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Abstract: Integral relations to describe the propagation of a TE-wave from an external point source through the 
two-dimensional medium (plane interface) and the plane-parallel plate are proposed. We discuss three types of waves that 
contribute to the resulting light field, namely, the propagating waves and the first- and second-type surface waves. The 
comparison of near-field refractive lenses (SIL, NAIL) and a planar hyperbolic secant lens shows their numerical apertures to 
have close values, with the difference being as small as 5% for the Si-based optical elements. The FDTD-method simulation 
shows that by combining the gradient-index hyperbolic secant lens with a subwavelength diffraction grating or replacing it 
with its binary analog, the focal spot size can be made, respectively, 10% and 20% smaller than the diffraction-limited res-
olution in the 2D medium. We design a Si-based, planar binary microlens to generate a near-surface focal spot of full-width 
half-maximum size FWHM=0.102λ, where λ is the incident wavelength, which is practically devoid of side-lobes. It is shown 
that about 10 percent of the total incident beam energy goes to the far-field zone. 
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1. Introduction 

The combined use of diffractive optical elements (DOE) 
and far-field focusing refractive optics makes it possible to 
achieve the superresolution, generating a focal spot of 
full-width half-maximum size FWHM = 0.44λ [1], where λ 
is the wavelength of light in vacuum, thus breaking the 
diffraction limit of FWHM = 0.51λ. Note, however, that the 
side-lobes of the resulting diffraction pattern will amount to 
20% of the focal spot central peak. Although it is possible to 
obtain even smaller size focal spots for the far-field diffrac-
tion pattern but the proportion of light energy going to the 
side-lobes will accordingly increase and can eventually 
become comparable with or equal to the central focal spot 
intensity [2]. Note that there are several definitions of the 
diffraction-limited resolution in optics: the Rayleigh resolu-
tion limit of 0.61λ/NA [3], the Houston limit of 0.5λ/NA, and 
the Sparrow limit of 0.475λ/NA [4], where NA is the nu-
merical aperture of the focusing system. For the purpose of 
this study, the resolution limit is defined for the 3D fields as 
the full-width half-maximum intensity of the Airy function 
squared (0.51λ/NA) and for the 2D fields as the full-width 
half-maximum intensity of the sinc-function (0.44λ/NA). 

To overcome the resolution limit without increasing the 
side-lobes the optical element should be put closer to the 
light source. This area of optics is dealt with using near-field 
microscopy techniques [5]. Eliminating from consideration 
the metallic surfaces and surface plasmons [6], in which a 
superresolution of λ/50 is attained due to a larger real part of 
the metal permittivity, and staying within the framework of 
refractive and gradient optics, the enhanced resolution can 
be achieved with the aid of near-field lenses, such as SIL 
(solid immersion lens) [7], NAIL (numerical aperture im-
mersion lens) [8-10] and nSIL (nano solid immersion lens) 
[3, 11]. 

Using a combination of the SIL (for wavelength λ = 633 
nm) and a glass hemisphere LASFN9 of radius 5 mm and 
refractive index n = 1.845, the superresolution of FWHM = 
190 nm = 0.298λ has been achieved experimentally [7]. 
Using a Si hemisphere and a NAIL of radius 1.6 mm, the 
superresolution of FWHM = 250 nm = 0.23λ was experi-
mentally achieved (for Si, the theoretical diffraction limit is 
FWHM = 0.147λ at n = 3.4 and λ = 1 µm) in Ref. [8]. In a 
later work [9], the achievement of a superresolution of 
FWHM = 145 nm = 0.11λ (λ = 1.3 µm) by means of the 
annular aperture and a Si NAIL was reported. If the lens is 
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illuminated by an annular beam, the focal spot is formed by 
the Bessel beam, for which the resolution limit is FWHM = 
0.36λ/NA. It has been experimentally demonstrated [3] that 
using the near-field optics (nSIL) and a glass hemisphere of 
radius 1-2 µm (n = 1.6) a focal spot of diameter FWHM = 
126 nm = 0.235λ (λ = 532 nm) can be obtained [11]. In Ref. 
[12] a subwavelength focal spot of diameter FWHM = 0.31λ 
was realized using a helical phase plate and a SIL with NA = 
1.7. It should be noted that the near-field refractive optics is 
able to enhance the numerical aperture of the already con-
verging beam, whereas the focusing of the beam propagating 
from a point source calls for the use of an extra optical 
component. 

