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Abstract: Underwater network size estimation is inefficient by applying conventional protocol based techniques used for 
terrestrial networks due to non-negligible capture effect, long propagation delay, high absorption and dispersion of the medium. 
For this reason, a statistical signal processing approach based on cross-correlation has been proposed in our previous works, 
which is equally applicable to any environment networks. Initially, this estimation approach was formulated without considering 
multipath propagation effects. But, one of the common difficulties of underwater or terrestrial wireless communication is 
multipath propagation. Multipath spread is more severe in underwater acoustic channel (UAC) than terrestrial radio channel. 
This paper aims to address the multipath propagation issue. To mitigate the effects of multipath propagation, a robust estimation 
approach using corss-correlation of Gaussian signals received at two sensors has been investigated in this paper. 

Keywords: Cross-correlation Function (CCF), Dispersion Coefficient (k), Multipath Propagation Effects,  
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1. Introduction 

Aqueous environment observation has become 
increasingly important and underwater networks are 
deployed for the purpose of scientific exploration, pollution 
monitoring, oceanographic data collection, discovering 
natural resources, surveillance etc. To fulfill these tasks, it is 
very important to know the number of operating nodes 
available in a network to ensure proper operation and 
maintenance of the network. This justifies the necessity of 
underwater network size estimation. A brief literature review 
on network size estimation methods is given below to further 
justify the necessity of corss-correlation based cardinality 
estimation approach. 

A cardinality estimation technique based on Good-Turing 
estimator [1] of the missing mass has been proposed by 
Budianu et al. [2, 3] for terrestrial sensor networks. In RFID 
systems, different protocols [4–6] have been used for tag 
estimation, which is similar to size estimation in wireless 
communications network. Size of a network can be estimated 

using distributed orthogonalization [7]. Another cardinality 
estimation technique for wireless mobile ad hoc networks has 
been proposed in [8, 9], using two novel statistical methods, 
called the tokened random walk and the circled random walk. 
For size estimation of dynamic anonymous networks, two 
leader-based counting algorithms based on a technique that 
mimics an energy-transfer between network nodes have been 
investigated in [10]. Estimation of network cardinality by 
distributed anonymous strategies relying on statistical 
inference methods has been considered by Varagnolo et al. 
[11]. Previously mentioned techniques do not consider the 
unique characteristics of UAC [12] such as non-negligible 
capture effect, strong background noise, large propagation 
latency and high path loss. So, they are not suitable for 
underwater network size estimation. 

Considering capture effect of underwater environment, a 
size estimation method has been proposed by Howlader et al. 
[13, 14], which is similar to probabilistic framed slotted 
ALOHA. Howlader et al. also proposed a delay insensitive 
estimation process based on ALOHA protocol [15] to 
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overcome the limitation of long propagation delay of UAC. 
An intermission-based underwater network size and structure 
estimation technique has been investigated by Blouin [16]. 
Protocol dependency of these techniques [13–16] limits their 
usefulness in underwater environment. In order to obtain a 
size estimation technique with reduced protocol complexity, 
Anower et al. introduced a signal processing approach based 
on cross-correlation of Gaussian signals received at two 
sensors [17, 18], which is equally suitable for any 
environment networks. An improved cross-correlation based 
size estimation scheme using three sensors has been proposed 
by Chowdhury et al. [19, 20], which shows better estimation 
performance in terms of estimation accuracy, time and energy 
[21]. Several assumptions have been made in the initial 
formulation of cross-correlation based estimation process. The 
assumptions of unity signal strength, infinite bandwidth of 
Gaussian signals, equal received power (ERP) from each 
node, infinite signal length have been investigated  and 
removed in [22–26]. 

One of the remaining assumptions that requires further 
investigation is the assumption of no multipath propagation. 
Like terrestrial wireless communications network, multipath 
propagation is also occurred in underwater wireless 
communications network (UWCN), which results in 
inter-symbol interference (ISI). Typical multipath spreads in 
the commonly used radio channels are on the order of several 
symbol intervals, whereas in UACs they increase to several 
tens or a hundred of symbol intervals for moderate to high data 
rates [27], which implies more severe effects of multipath in 
UWCN. 

