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Abstract: In this work, connection formulas and forms of an orthonormal frame field in the Minkowski space 1R13 were
introduced and then the variation of connection forms was studied. In addition, the relation between the matrix of connection
forms and the transition matrix of an orthonormal basis of tangent space were established, and an example was illustrated.
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1. Introduction

It is well-know that Euclidean geometry is a very useful
tool in classical mechanics. On the other hand, Riemannian
geometry has tremendous amount of applications in general
relativity. Therefore, differential geometry has always given
rise to new branches of physics [3,7]. Over the years,
differential forms have generated a considerable amount of
interest not only because they are interesting, but also
important as they influenced the research direction both in
Euclidean and Lorentzian geometries. Some of the works in
this direction are given in [2,4,6] where the authors studied
connections forms. In particular, they investigated covariant
derivatives of frame elements as connected to this frame
and they obtained connection forms and their matrices.

In the spirit of this study, we investigated the connection
formulas and forms of an orthonormal frame field in the
Minkowski space IRl3 . This paper is organized as follows:
subsequently, we provided the background material
concerning the basic concepts and definitions. Then, we
study the variation of connection forms. In particular, we
establish the relationship between the matrix of connection
forms and the transition matrix of an orthonormal basis of
the tangent space, and we present an example. In the final
section, we summarize our results.

2. Preliminaries

We consider the Minkowski 3-space &’ with the scalar
product

<)?,Y>:x1y1 X0, X305

where X =(x,%,,%;) and Y =(y;,»,,»;) are vectors in IR13.

¥ and y are called perpendicular if (¥,7)=0. The norm of
is defined by [¥|=|(*.%) .

(%,%)>0 or ¥ =0, time-like if (¥.X)<0 and light-like(null) if

(%.%)=0 and X #£0 [5]. The cross product of ¥ and ¥ is

defined by [1]

X
X X is called space-like if

XNY = (X355 =X3)3,X1Y3 —X31, X1 Yy X3 7)

Let@:I - IR}, ITIR , be a regular curve in IR13 , and
consider the tangent vector ﬁ'(s) , s 0OIR . Thenin [5],

1) @ is a space-like curve if <5’(S),5’(S)> >0,

2) @ is a time-like curve if <5’(S),5’(S)> <0,

3) @ is a null curve if <5’(s),5¥(s)> =0.

Let @(s) be a space-like curve of unit speed in IR; with
the natural curvature A(s) and torsion 7(s). Let us consider
the Frenet frame {f,ﬁ,l?} of @(s) where  , 7 and j are the

space-like unit tangent vector, time-like unit principal normal
vector and space-like unit binormal vector, respectively.

Then scalar and cross product of £ , /i and p are given by

(7.6)=~(f.ii) = (b,b) =1, (i.i)=(.b) = (ii.b) =0,
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iNi ==b, iNb =—1, bAT =i
Finally, Frenet formulas are given by [8]

f=Kk(s)i, F=K(s)+T(s)b, b =T1(s)i.

3. Main Results

Let {El,Ez,E3} be an orthonormal frame field in the
Minkowski space in which Ej is a time-like vector. Consider

a tangent vector v, O7T,(IR’) at any POIR;. Let D be the

Levi Civita connection on /&’ . Inspired by Frenet formulas,

we can consider the covariant derivative of vector fields £,
1<i<3,
connected to this frame field. Since D, £, OT,(/R’), and
{E.(p).E,(p),E,(p)} is an orthonormal basis of tangent
space T,(IR}) with w;(v,) O IR, the covariant derivative of

with respect to the tangent vector V, as

E., 1<i<3, with respect to Vv, can be written by

3
3.0D, E =) w;(v,)E;(p)
j=

where

, J%3

. 1
3.2) w;(v,) <D‘,pE[,Ej(p)>£j with & ={_1 S =3

From a geometric point of view, this equation extracts the
number w; (v,) that is component of the variation of vector

E, with respect to £,(p) where the tangent vector V,, is the
velocity vector along a curve.
Let v, u, OT,(IR)) and let a, b IR . Since

wy(av, +bu,)=aw,(v,)+bw,(u,)

the transformation (w,), :T,(IR}) - IR | defined by

W), (v,) =w;(v,)

is linear. Thus W; corresponds to a linear transformation
from the tangent space 7,UR) to IR for all P in the
Minkowski space IR’ . In this case, note that (w;), is an
element of the cotangent space7, (/R}), that is, a one-form in
IR} .