The near-field focusing can be done using a single optical 
microelement. For example, in Ref. [13] a microdisc with 
400-nm height and diameter 10-µm was used to experi-
mentally obtain a focal spot of diameter FWHM = 0.86λ. In 
Refs. [14] and [15] experiments with planar gradient Lu-
neburg microlenses were described, although the focal spot 
diameters reported in the experiments were not 
record-breaking. An image with a resolution of FWHM = 
0.43λ with use of a planar photonic crystal was formed in 
Ref. [16]. Note that a near-field image can also be obtained 
with use of a superlens, FWHM = 0.28λ [17], and a hyper-
lens, FWHM = 0.38λ [18]. In Ref. [19] it was numerically 
shown that a spiral plasmonic lens of diameter 8 µm allows 
the plasmon to be focused into a spot of size FWHM = 0.35λ. 
A 3D plasmonic superlens with a sinusoidal grating was 
designed in Ref. [20], allowing two lines of width 0.05λ 
spaced 0.2λ apart to be resolved. In Refs. [21, 22] the focal 
spots were experimentally obtained on the tip of dielectric 
and metallic microcones. 

Superoscillation-based (SOL) imaging and focusing of 
light in the far-field zone was considered in Ref. [2] (FWHM 
= 0.17λ) and Ref. [23] (FWHM = 0.36λ). In Ref. [24] a focal 
spot of size FWHM = 0.58λ = 0.39λ/NA was generated 
experimentally 1-µm apart from the binary microaxicon. In 
Ref. [25], a radially polarized beam was focused into a spot 
of diameter FWHM = 0.33λ using an annular diaphragm and 
a microobjective with NA = 1.4. 

There are also works where the superresolution has been 
achieved by the refinement of traditional optical elements 
and systems. In Ref. [26] with use of a cardioid annular 
condenser (NA = 1.4) a Richardson slide pattern image was 
obtained for coherent light with a 90-nm resolution (0.2λ). 
In Ref. [27] using the solid-immersion imaging interfero-
metric nanoscopy a possibility was shown to achieve a res-
olution equal to the diffraction limit in the medium, FWHM 
= λ/(2n), where n is the medium refractive index. 

From the overview above it is seen that the best resolution 
has been achieved with use of SIL microscopy (FWHM = 
0.11λ) [9] and SOL microscopy (FWHM = 0.17λ) [2]. 

In this paper, we design a planar binary near-field dielec-
tric lens which allows obtaining a focal spot of size FWHM 
= 0.102λ. We also describe a mechanism by which the su-
perresolution is achieved using the near-field optics, in-
cluding a gradient-index planar lens. We show that inho-

mogeneous evanescent waves from a point source (first-type 
surface waves, k < kx < nk, where k and kx are the wave-
number in vacuum and the x-projection of the wavevector, 
respectively, n is the refractive index of the medium) are 
partially tunneled into the medium (lens) and transformed 
into the medium modes, thus contributing to the source 
image alongside with the conventional propagating waves 
(0< kx < k). In the far-field optics, the first-type waves fail to 
achieve the image plane. The second-type surface waves (kx > 

nk) transformed into the medium surface waves are propa-
gating along the lens input plane, so that only their expo-
nentially damped tails achieve the lens output (image) sur-
face. 

We derive integral relations to describe the propagation of 
a TE-wave in the 2D medium from an external light source 
(with the plane interface) and similar relations to describe 
the light field behind a plane-parallel plate. The comparison 
of the numerical apertures of the near-field refractive lenses 
(SIL, NAIL) and a planar hyperbolic secant lens shows them 
to have similar values, with the difference being equal to 5% 
for Si-based elements. The simulation using the FullWAVE 
software shows that by combining the gradient-index 
hyperbolic secant lens with a subwavelength diffraction 
grating or replacing it by a binary analog the focal spot size 
can, respectively, be made 10% and 20% smaller than the 
diffraction limit in the given medium. 