The severe effects of multipath propagation is considered in 
this paper to estimate the size of UWCN and a robust 
estimation approach based on cross-correlation of Gaussian 
signals received at two sensors is proposed to compensate the 
effects of multipath. The rest of the paper is arranged as 
follows. Section 2 contains the background of this work. A 
robust estimation process in presence of multipath signal 
propagation is proposed in Section 3 with the corresponding 
simulation results. In Section 4, concluding remarks of this 
paper is presented with future directions. 

 
Fig. 1. Distribution of underwater network nodes with N transmitting nodes 
for two-sensor scheme. 

2. Background 

Cross-correlation based size estimation procedure using 
two sensors [17, 18] is described in this section as background 
for better understanding of multipath compensation technique. 
In this estimation process, a three-dimensional spherical 
region has been considered as an UWCN that contains N 
transmitting nodes which are uniformly distributed over the 
volume of a large sphere and two spatially separated receiving 
nodes (H1 and H2) which are located at the middle of the 
sphere for estimation purpose as shown in Fig. 1. In this case, 
transmitting nodes are called nodes and receiving nodes are 
called sensors. The first step of this estimation scheme is to 
formulate cross-correlation function (CCF). For this 
formulation, the 3D space is taken as a cube such that the 
dimension of the cube is equal to the diameter of the sphere, 
and two sensors and nodes are placed similar to the Fig. 1. 

The sensors (H1 and H2) initiate the estimation process by 
sending probe request to N nodes. It is assumed that, all nodes 
can transmit Gaussian signals in response to that probe request 
using acoustic wave as the underwater communication carrier. 
Simultaneously transmitted Gaussian signals from N nodes in 
response to the probe request reached the sensors with the 
corresponding time delays and attenuations. The signals at 
each sensor location are superimposed on each other to form 
the composite Gaussian signals, ������� and ������� , which 
are then received by H1 and H2, respectively. CCF (C(τ)) is 
formulated by cross-correlating the composite signals 
received by H1 and H2. Due to the simultaneous transmission 
from all nodes, the total estimation time is less for this scheme 
even at the presence of large propagation latency of UWCN 
[21]. 

Gaussian signal has a certain characteristics that, 
cross-correlation of two Gaussian signals results a delta 
function, which is the basic idea of this estimation approach 
and also the reason of using Gaussian signals as transmitted 
signals. Thus, CCF due to composite Gaussian signals takes 
the form of a series of delta functions [17] as shown in Fig. 2. 
Amplitudes and positions of these delta functions depend on 
the attenuations and the delay differences of the signals 
coming to the sensors, respectively. In this process, the 
positions of the deltas in the CCF are referred to as bins. If N is 
larger than the number of bins, b, there will be more than one 
delta in a bin due to the same delay differences. This increases 
the amplitude of the deltas in the bins (as shown in Fig. 2),  

 
Fig. 2. Bins, b of CCF obtained with N (=1000) nodes. 
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where b is given by [28]: 

	 
 ��
������
�� � 1                             (1) 

Here, ���� is the distance between the sensors, SR is the 
sampling rate and SP is the speed of acoustic wave 
propagation. 

Ratio of standard deviation (σ) to the mean (µ), R of CCF is 
chosen as the estimation parameter of this process, as it 
requires no prior knowledge of the signal strength from the 
nodes [22, 29]. To overcome the difficulty of determining σ 
and µ of the CCF using complex statistical expressions, the 
cross-correlation problem is being reframed into probability 
problem [18] using the well-known occupancy problem [30]. 
After reframing, R of CCF can be expressed as [17]: 

� 
 �
� 
 ����

�� !"
�
�#

���
�


 ��$"!�
�                   (2) 

Using this expression, network size, N can be estimated, as 
we know b from (1) and can calculate R from the CCF. 

Since all the transmitted Gaussian signals are combined at 
the sensors and node specific signals are irrelevant for size 
estimation, the concept of capture effect does not apply to this 
method. Moreover, this technique requires a simple protocol 
for probing to initiate the simultaneous transmission, which 
eliminates the problem of using medium access control protocol 

in UWCN. The total estimation process of two-sensor scheme 
is represented through a block diagram in Fig. 3. 

