xy₁-x₁y, i.e., they consider R³ with the group 
operation 

(x,y,z)∗(x₁,y₁,z₁)=(x+x₁,y+y₁,z+z₁+((xy₁)/2)-((x₁y)/2)). 

For every non-zero number τ the following Riemannian 
metric on (R³,∗) is left invariant: 

ds²=dx²+dy²+4τ²(dz+((ydx-xdy)/2))². 

After the change of coordinates (x, y, 2τz)→(x,y,z), this 
metric is expressed as 

ds²=dx²+dy²+(dz+τ(ydx-xdy))². 

By some authors the notation Nil 3-space is only used if  
τ =(1/2). We will use the notation Nil₃ in short. It is well 

known that Nil space is isometric to Heisenberg space. The 
geometry of Nil is the three dimensional Lie group of all real 3 
triangular matrices of the form 
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Let (IR³,gNil₃) denote Nil space, where the metric with 
respect to the standard coordinates (x,y,z) in IR³ can be written 
[14] as  

gNil₃=(dx)²+(dy)²+(dz-xdy)². 

Hence we get the symetric tensor field gNil₃ on Nil₃ by 
components.  
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Note that the Nil metric can also be written as:  

ds²=∑³i=1ωi⊗ωi, 

where ω¹=dx, ω²=dy, ω³=dz-xdy, and the orthonormal basis 
dual to the 1-forms is 

E₁=(∂/(∂x)), E₂=(∂/(∂y))+x(∂/(∂z)), E₃=(∂/(∂z)). 

With respect to this orthonormal basis, the Levi-Civita 
connection and the Lie brackets can be easily computed as: 

∇E₁E₁ = 0,      ∇E₁E₂=(1/2)E₃,    ∇E₁E3=((-1)/2)E₂ 

∇E₂E₁ = ((-1)/2)E₃,    ∇E₂E₂=0,     ∇E₂E₃=(1/2)E₁ 

∇E₃E₁ = ((-1)/2)E₂,   ∇E₃E₂=(1/2)E₁,    ∇E₃E₃=0. 

[E₁,E₂]=E₃,       [E₂,E₃]=0,        [E₁,E₃]=0. 

Hence 
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is the matrix with (i,j)- element in the table equals ∇EiEj for the 
basis {E₁,E₂,E₃}. See for more details [14]. 

2. The Parametric Equation of General 

Helix in Nil 3-Space 

2.1. Riemannian Structure of Nil Space 

Helix is one of the fascinating curve in science and nature. 
In this section, we study on the general helices in the Nil₃. We 
characterize the general helices in terms of their curvature and 
torsion. A curve of constant slope or general helix is defined 
by the property that the tangent makes a constant angle with a 
fixed straight line (the axis of the helix). A classical result 
stated by M. A. Lancret in 1802 and first proved by B. de Saint 
Venant in 1845 (see [7] and [2] for details) is: A necessary and 
sufficient condition that a curve be a helix is that the ratio of 
curvature to torsion be constant. Helices are examined in [9] 
and [6]. Let α be a helix that lies on the cylinder. A helix which 
lies on the cylinder is called cylindrical helix or general helix. 
Assume that {T,N,B,κ,τ} be the Frenet apparatus along the 
curve α. It has been known that the curve α is a cylindrical 
helix if and only if ((κ/τ)) is constant, then ((κ/τ))′=0 where κ 
and τ are the curvatures of α. If the curve is a general helix, the 
ratio of the first curvature of the curve to the torsion of the 
curve must be constant. We call a curve a circular helix if both 
τ≠0 and κ are constant. Then, the Frenet frame satisfies the 
following Frenet-Serret equations 

∇TT = κN, 

∇T N = -κT+τB, 

∇T B = -τN. 

With respect to the orthonormal basis {E₁, E₂, E₃}, we can 
write 

T = T₁E₁+T₂E₂+T₃E₃, 

N = N₁E₁+N₂E₂+N₃E₃, 

B = T×N=B₁E₁+B₂E₂+B₃E₃. 

Parametric equations of general helices in the sol space Sol₃ 
are examined in [3]. Normal ruled surfaces of general helices 
in the Sol space Sol₃ are examined in [8]. 

Normal and Binormal ruled surfaces of general helices in 
Nil 3-space with the Riemannian Structure of Nil 3-space are 
examined in [12].  

Parametric equation of general helix and all the Frenet 
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apparatus are examined as in the following theorems.  