2. Tunneling of Inhomogeneous Waves 

from the Source into the Medium 

For the 2D case, the electric field strength of a monoch-
romatic TE-wave at distance z from the initial plane takes 
the form (formula of decomposition of field into angular 
spectrum of plane waves [28]): 
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where ξ = kx / k. 
A point source in the initial plane: 
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where δ(x) is the Dirac delta-function, produces at distance z 
the field amplitude equal to the sum of plane waves and 
inhomogeneous evanescent waves: 

2
1 0( , ) exp i i 1 dE x z E k x kzξ ξ ξ

∞

−∞

 = − + −
 ∫ .   (3) 

In Eq. (3) at | | < 1 the propagating plane waves co n-
tribute into the field E1(x, z), while at 1 < | | <  ∞ the eva-
nescent (surface) waves contribute into the field E1(x, z). 

Note that since the Hankel function of zero order and first 
kind is given by [29] 
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equation (3) can be expressed through the derivative of 
the Hankel function: 

1 2 2
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k z
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∂

.      (5) 

If we put a medium interface at distance z from the source, 
the light will pass into the medium with refractive index n. 
Then, the E-vector amplitude at distance z from the source 
will be equal to 
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     (7) 

The values of T1(ξ) in equation (7) describe the coeffi-
cients derived from Fresnel formulae [30] for three different 
cases: conversion of the propagating plane wave into a 
propagating plane wave; conversion of the evanescent plane 
wave into a propagating plane wave; and conversion of the 
evanescent plane wave into an evanescent plane wave in the 
medium. 

 

Figure 1. Different types of waves tunneling into the media with refractive 

index n. 

Actually, from equation (7) it is seen that the propagating 
waves from a point source in the medium with n = 1 and 0 < 
|ξ| < 1, where ξ = kx / k, entering the second medium at an-
gles 0 < θ < θ1, where θ1 = arcsin(1/n), will then propagate in 
the medium with n > 1 (figure 1). The first-type surface 
waves from the source that have the wavenumber projection 
in the interval 1 < |ξ| < n will enter the second medium at 
angles θ2(ξ) = arcsin(ξ / n) found in the range θ1 < θ2(ξ) < 
π/2, because the maximal angle θ2(ξ) equals π/2 at ξ = n. 
Being converted from the surface evanescent into the 
propagating, these waves will further propagate in the me-

dium with n > 1. The second-type surface waves from the 
source with |ξ| > n will represent the surface waves of the 
medium, propagating along the medium interface. 

3. Numerical Aperture of a Hyperbolic 

Secant Lens 

Let us consider a 2D hyperbolic secant (HS) lens whose 
refractive index is given by [31, 32] 

( )
cosh
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n
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x

L

π
=

 
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 

                                    (8) 

where n is the refractive index on the lens axis, L is the 
lens length, and x is the coordinate in the transverse plane. If 
the lens (8) is of length L, all the rays parallel to the optical 
axis are intersected in the focal point at distance L. If the lens 
is of length 2L, the on-axis point source is imaged at distance 
2L. 

The numerical aperture of the HS lens can be derived 
from the ray equation in the gradient-index medium: 
n(x) cos θ(x) = const, where θ(x) is the angle between the 
tangent to the ray and the optical axis z. Assume that the ray 
is incident on the lens in parallel with and at distance x = R 
from the optical axis, where R is the HS lens radius, which 
can be derived from the condition n(R) = 1: R = arccosh(n). 
Then, the ray equation takes the form: n cos θ0 = 
n(R)cos θ(R) = 1, where θ0 is the angle between the tangent 
to the ray and the optical axis z at the point of intersection of 
the ray and the optical axis. Whence it follows that cos θ0 = 
1/n, i.e. the HS lens numerical aperture is NA = n sin θ0 = 
(n2 – 1)1/2, where θ 0 = arcsin[(n2 – 1)1/2 / n]. Then, the plane 
waves propagating at angles θ1 and θ2 smaller than θ0 will 
contribute to the focal spot at the HS lens output. Let us find 
the maximal ξmax for the light waves contributing to the 
HS-lens-aided focal spot. From the equality θ2(ξmax) = 0, we 
obtain arcsin(ξ/n) = arcsin[(n2 – 1)1/2/n]. From this equality 
it follows that ξmax = (n2 – 1)1/2. For silicon and wavelength λ 
= 1550 nm, we obtain ξmax = 3.32, because n = 3.47. Then, at 
the planar HS lens output, the focal spot full-width 
half-maximum size is (n = 3.47): 

