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Abstract: Nil geometry is one of the eight geometries of Thurston's conjecture. In this paper we study in Nil 3-space and the
Nil metric with respect to the standard coordinates (X,y,z) is gni,=(dx)*+(dy)*+(dz-xdy)? in IR3. In this paper, we find out the
explicit parametric equation of a general helix. Further, we write the explicit equations Frenet vector fields, the first and the
second curvatures of general helix in Nil 3-Space. The parametric equation the Normal and Binormal ruled surface of general
helix in Nil 3-space in terms of their curvature and torsion has been already examined in [12], in Nil 3-Space.
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1. Introduction

In mathematics, Thurston's conjecture proposed a complete
characterization of geometric structures on three-dimensional
manifolds. The conjecture was proposed by William Thurston
(1982), and implies several other conjectures, such as the
Poincaré conjecture and Thurston's elliptization conjecture.
Thurston's geometrization conjecture states that; Certain
three-dimensional topological spaces each have a unique
geometric structure that can be associated with them. It is an
analogue of the uniformization theorem for two-dimensional
surfaces, which states that every simply-connected Riemann
surface can be given one of three geometries (Euclidean,
spherical, or hyperbolic). In three dimensions, it is not always
possible to assign a single geometry to a whole topological
space. Instead, the geometrization conjecture states that every
closed 3-manifold can be decomposed in a canonical way into
pieces that each have one of eight types of geometric structure.
Thurston's conjecture is that, after you split a three-manifold
into its connected sum and the Jaco-Shalen-Johannson torus
decomposition, the remaining components each admit exactly
one of the following geometries

Euclidean geometry,

Hyperbolic geometry,

Spherical geometry,

The geometry of S2 x R,

The geometry of H2 X R,

The geometry of the universal cover SL 2R~ of the Lie

group SL 2R,

Nil geometry,

Sol geometry.

For more detail see [13].

A nilmanifold is a differentiable manifold which has a
transitive nilpotent group of diffeomorphisms acting on it. In
the Riemannian category, there is also a good notion of a
nilmanifold. A Riemannian manifold is called a homogeneous
nilmanifold if there exist a nilpotent group of isometries acting
transitively on it. The requirement that the transitive nilpotent
group acts by isometries leads to the following rigid
characterization: every homogeneous nilmanifold is isometric
to a nilpotent Lie group with left-invariant metric (see [4]).

The two-parameter family of metrics first appeared in the
works of Bianchi, Cartan and Vranceanu, these spaces are
often referred to as Bianchi-Cartan-Vranceanu spaces, or
BCV-spaces for short. Some well-known examples of
BCV-spaces are the Riemannian product spaces S?xR, H2xR
and the 3-dimensional Heisenberg group [5]. Let k and 1 be
real numbers, with 0. The Bianchi-Cartan-Vranceanu
spaces, (BCV-spaces) M3 (k,t) is defined as the set

{(%,y,2) EIR?: 1+(x/4) (x>+y2)>0}
equipped with metric
ds>=((dx*+dy?)/((1+(/4)(x*+y?))?))
+H(dz+((ydx-xdy)/(1-+H(/4) ().
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* if k = 1=0, then M3(x,1) =IE?
* if k =0 and 1£0, then M3(k,t) =Nil;.

More details can be found in [4 ] and [1].

In [5], it is restricted to the 3-dimensional Heisenberg group
coming from R? with the canonical symplectic form
o((X,y),(X1,y1))=Xy1-X1Y, i.e., they consider R* with the group
operation

(X,Y,2)%(X1,Y1,Z1)= (XX 1,y Yy 1,221 H(Xy1)/2)-((X1Y)/2)).

For every non-zero number 1 the following Riemannian
metric on (R3,*) is left invariant:

ds>=dx*+dy*+41*(dz+((ydx-xdy)/2))>

After the change of coordinates (x, y, 21z)—(X,y,z), this
metric is expressed as

ds?>=dx*+dy*+(dz+t(ydx-xdy))>.