2.2. The parametric equation of General Helices in Nil 

Space Nil₃₃₃₃ 

Theorem: 

Let α:I→Nil₃ be a unit speed non-geodesic general helix. 
Then, the equation of a unit speed non-geodesic general helix 
α, with respect to the orthonormal basis,  
{E₁,E₂, E₃}, 

α(s)= ((sinβ)/(C₁))sinD+C₃)E₁+(((-sinβ)/(C₁))cosD+C₄)E₂ 

+ (((sin²β)/(4C₁²))sin2D-((C₄sinβ)/(C₁))sinD 

+ (((sin²β)/(2C₁))+cosβ)s-C₃C₄+C₅)E₃, 

where we take D=C₁s+C₂, C₁,C₂∈IR. 
Proof: 

Assume that α: I→Nil₃ be a unit speed non-geodesic 
general helix. So, without loss of generality, we take its axis as 
parallel to the vector E₃. Then  

gnil₃ (T,E₃)=T₃=cosβ, 

where β is constant angle. On the other hand the tangent vector 
T is an unit vector, so the following condition is satisfied 
T₁²+T₂²=1-cos²β. Since cos²β+sin²β=1, we have the general 
solution of T₁²+T₂²=sin²β can be written in the following form 

T₁=sinβcosD, 

T₂=sinβsinD, 

T₃=cosβ 

Also, without loss of generality, where we take D=C₁s+C₂ 

where C₁,C₂∈IR. So, substituting the components T₁, T₂ and 
T₃ in the equation, we have the following equation 

T=sinβcosDE₁+sinβsinDE₂+cosβE₃. 

Definition of the tangent vector field T, give us; 

((dx)/(ds)) = sinβcosD 

((dy)/(ds)) = sinβsinD 

((dz)/(ds)) = x sinβsinD+cosβ. 

Integrating both sides, we have 

⇒ x(s)=((sinβ)/(C₁))sinD+C₃ 

⇒ y(s)=((-sinβ)/(C₁))cosD+C₄ 

⇒z(s)=(-((sin²β)/(4C₁²))sin2D 

-((C₃sinβ)/(C₁))cosD 

+(((sin²β)/(2C₁))+cosβ)s)+C₅ 

where C₃, C₄, C₅ are constant of integration. Substituting all 
them in α(s), this proves our assertion. Thus, the proof of 
theorem is completed.  

3. The Curvatures of the General Helix 

in Nil 3-Space 

3.1. First Curvature of the General Helix in Nil Space Nil₃₃₃₃ 

Theorem: 

The first curvature (curvature ) of the general helix in Nil 
Space Nil₃ is 

κ = (cosβ - C₁)sinβ,   (cosβ - C₁) sinβ > 0 

Proof: 
Assume that α: I→ Nil₃ be a unit speed non-geodesic 

general helix with  

T= sinβcosDE₁+sinβsinDE₂+cosβE₃. 

The Levi-Civita connection and Lie brackets can be easily 
computed as:  

∇TT = TꞋ
₁E₁-(1/2)T₁T₂ E₃+((-1)/2)T₁T₃E₂ 

+TꞋ₂E₂+(1/2)T₂T₁E₃+(1/2)T₂T₃E₁ 

+TꞋ
₃E₃-(1/2)T₃T₁ E₂+(1/2)T₃T₂E₁ 

= (TꞋ
₁+T₂T₃) E₁+(TꞋ

₂-T₁T₃)E₂+(TꞋ
₃)E₃ 

By substituting T₁, T₂, T₃ and derivates, we get 

∇TT = (cosβ-C₁)(sinβsinDE₁-sinβcosDE₂) 

= (cosβ-C₁)sinβ (sinDE₁-cosDE₂). 

Since κ=gNil3 (∇TT, N) and N=(1/κ)∇TT we have  

κ =gNil3 (∇TT, (1/κ) ∇TT) κ2 =gNil3(∇TT ,∇TT) 

κ² = (C₁sinβ-sinβcosβ)² 

 = (cosβ - C₁)² sin2β 

and also for (cosβ - C₁)sinβ > 0,  first curvature  is 

κ = (C₁-cosβ)sinβ. 

3.1.1. The Normal Vector Fields of the General Helix 

The following theorem gives us the explicit parametric 
equation of normal vector fields in Nil₃. 

Theorem: 
Let α:I→Nil₃ be a unit speed non-geodesic general helix. 

Then, the normal vector field of the general helix is 

N= (sinD,-cosD,0) 

where we take D=C₁s+C₂, C₁,C₂∈IR. 
Proof:  
Let α:I→Nil₃ be a unit speed non-geodesic general helix. 

By the use of Frenet formula ∇TT =κN,  

κN = (cosβ-C₁)(sinβsinDE₁-sinβcosDE₂) 

= (cosβ-C₁)sinβ (sinDE₁-cosDE₂). 