2
max

0.44 0.44 0.44
0.133

1
FWHM

NA n

λ λ λ λ
ξ

= = = =
−

.   (9) 

The theoretical resolution limit that can be derived using 
the near-field planar optics, such as SILs [7] and NAILs [8] 
equals (n = 3.47): 

0.44 0.127FWHM
n

λ λ= = .               (10) 

Equation (10) stems from the fact that the numerical 
aperture of the SIL and NAIL, NASIL = n sin θ ≤ NANAIL = 
(n2 – cos2θ)1/2 tends to NAmax = n in the limit (θ → π/2). The 
diffraction-limited focal spot of equation (10) is only 5% 
smaller than the focal spot produced by the HS lens, equa-
tion (9). Let us estimate the maximal angle at which the rays 
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are propagating within the HS lens. The propagating plane 
waves from the source with the relative wavenumber pro-
jection found in the interval 0 < |ξ| < 1 are transformed in the 
isotropic medium (n = 3.47) into the propagating waves 
traveling at angles found in the interval 

( ) 0
10 arcsin 1 17nθ θ< < = ≅ , with the maximal angle (to 

the optical axis) at which the rays can propagate in the HS 
lens being θ0 = arcsin[(n2 – 1)1/2/n] ≈ 74º. 

Note that if a SIL or a NAIL is illuminated by an annular 
light beam the diffraction pattern in the focal plane will be 
described not by the Airy function (or the sinc-function for 
the 2D case) but by the zero-order Bessel function. There-
fore, the theoretical resolution limit in the medium will be 
given by 

0.36 0.104FWHM
n

λ λ= = .                   (11) 

4. Three Types of Waves Propagating in 

a Hyperbolic Secant Lens 

Note, however, that not all waves entering the HS lens 
will go outside. Assume that waves from the source enter a 
bounded (with respect to the optical axis z) medium in the 
form of a plane-parallel plate of thickness d. After passing 
the plate, the output waves will be described by the expres-
sion: 
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A = iB = kd(n2–ξ2)1/2. Similarly to T1 in equation (7), the 
magnitudes T2(ξ) represent the coefficients derived from the 
Fresnel formulae [30] for three different cases. Equation (13) 
suggests that after passing through the plate, the plane waves 
propagating from the source (0 < |ξ| < 1) will propagate 
behind the plate at the same angles (since the medium prior 
and after the plate is air, n = 1). The first-type surface waves 
(1 < |ξ| < n) are converted into the modes within the 
plane-parallel plate and again into the surface waves on the 
opposite (relative to the source) plate surface. Thus, these 
waves will not propagate in the space behind the plate. With 
the second-type surface waves (|ξ| > n) being converted into 

the surface waves on the source-facing plate side, only their 
exponentially dumped “tails” reach the opposite plate side. 
Thus, the central rays from the source that propagate in the 
HS lens at angles to the optical axis smaller than 

( ) 0
1 arcsin 1 17nθ = ≅  for n = 3.47 can pass through and 

further propagate behind the lens with a length of 2L in (8). 
The first-type surface waves from the source propagate in 
the HS lens as in a ring cavity, not going outside the lens. 
The second-type surface waves from the source remain the 
HS-lens surface waves, experiencing partial scattering from 
the lens’s acute corners because the lens geometry is dif-
ferent from that of the plane-parallel plate, being limited by 
the transverse coordinates. 

Thus, if we assume that the HS-lens-aided focal spot is 
generated only by the propagating waves with a maximal tilt 
of θ1, the expected focal spot size is (n = 3.47; θ1 = 170) 

( )10.44 sin 0.43FWHM nλ θ λ= = . However, taking into 
consideration the essential contribution of the first-type 
surface waves propagating in the HS lens with a maximal tilt 
to the optical axis of θ0 = 740,  the focal spot diameter is 

( )00.44 sin 0.132FWHM nλ θ λ= = . This value is in good 
agreement with the simulation results [32] and with equation 
(9), which, in fact, leads to the same result, although in a 
different way. 

Figure 2 presents a characteristic plot of the focal spot size 
against the plane-wave spectrum width contributing to the 
focus according to equation (9). 

