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Abstract: In this paper, we present results on the projeatiothe folding part of the elementary catastroptaels on the
control space to find stability and catastrophiemdmenon of the periodic solutions of some nontimifferential equations
(NLDE) by using methods of catastrophe theory. \&feehshown here, that the cusp and Butterfly tymgedd on the degree
of nonlinear differential equations, and that tlifeidsation can be classified as cusp or butterflyes catastrophe. Moreover,
our aim, in this work, is to obtain periodic sotuts of some nonlinear differential equation (NLEEH to study the stability
of these periodic solutions and the main resutiésfollowing propositionThe catastrophic Types depending on the degree of
non-linear differential equation.
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. of periodic solutions of NLDE. In the present wottkerefore,
1. Introduction P P y

Some characteristics of the phenomena of discamtinu Catastrophic method which might bridge the gap betwthe

an effort has been made to study these phenomepon b

jumping in reality are hard to be explained by dmues. The
catastrophe theory can explain these charactexisiacusp
and butterfly  catastrophe models are developezhalyze
the stability by drawing graphs for a cusp and dilit
catastrophe models of nonlinear differential edqraj the
bifurcation set or the projection of the foldingripaf the
cusp or butterfly catastrophe models on the corgpaice is
always accompanied with the saddle-node bifurcatibhe
study of catastrophic problems (equilibrium points
catastrophic manifold (CM), amplitude, jump
phenomena, ...,etc.) has been of immense importdnce s
long time in view of its growing applications in ydical,
biological and social sciences. Several authorsgf@mple
Arrow Smith et al. (1983), Cesari (1971), Hale (A6
Hartman (1963), Hayashi (1964), Hirsch & Smale @)97
Marsden et al. (1976), Sale (1969), Smith et a®7{,
Zeeman (1977, and references therein) and Muhamm
Nokhas Murad Kaki (1985) have made their valuabl
contributions towards studying some aspects (dayitlin
points, periodic solutions, limit cycles, stabilityfor

instability), and phenomena associated with force@

oscillations) of the problems. To my knowledge, sthe
authors, have, however, not looked into -catastwph
problems like saddle- node bifurcation as an caiphic set,
classification and its type and the stability aethsstability

above referred works and others in progress bodtitgtive
and quantitative thoughts have been given to tbblpm so
as to present a more clear picture of the physitenomena.
This work may generate a continuous interest tofeakthat
he has actually available new investigative techeigAs
well known, there are elementary and non-elementgrgs
of catastrophes; the formers of seven kinds (fadsp,
swallowtail, hyperbolic, elliptic, butterfly parali©) and the
latter has got no classification, we have shownre hibiat
saddle — node bifurcation of the averaged systeisingr
from the general from of the nonlinear differentigjuation
(NLDE) which is of the following form [6]:

X + w’x +ef (x.X) =0

Some mathematical models that describepaniodic
sojution behavior are considered. Solving of non-linear
erential equations and finding stability of stbn of them

Gre important work in physical science, and mathmsa

Most phenomena in our world are essentially noalirend
re described by nonlinear ordinary differentiabigipns.
olving nonlinear ordinary differential equation tisus of
great importance for gaining insight into real-vdorbr
engineering problems. However, generally speakihgs
difficult to obtain accurate solutions of nonlingaroblems
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[1].50 we attempt to solve some nonlinear diffdent
equations by methods of catastrophe theory.

Catastrophe theory is the study of singularitycaliginuity
and it is about the possible shapes of the eqiulibbrstates
form a catastrophic manifold when we have n statéables
in the vector x and k parameters so the possibldilegum
states form this surface, or catastrophic manifiol¢h + k)-
dimensional space [2]. The behavior of the systeer time
is described by trajectories over this manifold, isois
important to us to find such a manifold. As welbkm there

are seven types of elementary catastrophe: Foldsp,Cu

swallowtail, Hyperbolic umbilici, Elliptic, Buttely,
Parabolic umbilici [2]. We have studded here thétdrtly

catastrophe and we have related this type with NLD

25
y =X (2.2)
and, from egs. (2.1) And (2.2), we have
Y =-0x-ef(X,y) (2.3)
To satisfy egs. (2.2) and (2.3), we further assthmae
X =A(t) sin wt+ (1))
(2.4)

