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Abstract: In this paper, we present results on the projection of the folding part of the elementary catastrophe models on the 
control space to find stability and catastrophic phenomenon of the periodic solutions of some nonlinear differential equations 
(NLDE) by using methods of catastrophe theory. We have shown here, that the cusp and Butterfly types depend on the degree 
of nonlinear differential equations, and that the bifurcation can be classified as cusp or butterfly types catastrophe. Moreover, 
our aim, in this work, is to obtain periodic solutions of some nonlinear differential equation (NLDE) and to study the stability 
of these periodic solutions and the main result is the following proposition: The catastrophic Types depending on the degree of 
non-linear differential equation. 
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1. Introduction 
Some characteristics of the phenomena of discontinuous 

jumping in reality are hard to be explained by equations. The 
catastrophe theory can explain these characteristics. A cusp 
and butterfly    catastrophe models are developed to analyze 
the stability by drawing graphs for a cusp and butterfly 
catastrophe models of nonlinear differential equations, the 
bifurcation set or the projection of the folding part of the 
cusp or butterfly catastrophe models on the control space is 
always accompanied with the saddle-node bifurcation.. The 
study of catastrophic problems (equilibrium points, 
catastrophic manifold (CM), amplitude, jump 
phenomena, …,etc.) has been of immense importance since 
long time in view of its growing applications in physical, 
biological and social sciences. Several authors, for example 
Arrow Smith et al. (1983), Cesari (1971), Hale (1969), 
Hartman (1963), Hayashi (1964), Hirsch & Smale (1974), 
Marsden et al. (1976), Sale (1969), Smith et al. (1977), 
Zeeman (1977, and references therein) and Muhammad 
Nokhas Murad Kaki (1985) have made their valuable 
contributions towards studying some aspects (equilibrium 
points, periodic solutions, limit cycles, stability (or 
instability), and phenomena associated with forced 
oscillations) of the problems. To my knowledge, these 
authors, have, however, not looked into catastrophic 
problems like saddle- node bifurcation as an catastrophic set, 
classification and its type and the stability and semi-stability 

of periodic solutions of NLDE. In the present work, therefore, 
an effort has been made to study these phenomenon by 
catastrophic method which might bridge the gap between the 
above referred works and others in progress  both qualitative 
and quantitative thoughts have been given to the problem so 
as to present a more clear picture of the physical  phenomena. 
This work may generate a continuous interest to one feel that 
he has actually available new investigative technique. As 
well known, there are elementary and non-elementary types 
of catastrophes; the formers of seven kinds (fold, cusp, 
swallowtail, hyperbolic, elliptic, butterfly parabolic) and the 
latter has got no classification, we have shown here that 
saddle – node bifurcation of the averaged system arising 
from the general from of the nonlinear differential equation 
(NLDE) which is of the following form [6]: 

2x x f (x.x) 0+ ω + ε =ɺɺ ɺ  

Some mathematical models that describe a periodic 
solution behavior are considered. Solving of non-linear 
differential equations and finding stability of solution of them 
are important work in physical science, and mathematics. 
Most phenomena in our world are essentially nonlinear and 
are described by nonlinear ordinary differential equations. 
Solving nonlinear ordinary differential equation is thus of 
great importance for gaining insight into real-world or 
engineering problems. However, generally speaking, it is 
difficult to obtain accurate solutions of nonlinear problems 
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[1].So we attempt to solve some nonlinear differential 
equations by methods of catastrophe theory.  

Catastrophe theory is the study of singularity, discontinuity 
and it is about the possible shapes of the equilibrium states 
form a catastrophic manifold when we have n state variables 
in the vector x and k parameters so the possible equilibrium 
states form this surface, or catastrophic manifold in (n + k)- 
dimensional space [2]. The behavior of the system over time 
is described by trajectories over this manifold, so it is 
important to us to find such a manifold. As well known there 
are seven types of elementary catastrophe: Fold, Cusp, 
swallowtail, Hyperbolic umbilici, Elliptic, Butterfly, 
Parabolic umbilici [2]. We have studded here the butterfly 
catastrophe and we have related this type with NLDE 
involves the study of change using the techniques of 
catastrophe theory[3] spatially we have used the method of 
Krylov and Bogoliubov to study the stability of periodic 
solution by using new conditions for the second order 
nonlinear differential equations: 

2x x f (x.x) 0+ ω + ε =ɺɺ ɺ  

We have shown here that the butterfly catastrophe occurs 
when the NLDE of fifth degree,. We have divided the main 
body of this work into three parts; the first part is the 
introductory in section 2 we have described the method of 
Krylov and Bogoliupov. in the section 3 we have studded the 
stability of limit cycles and in section 4 we have studded 
catastrophic manifold of butterfly.  