 

Figure 2. The point-source image diameter, equation (9), vs the plane-wave 

spectrum width, including the evanescent waves reaching the image plane. 

Thus, if the simulation shows that the HS-lens-aided focal 
spot size is smaller than the diffraction-limited size in the 2D 
medium (equation (10)), we can infer that the second-type 
surface waves also contribute to the focal spot. 

5. Numerical Apertures of Near-Field 

Optics 

Below, we conduct the comparison of the NA of the 
near-field SIL and NAIL lenses with the NA of the HS lens. 
The comparison results were briefly discussed in Section 2. 
Assume the propagation in free space of a converging light 
beam with NA = sinθ, where θ is the maximal angle which 
the beam rays make with the optical axis. If such a beam 
enters a medium with the refractive index n and a plane 
interface, its numerical aperture will remain unchanged, NA 

= nsinβ = sinθ, where β is the maximal angle of the beam 
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rays in the medium. The NA of the initial beam can be en-
hanced using a SIL, which comprises a hemisphere with 
refractive index n, with its spherical surface placed in such a 
manner that the rays are incident normally (figure 3(a)). In 
this case, with the converging beam focused at the centre of 
the hemisphere, its NA within the sphere will be defined by 
NASIL = nsinθ. Thus, using the near-field optics, with the 
focus found on the hemisphere flat surface, the NA of the 
initial beam can be n times enhanced or the focal spot di-
ameter n times reduced. 

 

(a)                                       (b) 

Figure 3. Diagram of incident and refracted rays for (a) SIL and (b) NAIL. 

With another near-field lens – the NAIL, it becomes 
possible to achieve still higher values of the beam NA. In this 
case, a sphere segment (smaller than hemisphere) is put in 
the path of the converging beam. The rays should fall on the 
spherical surface in such a manner that their angle with the 
optical axis is smaller than the angle between the axis and 
the normal drawn to the spherical surface at the point of ray 
intersection. The optical arrangement should also contain a 
cylinder of the same radius as that of the sphere and of height 
H, made of the same material. The cylinder should be fitted 
in such a manner that the rays are focused just on the inter-
section of its rear plane with the optical axis. Assume that 
the sphere’s radius is R and the segment height is D < R, then 
deriving the cylinder’s height from the equation D+H = 
R(1+1/n), we obtain the focal spot at the cylinder output 
plane (figure 3(b)). It is seen from figure 3(b) that the ray is 
refracted in the lens and falls on the optical axis at an angle 
larger than the angle θ of the ray incident on the lens. Con-
sidering that the NA of the incident beam on the NAIL is NA 

= sin θ, the NA of the beam traveling in the cylinder and 
converging on the cylinder’s output surface is

( )1 22 2cosNAILNA n θ= −
. It can be shown that

NAIL SIL
NA NA≥ . The comparison of the above NA values 

with the HS-lens’s ( )1 22
01 sinNA n n θ= − =

 shows that the 

difference is not large: the difference between the maximal 
NA of the near-field refractive optics 

3.47
NAIL SIL

NA NA n= = =  and the NA of the HS lens

( )1 22 1 3.32NA n= − =
is as small as 5%. It should be, 

however, noted that the SIL and NAIL are only able to gather 
light from the source, converging the first-type surface 
waves into the propagating waves without focusing. Addi-
tional refractive optics should be employed to perform the 
subsequent focusing. On the contrary, the HS lens is capable 

of both gathering and focusing light on its output surface. 

6. Focal Spot Reduction by Modulation 

of Refractive Index 

In recent papers [33, 34], it was numerically demonstrated 
that using subwavelength gratings the surface waves from a 
point source could be converted into the propagating waves, 
thus achieving the superresolution of λ/20. This was im-
plemented by means of several stacked diffraction gratings 
of different subwavelength periods and arbitrary apertures 
[33] and a metallic subwavelength grating with high per-
mittivity (ε = –100) [34]. However, the use of focusing or 
imaging optical elements was not considered in the above 
works. 

The simulation using the FullWAVE software (RSoft) 
implementing the finite-difference time-domain (FDTD) 
approach has shown that by combining a HS lens with a 
subwavelength grating or using a binary HS lens with sub-
wavelength features the focal spot size can be, respectively, 
reduced by 10% and 20%. 