By some authors the notation Nil 3-space is only used if

7 =(1/2). We will use the notation Nilz in short. It is well
known that Nil space is isometric to Heisenberg space. The
geometry of Nil is the three dimensional Lie group of all real 3
triangular matrices of the form

1
0
0

o = ®
— < N

Let (IR3,gn;,) denote Nil space, where the metric with
respect to the standard coordinates (x,y,z) in IR® can be written
[14] as

gni,=(dx)*+(dy)*+(dz-xdy)*.

Hence we get the symetric tensor field gy;, on Nilz by
components.

1 0 0
gi= 0 1+x* —-x|.
0 -x 1

Note that the Nil metric can also be written as:
ds?=)7_ 0i®oi,

where 0'=dx, @*=dy, ©*=dz-xdy, and the orthonormal basis
dual to the 1-forms is

E,=(0/(0x)), E,=(0/(3y))+x(0/(62)), E3=(0/(02)).

With respect to this orthonormal basis, the Levi-Civita
connection and the Lie brackets can be easily computed as:

Ve,E1 =0, Ve, Eo=(1/2)E;, Ve, Es=((-1)/2)E,

Ve.E1 = ((-1)/2)E3, Ve.E2=0, Ve.Es=(1/2)E,;

Ve.E1 =((-1)2)E;, Vg,E,=(1/2)E,, Vi, E3=0.
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[E15E2]2E35 [EZ’E3]:O’ [ElaE3]:0'
Hence
1 -1
' n 3
2h 0 gk
_—IEZ —E 0

is the matrix with (i,j)- element in the table equals VgE; for the
basis {E1,E;,Es}. See for more details [14].

2. The Parametric Equation of General
Helix in Nil 3-Space

2.1. Riemannian Structure of Nil Space

Helix is one of the fascinating curve in science and nature.
In this section, we study on the general helices in the Nil;. We
characterize the general helices in terms of their curvature and
torsion. A curve of constant slope or general helix is defined
by the property that the tangent makes a constant angle with a
fixed straight line (the axis of the helix). A classical result
stated by M. A. Lancret in 1802 and first proved by B. de Saint
Venant in 1845 (see [7] and [2] for details) is: A necessary and
sufficient condition that a curve be a helix is that the ratio of
curvature to torsion be constant. Helices are examined in [9]
and [6]. Let a be a helix that lies on the cylinder. A helix which
lies on the cylinder is called cylindrical helix or general helix.
Assume that {T,N,B,k,1} be the Frenet apparatus along the
curve a. It has been known that the curve a is a cylindrical
helix if and only if ((k/t)) is constant, then ((k/t))'=0 where K
and 7 are the curvatures of a. If the curve is a general helix, the
ratio of the first curvature of the curve to the torsion of the
curve must be constant. We call a curve a circular helix if both
1#0 and « are constant. Then, the Frenet frame satisfies the
following Frenet-Serret equations

V.T =N,
V; N = «T+B,
V;B=-N.

With respect to the orthonormal basis {E4, E,, E3}, we can
write

T=T,E+T,E,+T3E;,
N =N E{+N,E,+N3E;,
B = TXN:B1E1+B2E2+B3E3.

Parametric equations of general helices in the sol space Sols
are examined in [3]. Normal ruled surfaces of general helices
in the Sol space Solz are examined in [8].

Normal and Binormal ruled surfaces of general helices in
Nil 3-space with the Riemannian Structure of Nil 3-space are
examined in [12].

Parametric equation of general helix and all the Frenet
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apparatus are examined as in the following theorems.

2.2. The parametric equation of General Helices in Nil
Space Nilz

Theorem:

Let a:I>Nil; be a unit speed non-geodesic general helix.
Then, the equation of a unit speed non-geodesic general helix
a, with respect to the orthonormal basis,

{ExEq, E},

a(s)= ((sinB)/(C1))sinD+C3)E, H(((-sinB)/(C;))cosD+Cy)E,
+ (((sin?B)/(4C+2))sin2D-((CysinB)/(C1))sinD
+ (((sin?B)/(2C4))+cosP)s-C5C4+Cs)Es,

where we take D=C;s+C,, C{,C,€IR.