X = A(t)wcos (@t + (t) )
where A(t) and ¢(t) are slowly varying functions of t, and
Enereforef and ; can be neglected. In order that the set of

involves the study of change using the techniqués &duations (2.4) should be the solutions of equat{@r?) and

catastrophe theory[3] spatially we have used théhoak of
Krylov and Bogoliubov to study the stability of jmmtic
solution by using new conditions for the second eord
nonlinear differential equations:

X +w’x +&f (x.x) =0

We have shown here that the butterfly catastroptoeirs
when the NLDE of fifth degree,. We have divided thain
body of this work into three parts; the first past the
introductory in section 2 we have described thehogtof
Krylov and Bogoliupov. in the section 3 we havedsted the
stability of limit cycles and in section 4 we hastidded
catastrophic manifold of butterfly.

2. The Method of Krylov and Bogoliubov

Although Krylov and Bogoliubov's method is fairly
general, we will apply it only to equations of tfioem:[6]
X +w’x +ef (x.X) =0 (2.1)

whereg is small parameter.

(2.3) it must satisfy the following conditions[3, 5
KsinW+Aq€cosW= 0. (2.5)

And

A wcosW - Am(ooﬂi))sinuJ = -’ Asin® - f(x,y). (2.6)

Therefore
AcosW - Ati) siny = —i f(AsinW ,Awcos ) (2.7)
Wherey =t +¢
Solving (2.5) and (2.7) foj and ¢, We get:
A= —gcost(AsinkP ,Awcodd ) (2.8)
ci): isin\lJf(AsinllJ,AmcosHJ ) (2.9)

Note that A and @ are both proportionaktaonferencing
that A and @ are slowly varying functions of tim&enc is

For the case = 0 we may apply linear theory to obtain thesmg|| and that in terms of the assumption containe(@.2)

solution:
x=Asin(at+g¢)

where A and @ are arbitrary constants. Differeintgagives:

>.< = Aacos(wt + @)

Assume that, for smal, the solution of (2.1) takes the
form:

x=A(t) sin (@t +¢(t)) X = A(t)ocos (ot +¢ (t))

where A(t) and d(t) are slowly varying functionstof

We proceed to obtain the approximate solution of &pas
follows:

Let

and (2.3) equations (2.8)and (2.9) are exact reptason of
Aand @..

Krylov and Bogoliubove approximation is to replatand
@ in equations 2.8 and 2.9 by their average vahwes one
period Z/w. A is regarded as a constant in taking the average
This procedure (known as a method of averagingisi¢éa

2m/w

A=-% J cosW f(AsinW ,Awcos¥ )dt  (2.10)
21
. € 2mn/w
o= f sinWf(Asin¥,Awcos¥ )dt  (2.11)
21A

0

Becaused¥ = «dt, the substitutiop =4t +¢ gives the
final results

. 2n
A =—L.[cosll—' f(Asin®, AwcodV )& (2.12)
21wy
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€
2TAW

. 2m
¢ = J'sianf(Asian,AmcostP o (2.13)
0

The exact equations 2.8 and 2.9 are thus replaged b

approximate equations 2.10 and 2.11. Once theraitebave
been evaluated we have first order differentialagipus to
solve for A and @. We should find the values ofrl& by
evaluating the integrals 2.12 and 2.13. Then tHatiso is
given approximately by x=A sino{+d) whenever A and @
take their values.

3. Sability of Limit Cycles

A limit cycle is an isolated closed trajectory; shineans
that its neighboring trajectories are not closethey spiral
either towards or away from the limit cycle. Thuinit
cycles can only occur in nonlinear systems. (Iniredr
system exhibiting oscillations closed trajectorieme
neighbored by other closed trajectories. A staibhit tycle is
one which attracts all neighboring trajectoriesyatem with
a stable limit cycle can exhibit self-sustained iltstons
which are one of the most important phenomenadbatr in
physical systems. A system oscillates when it hasrdrivial
periodic solution. An isolated periodic orbit islled a limit
cycle. — most of the Physical and biological preessof
interest are of this kind..

A existence of limit cycles:

The amplitudes of possible limit cycles are givep b

solutions of the equation

A=0, ie Aisconstant

Now
. < 2
A=——— jcos‘P f (AsinW, AwcosW)dW = G(A), say
2mw

So the amplitudes of the limit cycles are given thg
solutions of G(A)=0.