 

(a) 

 

(b) 

Figure 4. (a) Refractive index profile in the gradient-index HS lens (on the 

axis, n = 3.47), horizontal dimension, 2R = 4.8 µm, vertical, L = 2 µm. 

Light propagates vertically. (b) Transverse intensity profile |Ey|
2 at the lens 

output (10 nm apart). 

Figure 4 shows (a) the (gray-level) index profile of the HS 
lens (8) and (b) the intensity distribution at the lens output. 
The lens was illuminated by a plane TE-wave, i.e. electric 
field vector had only one component along Y-axis. The focal 
spot size in figure 4(b) is FWHM = 191 nm = 0.123λ, λ = 
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1.55 µm. This value is somewhat smaller than the diffraction 
limit in silicon, equation (10), thus proving that the 
second-type surface wave contribute to the HS-lens-aided 
focal spot. 

 

(a) 

 

(b) 

Figure 5. (a) Refractive index profile in the gradient-index HS lens (n = 

3.47), horizontal dimension, 2R = 4.8 µm, vertical, L = 2 µm. On top of the 

HS lens, there is a diffraction grating of depth 0.4 µm, period 0.2 µm, and 

groove width 0.05 µm (the grooves filled with air). Light propagates from 

the bottom upwards. (b) Transverse intensity distribution |Ey|
2 at the lens 

output (10 nm apart). 

Figure 5(a) depicts the same HS lens as in figure 4, but in 
combination with a subwavelength diffraction grating put on 
the lens top (output) surface and figure 5(b) shows the in-
tensity distribution at the lens output. The focal spot size in 
figure 5(b) is FWHM = 177 nm = 0.114λ. This is 8 % smaller 
than the focal spot size in figure 4(b) and 10 % smaller than 
the diffraction limit of equation (10). 

7. Amount of Energy in the Focal Spot 

Let us place in front of the lens (at distance λ/16 ≈ 97 nm) 
a source of a bounded, 2.4-µm wide plane wave (i.e. the 
wave width is half the lens width). Some part of light will be 
reflected from the front surface of the lens, thus not affecting 
the focal spot. In order to determine the amount of the light 
energy that achieves the rear plane it is insufficient to 
measure the power flux through it, because some part of 
light is reflected from the rear plane and the total power flux 
of this part equals zero, although it affects the focal spot. 
Therefore, let us replace the lens with a secant waveguide, 

where all the light will propagate further instead of being 
reflected from the lens’s rear plane. It appears that in this 
case 74.9% of the source power achieves the lens rear sur-
face. 

Assume that an infinite plane wave (i.e. of the width ex-
ceeding the simulation domain) is incident on the lens. 
Shown in figure 6 are the distributions of the energy density 
(i.e. intensity |Ey|

2, figure 6(a)) and the power flux density 
(i.e. Poynting vector, figure 6(b)) calculated in a plane lo-
cated at distance λ/50 ≈ 31 nm beyond the lens’s rear plane. 
In figure 6(a), the width of the central peak is FWHM = 192 
nm = 0.124λ, which is slightly smaller than the diffraction 
limit. In figure 6(b), the width of central peak is FWHM = 
213 nm (0.137λ). 

 

(a) 

 

(b) 

Figure 6. Time-averaged (500 values of last 10 periods) density of energy 

(intensity |Ey|
2) (a) and z-axis projection of power flow (Poynting vector) (b) 

in plane located at a distance of λ/50 beyond the lens. 

The fact that the focal spot is smaller in size than the dif-
fraction limit (0.44λ in 2D case) can be explained by the 
existence of surface waves. In order to prove this, let us 
consider the amplitude spectrum in a plane located at dis-
tance λ/50 beyond the lens. Shown in figure 7 are the nor-
malized spectra of the amplitudes Ey in a plane located at 
distance 2λ/50 (curve a) and λ/50 (curve b) beyond the 
lens’s rear surface. It is seen from figure 7 that the spectrum 
has non-zero values at |ξ| ≥ 1, which proves the existence of 
the evanescent waves. Curve b is seen to be slightly above 
curve a, because closer to the lens the evanescent waves 
have a stronger impact onto the focal spot (because ampli-



 
 

tude of surface wave drops exponentially and therefore the 
larger is the distance from the surface, the weaker is the 
amplitude of the surface wave). 