Proof:

Assume that o: [—>Nilz; be a unit speed non-geodesic
general helix. So, without loss of generality, we take its axis as
parallel to the vector E3. Then

gnil; (T,E3)=T3=cosp,

where f is constant angle. On the other hand the tangent vector
T is an unit vector, so the following condition is satisfied
T4?+T2*=1-cos?B. Since cos?B+sin’p=1, we have the general
solution of T4?+T,?=sin’p can be written in the following form

T,=sinfcosD,
T,=sinfsinD,
T;=cosp

Also, without loss of generality, where we take D=C;s+C,
where C1,C,€IR. So, substituting the components T4, T, and
T3 in the equation, we have the following equation

T=sinficosDE+sinpsinDE,+cospE;.
Definition of the tangent vector field T, give us;
((dx)/(ds)) = sinficosD
((dy)/(ds)) = sinfsinD
((dz)/(ds)) = x sinBsinD+cosp.
Integrating both sides, we have
= x(s)=((sinP)/(C,))sinD+C4
= y(s)=((-sinP)/(C,))cosD+C,
=2(s)=(-((sin*p)/(4C,?))sin2D
-((C5sinP)/(Cy))cosD
+(((sin?B)/(2C4))+cosP)s)+Cs

where Cs, C,, Cs are constant of integration. Substituting all
them in o(s), this proves our assertion. Thus, the proof of
theorem is completed.

3. The Curvatures of the General Helix
in Nil 3-Space
3.1. First Curvature of the General Helix in Nil Space Nilz

Theorem:
The first curvature (curvature ) of the general helix in Nil
Space Nils is
K =(cosp - Cy)sinP, (cosp-C,)sinf>0

Proof:
Assume that a: I— Nilz be a unit speed non-geodesic
general helix with

T= sinfcosDE;+sinPsinDE,+cosBE;.

The Levi-Civita connection and Lie brackets can be easily
computed as:

ViT =T,E;-(1/2)T, T, Es+((-1)/2)T, T3E,
+T,E,+(1/2)T, T, E5+(1/2)T,T3E,
+T'3E3-(1/2)T5T, E,+(1/2)T,T,E,

= (T'}#T,T3) E;H(T'5-T,T5)E,H(T'5)E;
By substituting T4, T, T3 and derivates, we get
V+T = (cosB-C,)(sinBsinDE, -sinBcosDE,)
= (cosp-C,)sinp (sinDE;-cosDE,).
Since k=gyi;3 (VrT, N) and N=(1/x)VT we have
K =gniiz (V1 T, (1/x) V1 T) &* =gNil3(V;T ,V;T)
K% = (C;sinp-sinBcosp)?
= (cosP - C,)* sin’B
and also for (cosp - C1)sinf > 0, first curvature is
Kk = (C;-cosP)sinp.

3.1.1. The Normal Vector Fields of the General Helix

The following theorem gives us the explicit parametric
equation of normal vector fields in Nils.

Theorem:

Let a:I—>Nilz be a unit speed non-geodesic general helix.
Then, the normal vector field of the general helix is

N= (sinD,-cosD,0)

where we take D=Cs+C,, C,,C,€IR.

Proof:

Let a:I—Nil; be a unit speed non-geodesic general helix.
By the use of Frenet formula V1T =kN,

kN = (cosp-C,)(sinPsinDE, -sinfcosDE,)
= (cosp-C,)sinp (sinDE;-cosDE,).