The equation arises whether or not the limit cyslstable,
i.e. if we made a slight disturbance from the limitcle
trajectory in the phase — plane, would the motietunn to
diverge from the limit cycle.

Consider the expression for A. Suppose that a solution of
G(A)=0is A=A,

A, is the amplitude of a limit cycle, and G(A;) = 0. Now
make the disturbance A = A+ 5 where 7 is small. For a
stable limit cycle, we requiren — Qast — oo.

Differentiating we obtain A=/ .

Also A=G (A+ 1)
=G (A) +nG (A)
=n G'(A,), since G(A) = 0.
S0/ =nG'(A)- Solving this equation gives
n = Ce®®) ' where C is a constant. 300 as t—
provided G(A) < 0.
We now have a condition for stability:

Mohammed Nokhas Murad Kaki: Catastrophic Typepdhding on Degree of Non-Linearity

1-If G'(A,) < 0, there is a stable limit cycle at A 5.A
2-If G/(A,) > 0, there is an unstable limit cycle at A & A
B Non-existence of limit cycles
We turn our attention now to the negative side lof t
problem of showing limit cycles exist. Here is adhem
which can sometimes be used to show that a lintkecgoes
not exist.

(Negative Pointcaré - Bendixson Criterion) If, osimply

. of, of, .
connected region D of the plane, the expresg)t(bmi is
1 2

not identically zero and does not change sign, then
system, X' =f(x) has no periodic orbits lying entirely D of
the plane, the expression

4. Catastrophic Manifold of Butterfly

Our purpose, in this section, is to find the catgstic
manifold of butterfly catastrophe, and to show tlihé
butterfly catastrophe occurs in case of NLDE ahfifiegree.
To do this we first define the function f that repents the
butterfly catastrophe. Suppose that the possibiglilegum
states of the system are the minima of the fund{ongiven

by

f(x) = X% + ux* + UpxC+ug+ugx (4.1)
The stationary values are given by
Of/0X = BXC+AUX +3X*+2X+U, = 0 (4.2)

The equation (4.2) can have one or three or fiaén@ots.

The second derivativé/0x® is zero on some curve
(which includes the point (0, 0, 0, 0, 0) in (%, W, Us, Uy) —
space),
singularities along the curve.

Also the second derivative can be used to iderttiky
minima; in the case of three real roots, two araima; and
in the case of the single real root, that turns fmube a
minimum.

For example take the function f in (2.1) as follows

f (t,u,u) = pu® + Bsin(wt)
The averaged system is:

&

2

a=-—(Bb+516ubr* + B
W

: &£
b = W—z(ﬁa+ 516 uar 4)

Let n=615 and the response manifold (RM) is.
Y +2By’+B’y-B*=0

Which is a catastrophic manifold of butterfly. Anbe
nonlinear dynamic system is written as follows

y=-(y"+ 2By’ +p’y-B?) (4.3)

and hence that the function has degenerate
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Let u, =28,u,=4%u,=-4° and investigate
Liapanov function. Of this dynamic. Construct a dtion

1 1
F(y,uy,u,.U,) :Ey6 +Zu1y4 +u2y2 +Uz)y

Which is the Butterfly catastrophe. [5]. It is dasseen
that F(y) IS a Liapunov function with
y==(/"+2B8y° + B?y-B*)? <0 = —()° +20y* + f?y—-B*) 20

The degree of F , as well known, is 6 and Buttetjlye
catastrophe occurs here , that is the type depé&hdam
degree. Now, consider the non-linear differergi@iation[5]
(which is of fifth degree)

X+a)2x=i5
5x

The averaged system is

A= 5/16e0" A>+1/2A%+F°A (4.4)

The catastrophic manifold [5] for the averaged esys({4.4)
is

5/16em* AS+1/26A%+B*A =0, (4.5)

the periodic solution as follows:

Put, G(A) = 5/166w" A® +1/2eA° + B?A
d - 20 aa4 ., 3 2 2
It (A = 46£a)A + 3060 + 7 <0,

then Ais theamplitud of stable periodic solution.

5. Conclusion

The following proposition holds:
The catastrophic Types depending on
nonlinear differential equation.

the degree of
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