3. Effect of Multipath 

In previous section, estimation is performed considering only 
one (direct) path. But practically, signals may propagate 
through different paths to reach the sensors due to the reflector 
present in the medium and the dispersive nature of the wave. In 
the underwater environment with an acoustic wave, the seabed 
and sea surface will be the two major reflectors. To make the 
estimation process robust, multipath effects are considered in 
two-sensor scheme using one direct path and two indirect paths 
(due to both surface and bottom reflections) as shown in Fig. 4 
and 5. As the direct path is always shorter than the indirect path, 
the powers of the direct path signals will be stronger than those 
of the indirect path signals. 

Strengths of the deltas in the CCF depend on the signals’ 
strengths [22], which indicate that, the deltas due to the direct 
path will be dominant and contribute more to form the CCF. 
As the CCF due to direct path is sufficiently dominant, 
standard deviation and mean of this CCF will be greater than 
that of the CCF due to indirect path. So, ratio of standard 
deviation to the mean of CCF considering multipath, R can be 
approximated by the ratio of standard deviation to the mean of 
CCF due to only the direct path. 

 
Fig. 3. Block diagram representation of the estimation process for two-sensor scheme. 

 
Fig. 4. Concept of multipath: one direct and two indirect paths. 

 
Fig. 5. Distribution of transmitters and receivers (+) with two reflectors. 
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Fig. 6. Rs of CCF: k = 3 and b = 19 (dDBS = 0.5m and SR = 30kSa/s). 

The results in Fig. 6 show the effectiveness of two-sensor 
scheme in case of multipath reception. The solid line indicates the 
theoretical results and the stars and circles indicate the simulated 
results with and without multipath, respectively. It can be seen 
that the two simulated results are sufficiently close to each other 
and both follow the theoretical results. So, we can say that, 
multipath delay has negligible impact on the estimation results. 
Simulated results of Fig. 6 are obtained in matlab programming 
environment using dispersion cefficient, k = 3 and b = 19 (dDBS = 
0.5m and SR = 30kSa/s). Other parameters used in the simulation 
(throughout the work unless otherwise mentioned) are: 
dimension of the cube, D = 2000m; signal length, Ns = 106 
samples (because the required Ns for accurate estimation using 
two-sensor scheme is greater than or equal to 300000 samples 
[26]); SP = 1500m/s; SNR = 20db; absorption coefficient, a = 1 
(implying equal received power of direct path signals from all 

nodes); N = 10 and number of iterations, u = 1. 
Multipath effects on the estimation process has been 

neglected based on the assumption that, indirect path signals’ 
strengths are sufficiently lower than those of direct path 
signals. This is true for high values of k. But, indirect path 
signals’ strengths cannot be neglected for low values of k. In 
that case, indirect path signals can contribute significantly to 
form the CCF. So, estimation parameter derived form the 
CCF due to multipath can not be approximated by that due to 
only the direct path in case of low dispersion factor. For this 
reason, a generalized estimation approach for any dispersion 
factor by compensating the multipath effects is provided in 
this section to increase the robustness of cross-correlation 
based size estimation method. 

We know that, path loss depend on a, k and distance 
between transmitter and receiver, d [31]. But, in this approach 
only the distance dependent spreading loss is considered as 
path loss, because a = 1 due to ERP case. ERP case can be 
obtained using probing technique. It is noted that, ERP implies 
equal received power of direct path signals from all nodes. 
Now, to properly demonstrate the robust estimation process 
with multipath effects due to both surface and bottom 
reflections, let us consider a similar simulation environment as 
discussed in the previous section. The theoretical & simulated 
results for the CCF from such an arrangement of 100 nodes 
with 9 bins (dDBS = 0.25m and SR = 30kSa/s), 100 iterations 
and different k values, are presented in Fig. 7 to 10. 

 
Fig. 7. CCFs with k = 0 from: (a) both direct and reflected signals (surface and bottom); (b) only reflected signals; and (c) only direct signal. 



23 Md. Shamim Anower et al.:  A Robust Signal Processing Approach of Underwater Network Size Estimation  
Taking Multipath Propagation Effects into Account 

 
Fig. 8. CCFs with k = 1 from: (a) both direct and reflected signals (surface and bottom); (b) only reflected signals; and (c) only direct signal. 