Hence the normal vector field of the general helix is  
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N = (1/κ)((-C₁sinβ + ((sin2β)/2)) sinDE₁ 

+(C₁sinβ - ((sin2β)/2)) cosDE₂) 

where we take D=C₁s+C₂, where C₁,C₂∈IR. Also we know 
that; κ = (C₁-cosβ)sinβ, so  

N = (1/κ) ∇TT 

N= 1/(sinβ(cosβ-C₁)))(cosβ-C₁)(sinβsinDE₁-sinβcosDE₂) 

= sinDE₁-cosDE₂ 

N = (sinD, -cosD, 0), 

or substituting  

E₁=(∂/(∂x)), E₂=(∂/(∂y))+x(∂/(∂z)), E₃=(∂/(∂z)) 

In 

N = sinDE₁-cosDE₂ 

N = sinD(∂/(∂x))-cosD((∂/(∂y))+x(∂/(∂z))) 

N=sinD(∂/(∂x))-cosD(∂/(∂y))-(((sinβ)/(C₁))sinD-C₃)cosD(∂/(
∂z)). 

3.2. Second Curvature (Torsion) of the General Helix in Nil 

Space Nil₃₃₃₃ 

Theorem: 
The second curvature (torsion) of the general helix in Nil 

Space Nil₃ is 

τ = (C₁²-C₁cosβ+ (1/4)) 1/2 

Proof: 
With the Levi-Civita connection and Lie brackets can be 

easily computed as: 

∇TN = (NꞋ
₁+ (1/2)N₂T₃+(1/2)N₃T₂)E₁ 

+ (NꞋ
₂+((-1)/2)N₁T₃+((-1)/2)N₃T₁)E₂ 

+ (NꞋ
₃+(1/2)N₂T₁+((-1)/2)N₁T₂)E₃. 

Also for N= sinD E₁ - cosD E₂, we know that 

N₁ = sinD; NꞋ
₁=C₁cosD 

N₂ = -cosD; NꞋ
₂=C₁sinD 

N₃ = 0, NꞋ
₃=0. 

Now it is easy to say that for 

∇TN= ((C₁-(1/2)cosβ)cosDE1 

+ (C₁-(1/2)cosβ)sinDE2 

+ ((-1)/2)sinβ)E3 

∇TN = (1/2)((2C₁-cosβ)cosD,(2C₁-cosβ)sinD,-sinβ) 

It is well known that Binormal vector field of a curve is 
B=(1/τ)(∇TN +κT).  Also torsion is 

τ = gNil₃ (∇TN,B) 

τ = gNil₃ (∇TN, (1/τ)(∇TN +κT)) 

τ²=gNil₃ (∇TN, ∇TN +κT)) 

τ²=gNil₃(∇TN,∇TN))+gNil₃(∇TN,κT)) 

τ²=(1/4)(((2C₁-cosβ)cosD)²+((2C₁-cosβ)sinD)²+sin²β) 

τ² = (1/4)((2C₁-cosβ)²+sin²β) or τ² = C₁²-C₁cosβ+(1/4). 

3.2.1. The Binormal Vector Field of the General Helix in Nil 

Space Nil₃₃₃₃ 

Theorem: 
Let α : I→Nil₃ be a unit speed non-geodesic general helix. 

Then, the binormal vector field of the general helix is  

B= (1/ (C₁²-C₁cosβ+(1/4)) 1/2) 
((C₁-(1/2)cosβ+sin²βcosβ-sin²βC₁)cosDE₁ 

+ (C₁-(1/2)cosβ+sin²βcosβ-sin²βC₁)sinDE₂ 

+ (cos²β-cosβC₁-(1/2))sinβE₃)] 

where  we take D=C₁s+C₂, where C₁,C₂∈IR. 
Proof : 
With the Levi-Civita connection and Lie brackets can be 

easily computed as: 

∇TN = (1/2)((2C₁-cosβ)cosD,(2C₁-cosβ)sinD,-sinβ). 

And, using the Frenet-Serret equation ∇TN = -κT+τB, we 
have B = (1/τ) ( ∇TN +κT) 

B= (1/τ )((((2C₁-cosβ)/(2κ)))(cosβ-C₁)+κ)sinβcosDE₁ 

+ ((((2C₁-cosβ)/(2κ)))(cosβ-C₁)+κ)sinβsinDE₂ 

+ (κcosβ-((sin²β)/(2κ))(cosβ-C₁))E₃. 

By substituting κ and τ, we complete the proof.  
Example: 
Assume that α:I→Nil₃ be a unit speed non-geodesic general 

helix and its axis as parallel to the vector E₃. Also 
gNil₃(T,E₃)=T₃=cos(π/6) , where β=(π/6) is constant angle. 
Hence the explicit parametric equation of helix is 

α(s) = ((1/2)sin s+1)E₁+ (((-1)/2)cos s+1)E₂ 

+((1/(16))sin2s-(1/2)sin s+(((1+2√3)/4))s)E3. 

Hence; the first curvature is 

κ=(1/2)(((√3)/2)-1)=((√3-2)/4) 

and the second curvature is 

τ=(5-2√3) 1/2/2. 
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Figure 1. The figure of Helix in Example. 
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