Figure 7. Spectra of the amplitude Ey in a plane at

λ/50 beyond the lens. 

To prove that the grating allows the 
evanescent waves into the focal spot to be increased
calculated the angular spectrum of plane
of λ/50 from the grating. The other simulation
were the same. The grating period was 
depth was 300 nm, and the grating fill
this case, the focal spot width was also equal to FWHM = 
0.114λ. Shown in figure 8 is the resulting 

Figure 8. The angular spectrum of plane waves of

λ/50 from the grating. 

It is seen from figure 8 that the main
focal spot is not from the normally incident 
from two tilted plane waves propagating
sin(0.4) ≈ 23º with the optical axis. Besides,
of the surface waves is also increasing as suggested by 
scarcely noticeable maxima in the region 

The measurements at distance λ from
that 10 percent of the total light energy incident 
front surface is directed to the 0-th diffraction

8. Focusing Light with a Binary

HS-Lens 

Let us consider a 2D binary lens with
as to produce the effective refractive 
equation (8). Such a binary lens will be
nary HS lens. 
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surface wave drops exponentially and therefore the 
larger is the distance from the surface, the weaker is the 

 

at distance (a) 2λ/50 and (b) 

the contribution of the 
to be increased, we also 

plane waves at a distance 
simulation parameters 

 300 nm, the grating 
-factor was 50%. In 

width was also equal to FWHM = 
the resulting angular spectrum. 

 

of amplitude Ey at distance 

main contribution to the 
from the normally incident plane wave, but 

propagating at an angle arc-
Besides, the contribution 

creasing as suggested by 
in the region |ξ| ≥ 1. 

from the grating show 
light energy incident onto the lens 

diffraction order. 

Binary 

with the zone sizes such 
 index described by 

be referred to as a bi-

Figure 9. Refractive index profiles of

line) and the corresponding binary HS

notes silicon.. 

The index profiles of the gradient
corresponding binary HS lens
radius of the binary lens is broken
xm+1], m = 0, 1, 2,…,M, with a
each interval, such that on the
material is silicon, and on the
point xm

b is chosen such as 
index of equation (8): 
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1
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m

m
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x
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+

= − + ⋅ −∫

Note that for the index distribution
side can be computed analytically
(14) we can derive an explicit
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of the gradient-index HS lens (dashed 

HS lens (solid line). Shaded area de-

gradient-index HS lens and the 
lens are shown in figure 9. The 
broken down into the intervals [xm, 

a point xm < xm
b < xm+1 found in 

the interval [xm, xm
b] the lens 

the interval [xm
b, xm+1] – air. The 

 to approximate the refractive 

) ( )0 1d 1b b

m m m m
n x x n x x x x+= − + ⋅ −     (14) 

distribution in equation (8), the left 
analytically, whereas from equation 

explicit expression for xm
b: 

0 1 0

0 0

1

41

1 1

arctan exp arctan exp .
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  (15) 

 

(a) 
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(b) 

Figure 10. (a) Binary HS lens (n = 3.47), horizontal dimension, 2R = 4.8 

µm, vertical – L = 2 µm, minimal groove- 20 nm (filled with air). Light 

propagates vertically. (b) Transverse intensity distribution |Ey|2 at the lens 

output (10 nm apart). 

Shown in figure 10(a) is a binary HS lens designed using 
equation (14) on the basis of the lens in figure 4(a), and in 
figure 10(b) is the intensity distribution in the focal plane at 
the lens output. The focal spot width in figure 10(b) is 
FWHM = 159 nm = 0.102λ. This value is 17 % smaller than 
the focal spot size in figure 4(b) and 20% smaller than the 
diffraction limit of equation (10). Thus, we can infer that in 
compliance with figure 2, the focal spot at the binary HS lens 
output (figure 10(b)) is formed with the 20% contribution of 
second-type surface waves (kx > nk). 