 
Fig. 9. CCFs with k = 1.5 from: (a) both direct and reflected signals (surface and bottom); (b) only reflected signals; and (c) only direct signal. 
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Fig. 10. CCFs with k = 2 from: (a) both direct and reflected signals (surface and bottom); (b) only reflected signals; and (c) only direct signal. 

 
Fig. 11. CCFs with different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) from both direct 

and reflected signals (surface and bottom). 

 
Fig. 12. CCF from only direct path signals. 
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Fig. 13. CCFs with different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) from only 

reflected signals (both surface and bottom). 

The values of dispersion coefficients are: k = 0 in Fig. 7, k = 
1 in Fig. 8, k = 1.5 in Fig. 9 and k = 2 in Fig. 10. Each of these 
figures has three separate plots: the top for CCFs with 
multipath, i.e., one direct and two indirect path signals are 
responsible for forming the CCF, the middle for CCFs due to 
reflected (both surface and bottom) signals only; and the 
bottom for CCFs due to only direct signals, i.e., without 
multipath, as in Section 2. These figures show that, dispersion 
coefficient has no effect on the CCFs due to only the direct 
path signals as ERP case is considered for these signals. It has 
already been known that deltas without multipath, i.e., with 
only direct path, follow a random distribution to form the CCF; 
this will also be true for deltas with indirect paths. Thus, the 
CCF with multipath will be the summation of three random 
variables. To clarify the above discussion, Fig. 11 to Fig. 13 
are plotted. 

 
Fig. 14. Peaks of deltas in bins of CCF due to both direct and reflected signals 

with k = 0. 

 
Fig. 15. Peaks of deltas in bins of CCF due to only reflected signal with k = 0. 

These results demonstrate that, multipath effect decreases 
with increasing k and can be neglected because of the higher 
values of k in a practical underwater acoustic environment. 
The investigation of neglecting multipath effect on estimation 
due to both surface and bottom reflections has already been 
provided in this section. Now, we develope a generalized size 
estimation process using the ratio of the standard deviation to 
the mean of the CCF by compensating multipath due to both 
surface and bottom reflections with any possible values of k. 
Let us consider a CCF for b = 9 with  multipath (one direct and 
two indirect paths from both surface and bottom reflections), 
in which the delta peaks in the bins are P21, P22, P23, P24, P25, 
P26, P27, P28 and P29, as shown in Fig. 14, and the 
corresponding peaks for the direct and reflected paths are P21d, 
P22d, P23d, P24d, P25d, P26d, P27d, P28d and P29d, and P21r, P22r, P23r, 
P24r, P25r, P26r, P27r, P28r and P29r, respectively, as shown in Fig. 
15, where rd PPP 212121 += , rd PPP 222222 += ,

rd PPP 232323 += , rd PPP 242424 += , rd PPP 252525 += , 

rd PPP 262626 += , rd PPP 272727 += , rd PPP 282828 += , 

and rd PPP 292929 += . 

It is shown in these figures that, not all bins are affected by 
the reflected signals and there is a mirror effect with respect to 
the middle bin. The affected bins are 2 to 8 and, due to the 
mirror effect, the peaks of the 2nd & 8th, 3rd & 7th, 4th & 6th bins 
are similar. As only the CCF with multipath is available in this 
process, it will have to suffice for the estimation. However, 
using a similar process to that for finding the ratio of the 
standard deviation to the mean of the CCF to estimate the 
number of nodes without multipath is not appropriate in this 
case, because of the extended peaks due to the signals of the 
reflected paths. But, if we can deduct the extended peaks from 
the CCF with multipath, the process will be exactly the same 
as that for the CCF without multipath and will be appropriate 
for estimation. To do this, we represent the peaks due to both 
direct and reflected signals (Fig. 14) as percentages of the 
peaks due to only reflected signals (Fig. 15). 

The process of obtaining percentages is: 



 Advances in Networks 2015; 3(3): 22-32 26 
 

%100bin,1atPercentage
21

21
21

st ×=
P

P
p r

m  

where, P21r represents peak at 1st bin due to reflected signal 
only and P21 represents peak at 1st bin due to both direct and 
reflected signals. 