2. The Method of Krylov and Bogoliubov 
Although Krylov and Bogoliubov’s method is fairly 

general, we will apply it only to equations of the form:[6] 

2x x f (x.x) 0+ ω + ε =ɺɺ ɺ                       (2.1) 

where ε is small parameter. 
For the case ε = 0 we may apply linear theory to obtain the 

solution: 

)  +t (sin A  =x φω  

where A and Ø are arbitrary constants. Differentiating gives: 

)  +t ( cosA = x φωω
•

 

Assume that, for small ε, the solution of (2.1) takes the 
form: 

) )( +t (sin  A(t) =x tφω  x  = A(t) cos ( t + (t) )
•

ω ω ϕ  

where A(t) and Ø(t) are slowly varying functions of t. 
We proceed to obtain the approximate solution of eq. (1) as 

follows: 
Let 

 y x= ɺ                                  (2.2) 

and, from eqs. (2.1) And (2.2), we have  

yɺ  = - ω2x - ε f (x, y)                           (2.3) 

To satisfy eqs. (2.2) and (2.3), we further assume that  

x = A(t) sin ( t + (t) )

x  = A(t) cos ( t + (t) )
•

ω ϕ

ω ω ϕ
                    (2.4) 

where )()( tandtA φ  are slowly varying functions of t, and 

therefore 
∗∗∗∗

φandA  can be neglected. In order that the set of 

equations (2.4) should be the solutions of equations (2.2) and 
(2.3) it must satisfy the following conditions[3, 5] 

Asin A cos 0.
∗ ∗

Ψ + ϕ Ψ =                         (2.5) 

And  

2A cos A ( )sin Asin f (x, y).
• •

ω Ψ − ω ω + ϕ Ψ = −ω Ψ − ε    (2.6) 

Therefore 

Acos A sin f (Asin ,A cos )
• • εΨ − ϕ Ψ = − Ψ ω Ψ

ω
       (2.7) 

Where φω +=Ψ t   

Solving (2.5) and (2.7) for 
••
φandA , we get: 

A cos f (Asin ,A cos )
• ε= − Ψ Ψ ω Ψ

ω
              (2.8) 

sin f (Asin ,A cos )
A

• εϕ= Ψ Ψ ω Ψ
ω

           (2.9) 

Note that A and Ø are both proportional to ε, conferencing 
that A and Ø are slowly varying functions of time when ε is 
small and that in terms of the assumption contained in (2.2) 
and (2.3) equations (2.8)and (2.9) are exact representation of 
A and Ø.. 

Krylov and Bogoliubove approximation is to replace A and 
Ø in equations 2.8 and 2.9 by their average values over one 
period 2π/ω. A is regarded as a constant in taking the average. 
This procedure (known as a method of averaging) leads to 

2 / w

0

A cos f (A sin , A cos )dt
2

π• ε= − Ψ Ψ ω Ψ
π ∫       (2.10) 

2 / w

0

sin f (A sin , A cos )dt
2 A

π• εϕ = Ψ Ψ ω Ψ
π ∫      (2.11) 

Because dtd ω=Ψ , the substitution φω +=Ψ t   gives the 

final results 

2

0

A cos f (Asin ,A cos )d
2

π• ε=− Ψ Ψ ω Ψ Ψ
πω ∫         (2.12) 
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2

0

sin f (Asin ,A cos )d
2 A

π• εϕ = Ψ Ψ ω Ψ Ψ
π ω ∫      (2.13) 

The exact equations 2.8 and 2.9 are thus replaced by 
approximate equations 2.10 and 2.11. Once the integrals have 
been evaluated we have first order differential equations to 
solve for A and Ø. We should find the values of A and Ø by 
evaluating the integrals 2.12 and 2.13. Then the solution is 
given approximately by x=A sin (ωt+Ø) whenever A and Ø 
take their values. 

3. Stability of Limit Cycles 
A limit cycle is an isolated closed trajectory; this means 

that its neighboring trajectories are not closed – they spiral 
either towards or away from the limit cycle. Thus, limit 
cycles can only occur in nonlinear systems. (In a linear 
system exhibiting oscillations closed trajectories are 
neighbored by other closed trajectories. A stable limit cycle is 
one which attracts all neighboring trajectories. A system with 
a stable limit cycle can exhibit self-sustained oscillations 
which are one of the most important phenomena that occur in 
physical systems. A system oscillates when it has a nontrivial 
periodic solution. An isolated periodic orbit is called a limit 
cycle. – most of the Physical and biological processes of 
interest are of this kind.. 

A existence of limit cycles: 
The amplitudes of possible limit cycles are given by 

solutions of the equation  

constant..,0 isAeiA =
•

 

Now 

sayAGdAAfA ),()cos,sin(cos
2

2

0
∫ =ΨΨΨΨ−=

• π

ω
πω
ε  

So the amplitudes of the limit cycles are given by the 
solutions of G(A)=0.  

The equation arises whether or not the limit cycle is stable, 
i.e. if we made a slight disturbance from the limit cycle 
trajectory in the phase – plane, would the motion return to 
diverge from the limit cycle. 