Hence the normal vector field of the general helix is
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N = (1/x)((-Cysinp + ((sin2p)/2)) sinDE,
+(C;sinf - ((sin2f)/2)) cosDE,)

where we take D=C;s+C,, where C,C,€IR. Also we know
that; k = (C1-cosp)sinf3, so

N=(1/k) V{T
N= 1/(sinB(cosp-C;)))(cosp-C,)(sinfsinDE-sinfcosDE,)
= sinDE,-cosDE,
N = (sinD, -cosD, 0),
or substituting
E,=(0/(0x)), E,=(0/(0y))+x(0/(0z)), E3=(0/(0z))

In

N = sinDE;-cosDE,

N = sinD(0/(0x))-cosD((0/(3y))+x(6/(0z)))

N=sinD(0/(0x))-cosD(0/(0y))-(((sinf)/(C,))sinD-C3)cosD(5/(
07)).

3.2. Second Curvature (Torsion) of the General Helix in Nil
Space Nilz

Theorem:
The second curvature (torsion) of the general helix in Nil
Space Nils is

7= (C42-Cycosp+ (1/4)) 12

Proof:
With the Levi-Civita connection and Lie brackets can be
easily computed as:

ViN = (N';+ (1/2)N,T5+(1/2)N;3T,)E,
+ (N, +((-1)/2)N, T5+((-1)/2)N5T,)E,
+ (N'3H(1/2)N, Ty H(-1)/2)N, T,)Es.
Also for N=sinD E; - cosD E,, we know that
N, =sinD; N';=C;cosD
N, = -cosD; N',=C;sinD
N, =0, N';=0.
Now it is easy to say that for
V:iN= ((C,-(1/2)cosB)cosDE,;
+ (C4-(1/2)cosp)sinDE,
+ ((-1)/2)sinP)E;
VN = (1/2)((2C;-cosP)cosD,(2C;-cosP)sinD,-sinf3)

It is well known that Binormal vector field of a curve is
B=(1/7)(V{N +«T). Also torsion is
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T= g, (V1N,B)

©= g, (ViN, (1/7)(V4N +xT))

=g, (ViN, VN +«T))

=it (VN ViN)) g, (VeN,KT))
=(1/4)(((2C4-cosP)cosD)*+((2C,-cosP)sinD)*+sin?P)
T = (1/4)((2C4-cosP)*+sin’B) or 12 = C,>-C;cosP+(1/4).

3.2.1. The Binormal Vector Field of the General Helix in Nil
Space Nilz
Theorem:
Let a : [>Nilz be a unit speed non-geodesic general helix.
Then, the binormal vector field of the general helix is

B= (1/ (C42-Cycosp+(1/4)) %)
((C1-(1/2)cosp+sin®BcosP-sin*BC, )cosDE,

+ (C1-(1/2)cosp+sin?BecosP-sin?BC, )sinDE,
+ (cos?B-cosPC,-(1/2))sinBEs)]

where we take D=C;s+C,, where C;,C,€IR.

Proof:

With the Levi-Civita connection and Lie brackets can be
easily computed as:

VN = (1/2)((2C4-cosP)cosD,(2C;-cosP)sinD,-sinf).

And, using the Frenet-Serret equation VN = -kT+1B, we
have B = (1/1) ( ViN +«T)

B=(1/7 )((((2C-cosP)/(2x)))(cosP-C, )+K)sinfcosDE,
+ ((((2C;-cosP)/(2k)))(cosP-C,)+«)sinfsinDE,
+ (kcosP-((sin?B)/(2x))(cosp-C,))Es.

By substituting k and 1, we complete the proof.

Example:

Assume that a:I—Nil; be a unit speed non-geodesic general
helix and its axis as parallel to the vector Es. Also
eni(T,E3)=T3=cos(n/6) , where P=(m/6) is constant angle.
Hence the explicit parametric equation of helix is

a(s) = ((1/2)sin s+1)E4+ (((-1)/2)cos s+1)E,
+((1/(16))sin2s-(1/2)sin s+(((1+2V3)/4))s)E3.
Hence; the first curvature is
k=(1/2)(V3)/2)-1)=((N3-2)/4)
and the second curvature is

=(5-2\3) "?12.
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Figure 1. The figure of Helix in Example.
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