Similarly for the affected bins, the percentages are obtained 
using the following expressions: 
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Detailed results are provided in Fig. 16 to 18. These 
percentages are independent of the number of nodes but 
dependent on the dispersion coefficient, k, and the number of 
bins, b. We investigate the percentages for different values of k 
with 9 bins, as shown in Fig. 16 and 17. Fig. 16 shows the 
percentages of deltas due to reflected signals in each affected 
bin of the CCF. The percentage contributions of the different 
affected bins for different k are presented in Fig. 17. To obtain 
the percentages for any k, the percentages of all affected bins 
are expressed in terms of k using 4th-degree approximations, as 
shown in Fig. 18. The approximated expressions are: 

1112114.63.1 234
2822 +−+−=≈ kkkkpp mm      (3) 

771593.071.034.0 234
2723 +−−−=≈ kkkkpp mm   (4) 

904.41573.1 234
2624 +−−+−=≈ kkkkpp mm    (5) 

923.78.7221.0 234
25 +−−+−= kkkkpm                (6) 

 
Fig. 16. Percentages of deltas in affected bins of CCF due to reflected signals (both surface and bottom) with different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2). 

 
Fig. 17. Percentage contributions of reflected signals (both surface and bottom) in affected bins for different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2). 



27 Md. Shamim Anower et al.:  A Robust Signal Processing Approach of Underwater Network Size Estimation  
Taking Multipath Propagation Effects into Account 

 
(a)                                                                                                            (b) 

 
(c)                                                                                                               (d) 

Fig. 18. Percentage contributions of reflected signals (both surface and bottom) for different k (0, 0.5, 1, 1.25, 1.5, 1.75 and 2) in: (a) bin 2 and 8, (b) bin 3 and 

7, (c) bin 4 and 6, and (d) bin 5. 

 
Fig. 19. CCF after deduction. 

Now, to obtain the estimation parameter, i.e., the ratio of the 
standard deviation to the mean of the CCF, deductions of the 
extended peaks of the corresponding bins are obtained as 
follows. In bin 1, the deducted peak is: 

21212121  of% PpPP mds −=  

Similarly, for the affected bins, 2 to 8, the deducted peaks 
are: 

22222222  of% PpPP mds −= , 23232323  of% PpPP mds −= ,  

24242424  of% PpPP mds −= , 25252525  of% PpPP mds −= ,  

26262626  of% PpPP mds −= , 27272727  of% PpPP mds −= , 

28282828  of% PpPP mds −= . 

 
Fig. 20. Rs of CCF: comparison of results from theoretical, simulated without 

multipath and simulated with multipath (using proposed multipath 

compensation technique with both surface and bottom reflections) for 

different k (0, 1, 1.5 and 2) using b = 9 (dDBS = 0.25m and SR = 30kSa/s). 
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The peaks of the CCF after deduction for 100 nodes with 
100 iterations are shown in Fig. 19. To demonstrate the 
effectiveness of the process, the Rs of the CCF after deduction 
for different numbers of nodes with one iteration are plotted in 
Fig. 20 using b = 9 (dDBS = 0.25m and SR = 30kSa/s). It can be 
seen from the results that the technique is good enough to 
estimate in multipath environment. 

4. Conclusion 

This work is done to mitigate the effect of multipath signal 
propagation on cross-correlation based underwater network 
size estimation technique. It is shown that, efficient estimation 
is possible in case of high dispersion factor by neglecting the 
multipath effects due to negligible strengths of indirect path 
signals. Considering the possible scenario of low dispersion 
coefficient, a generalized estimation process for any dispersion 
factor has been demonstrated in this paper by compensating the 
multipath effects. The robustness of this estimation approach in 
multipath environment has been verified by simulation. It is 
noted that, only the two-sensor case of cross-correlation based 
estimation method is considered in this paper. In future, our 
plan is to investigate the effects of multipath on three-sensor 
schemes. Current research is going on to analyze the estimation 
performance in various shaped network with random placement 
of sensors and different distribution of nodes. Finally, 
conducting experimental estimation using this technique is our 
ultimate goal. 
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