9. Imaging with a Double HS-Lens 

Shown in figure 11(a) is an instantaneous pattern of the 
electric vector of the light wave in the HS-lens (made of 
silicon, n = 3.47, width 2R = 6 µm, length 2L = 4.92 µm) 
from two point sources (each is a Gaussian beam with 50-nm 
waist radius and free space wavelength of λ = 1 µm) sepa-
rated by 300-nm distance and located 10-nm away from the 
lens input surface. The simulation was conducted by the 
FDTD-method with the space sampling of λ/100 and the 
simulation time of 200λ/c, c being the speed of light in a 
vacuum. Figure 11(b) shows the time-averaged distribution 
of the Poynting vector’s projection onto the optical axis z, 
calculated beyond the HS-lens output surface at a distance of 
10 nm. It is seen from figure 11(b) that the two sources are 
resolved and the superresolution value is 0.3λ. Although the 
image of the point source has a width of FWHM = 0.12λ, the 
two point sources are surely resolved only when separated 
by a distance of 0.3λ. This is because the images of these 
two sources interfere with each other. 

Note that such a gradient waveguide can be implemented 
as a photonic crystal device [35]. 

Below, we consider the power flux (z-projection of 
Poynting vector) rather than the intensity. In this case, two 

light sources can be resolved even if they are closer to each 
other. Figure 12 shows that two sources separated by a dis-
tance of 0.25λ are surely resolved in terms of the power flux 
and scarcely resolved in terms of the intensity. When sepa-
rated by a distance of 0.15λ, the sources can be resolved 
only in terms of the power flux, as it can be seen from figure 
13. When separated by a distance of 0.12λ, the light sources 
can be resolved neither via the power flux nor via the in-
tensity (figure 14). 

 

(a) 

 

(b) 

Figure 11. (a) Instantaneous pattern of the electric vector amplitude of the 

TE-wave in the HS-lens from two point sources (each is 50-nm wide), 

separated by 300-nm distance and located 10-nmaway from the input plane; 

(b) time-averaged distribution of Poynting vector’s projection onto the 

optical axis calculated 10-nm away from the waveguide output plane (top 

horizontal line), the intensity is shown in arbitrary units. 

In the case of the TE-polarization, the power flux (S=E×H) 
can be measured in the following way. It is related with the 
intensity as follows: 

*

*

0 02
y

z y x y

Ei i I
S E H E

z zωµ µ ωµ µ
∂ ∂= = =
∂ ∂

,    (16) 

where ω is the frequency, µ is the magnetic permittivity, I 
= Ey

2 is the intensity. Therefore, the power flux can be 
measured as the difference of the intensities in two near 
parallel planes. 
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(a) 

 

(b) 

Figure 12. Time-averaged intensity (a) and power flow (b) calculated at a 

distance of 10-nm from secant waveguide output plane for two light sources 

with center-to-center distance of 250 nm. 

 

(a) 

 

(b) 

Figure 13. (a) Time-averaged intensity and (b) power flux calculated at a 

distance of 10-nm from the secant waveguide output plane for two light 

sources with the center-to-center distance of 150 nm. 

 

(a) 

 

(b) 

Figure 14. (a) Time-averaged intensity and (b) power flux calculated at a 

distance of 10-nm from the secant waveguide output plane for two light 

sources with the center-to-center distance of 120 nm. 

10. Conclusions 

We have obtained the following results: 
The integral representation of the amplitude of a TE-wave 

propagating from a point source and behind a plane-parallel 
plate is derived as a sum of three terms that describe three 
types of light waves: propagating waves and (inhomoge-
neous evanescent) surface waves of the first and second 
types; 

The comparison of the NAs of the near-field refractive 
lenses (SIL, NAIL) and a planar HS lens has shown them to 
be similar, with the difference for silicon being as small as 
5%; 

Simulation using the FullWAVE software has shown that 
by combining the gradient-index HS lens with a subwave-
length diffraction grating or replacing the lens with its binary 
analog the focal spot size can, respectively, be reduced by 10% 
and 20% when compared with the diffraction-limited size in 
the medium. This implies that the second-type surface waves 
respectively provide a 10 percent and 20 percent contribu-
tion to the subwavelength focal spot at the HS lens output. 

The HS-lens with a length of 2L allows one to resolve two 
point sources with the center-to-center distance of 0.15λ via 
measuring the power flux. 

A planar binary silicon microlens to generate near its 
surface a focal spot of size FWHM = 0.102λ has been de-
signed. 
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