Consider the expression for A. Suppose that a solution of 
G(A) = 0  is   A = A1. 

A1 is the amplitude of a limit cycle, and G(A1) = 0. Now 
make the disturbance A = A1+ η where   η is small. For a 
stable limit cycle, we require η → 0 as t → ∞. 

Differentiating we obtain ηɺɺ =A  . 

Also Aɺ = G (A1+ η) 
≈ G (A1) + ηG′  (A1) 
= η G′ (A1), since G(A1) = 0. 

So )( 1AG′≈ ηηɺ . Solving this equation gives 

η ≈ СeG(A
1
) t ,where C is a constant. So η →0 as t → ∞ 

provided G(A1) < 0. 
We now have a condition for stability: 

1-If G/(A1) < 0, there is a stable limit cycle at A = A1. 
2-If G/(A1) > 0, there is an unstable limit cycle at A = A1. 
B Non-existence of limit cycles 
We turn our attention now to the negative side of the 

problem of showing limit cycles exist. Here is a theorem 
which can sometimes be used to show that a limit cycle does 
not exist. 

(Negative Pointcaré - Bendixson Criterion) If, on a simply 

connected region D of the plane, the expression 
2

2

1

1

x

f

x

f

∂
∂

+
∂
∂

 is 

not identically zero and does not change sign, then the 
system, )(xfx =′ has no periodic orbits lying entirely in D of 
the plane, the expression 

4. Catastrophic Manifold of Butterfly 
Our purpose, in this section, is to find the catastrophic 

manifold of butterfly catastrophe, and to show that the 
butterfly catastrophe occurs in case of NLDE of fifth degree. 
To do this we first define the function f that represents the 
butterfly catastrophe. Suppose that the possible equilibrium 
states of the system are the minima of the function f(x) given 
by  

f(x) = x6 + u1x
4 + u2x

3+u3x
2+u4x              (4.1) 

The stationary values are given by  

∂f/∂x = 6x5+4u1x
3+3u2x

2+2u3x+u4 = 0        (4.2) 

The equation (4.2) can have one or three or five real roots. 
The second derivative ∂2f/∂x2 is zero on some curve 

(which includes the point (0, 0, 0, 0, 0) in (x, u1, u2, u3, u4) – 
space), and hence that the function has degenerate 
singularities along the curve. 

Also the second derivative can be used to identify the 
minima; in the case of three real roots, two are minima; and 
in the case of the single real root, that turns out to be a 
minimum. 

For example take the function f in (2.1) as follows:   

)sin(),,( 5 wtBuuutf += µ  

The averaged system is:  

Bbrb
w

a ++−= 4
2

.

516( µβε  

)516( 4
2

.

ara
w

b µβε +=  

Let µ=615 and the response manifold (RM) is. 

02 2235 =−++ Bγββγγ  

Which is a catastrophic manifold of butterfly. And the 
nonlinear dynamic system is written as follows  

5 3 2 2( 2 B )γ = − γ + βγ + β γ −ɺ                     (4.3) 
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Let 2
3

2
21 ,,2 βββ −=== uuu  and investigate the 

Liapanov function. Of this dynamic. Construct a function 

γγγγγ 3
2

2
4

1
6

321 4

1

6

1
).,,( uuuuuuF +++=   

Which is the Butterfly catastrophe. [5]. It is easily seen 
that )(γF is a Liapunov function with 

0)2(0)2( 223522235 ≠−++−⇔<−++−= BB γββγγγββγγγɺ  

The degree of F , as well known, is 6 and Butterfly type 
catastrophe occurs here , that is the type dependents on 
degree.  Now, consider the non-linear differential equation[5] 
(which is of fifth degree) 

5
2

5

6

x
xx =+ ωɺɺ  

The averaged system is 

•
A = 5/16 εω4 A5+1/2εA3+β2A                (4.4) 

The catastrophic manifold [5] for the averaged system (4.4) 
is 

5/16 εω4 A5+1/2εA3+β2A = 0,              (4.5) 

Which represents a butterfly catastrophic model and A 
represents the amplitude of the solution. . Hence the 
catastrophic phenomena appear in the system, and, from 
algebra: The fundamental theorem of algebra states that 
every non-constant single-variable polynomial with complex 
coefficients has at least one complex root. This includes 
polynomials with real coefficients, since every real number is 
a complex number with zero imaginary part. So, we know 
that there is at least one root satisfies the eq. (4.5) which 
represents the amplitude of the periodic solution of the 
nonlinear differential equation. Now, we study the stability of 

periodic solution as follows: 

.

,02
3

16
20)(

A

A +A1/2+A  5/16G(A) Put,

2244

2354

solutionperiodicstableofamplitudtheisAthen

AAAGIf <++=
∂
∂

=

βεεω

βεεω

 

5. Conclusion  
The following proposition holds: 
The catastrophic Types depending on  the degree of 

nonlinear differential equation. 
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