Theorem 3.1: One-forms W; of the orthonormal frame
field {£,.E,.E,} in which E; is a time-like vector are given by
w; ==&&w,, 1<i,j<3.

Proof: Since (E,,E,): IR’ ~ IR is a constant function, we
have vpl<E;,E/>J=0 for all v, O7,(IR}). On the other hand,
the equation

v, [<EE />] = <Dvp E,E( p)> + <Ei (p). D, E ,>
Implies that
(D, E.E,(p)=~(E(p).D, E,)
Thus
w,(v,) = &,(D, E.E,(p))

=-¢,(D, E,.E(p))

=-£,£,(¢, <D E, E, (p)>)

=—g.ew,(v,).
Since the equation is true for all v, O7,(IR’), we obtain

W, =—EEW,.

Definition 3.1: One-forms w;; are called connection

forms of the orthonormal frame field {£,.E,.E.}.

Definition 3.2: The equation given in (3.1) is called
connection formulas of the orthonormal frame field
{El > EZ > E3}

Using Theorem 3.1, we can obtain the matrix W =[w, ],
of one-forms as

Note that W is a skew-adjoint matrix in the sense that
W' =-eWe, where € is the signature matrix given by

1 0 0
£=l0 1 0],
00 -1
09 0 0 .
Let {‘T*f} be the natural frame field in the
X, 0x, Ox;
, , 3 O
Minkowski space /R; in which 3. S a time-like vector.
3

Then the vector £ ;» 1<i <3, can be written as

(33) E, Z% o
where g, ‘IR’ - IR is a differentiable  function.
Let 4=[a;]is be the transition matrix between the
orthonormal bases {E,(p).E,(p).E;(p)} and

G} G}
{Txl (P),TXZ(P)

equation given in (3.3) can be written as

G} 3
,g(p)} of the tangent space T,(IR’) . The
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'11
E, a;“
(B4 | E, =4 — |
Ox,
E3
9
| O, |

Note that A is an orthogonal matrix, that is, 4™ =&d'e.
Now we are ready to state the relation between the matrices
Aand W.

Theorem 3.2: The skew-adjoint matrix W and the
orthogonal matrix A satisfy W =dA4.47".

Proof: Let V,, be an element of 7, (IR}). Then,

3
Dv,,Ei = Dv,, (Zaik az]
k

k=1
3

Z (atk

k=1 k

i[v o] (1) v, (01D, {;D

k=1

=:Zlv,,[a,~k]aik »

and therefore

w0,)=(D, E.E (p)s

< Sl 03020

=, [azl] 1(19) V[ 2] 2(17) V[ 3] 3(p)]€
=[dq)v,)a,(p)+dg,)v,)a,(p)~(da)v,)a;(PE;
Z[dqlajl +clq2aj2 —dq3aj3]£j (vp).

Since this equation is correct for all v, ar » (IR13 ), we

obtain

e;,w; =da,a, +da,a, —da,a,;.
Finally, the above equation along with the identity
A7 =ed'e implythat W =dA.A™.

Example: Let (r, H,Z) be the wusual -cylindrical

coordinates in IR13 as indicated in Figure 1. There the

coordinate functions are well defined and an inverse
mapping exists given by

x=rcos@, y=rsinf, z=z.

Consider the natural frame field {6 9.9

. 3
ooy a}m[Rl.The

J0 0
cylindrical frame field { 3,790 2 } is given by

Figure 1. The Cylindrical Coordinate System

i=cosz9§+sim9£,

or X dy
9 = —rsiné’3 +rcosfd—,
08 Ox oy
o0_0
0z 0z

It follows from the above equations the that the transition
matrix 4 is given by

cosd sind 0
A=|-rsin@ rcosf O0].
0 0 1

Finally, applying Theorem 3.2 we obtain the matrix of
connection forms of the cylindrical frame as

W=dAA"
—sin 646 cos 6d @ 0]fcos@ —-r"'sind 0
W =|-rcos@d@—sin@dr —rsin@d@+cosBdr 0| sind r'cosd 0
0 0 0 0 0 1
0 r'dg 0
W=|-rd8 r7dr 0.
0 0 0

4. Conclusions

In this paper, we studied the connection forms of an
orthonormal frame in the Minkowski space IRl In contrast to
IR’ , we observed that W, , the component of E, in the
direction of £ ; (p) along a curve with velocity vector v P
depends on indices; however, the this dependence does not
change the relation between the skew-adjoint matrix W and
the orthogonal matrix 4. We believe that our results will
provide a base for further studies, in particular for connection
forms in the Minkowski space.
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