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Abstract: Surface enhanced Raman scattering (SERS) has emerged as an ultrasensitive analytical tool for chemical, biolog-

ical, and medical analysis. SERS spectra of permethrin, a common synthetic pyrethroid, were investigated for the first time. The 

SERS substrates used in this work were a silver nanofilm (AgNF) deposited on glass chips. The characteristic SERS bands of 

permethrin were analyzed and assigned to the corresponding modes. The strongest SERS band appeared at 1003 cm
-1 

due to 

the breath vibration of benzene ring in the permethrin molecule. A detection limit of 10 ppm was obtained on the AgNF sub-

strates. A good linear relationship between peak height of the 1003 cm
-1 

band and permethrin concentration was observed in the 

range of 10 – 1000 ppm. The results obtained in this work indicate that SERS technique has a great potential for rapid, simple, 

in situ, and cost-effective detection and monitoring of permethrin in environment and on foods. 
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1. Introduction 

Since its discovery in the 1970s [1], interest in surface en-

hanced Raman scattering (SERS) has been growing exponen-

tially [2]. SERS is a powerful vibrational spectroscopy tech-

nique that allows for highly sensitive detection of trace 

chemical and biological analytes through the amplification of 

an electromagnetic field near a nanostructured noble metal 

surface (such as nano-Ag or nano-Au, called a “SERS sub-

strate”) generated by the excitation of localized surface 

plasmons [2-4]. Compared with conventional Raman, the 

intensity of the SERS signal excited by laser illumination can 

be observed with an enhancement factor (EF) on the order of 

10
5
-10

14
 when molecules are in close proximity to Ag and Au 

nanostructured surfaces, and under ideal conditions sufficient 

to detect single molecules [5]. SERS is an in situ, 

non-destructive technique, and can be easily used on-site or in 

the field when coupled with the portable/handheld Raman 

spectrometer [6, 7]. In recent years, SERS technique has 

emerged as one of the most promising analytical methods for 

environmental analysis and food safety [6-16].  

Permethrin, a common synthetic pyrethroid, has been 

widely used as insecticide, acaricide, and insect repellent [17]. 

In healthcare, it is used to eradicate parasites such as head lice 

and mites responsible for scabies [18]. Additionally, the mil-

itary combat uniforms are treated with permethrin to provide 

protection against the threat of biting insects and insect-borne 

diseases [19]. Various methods, including gas chromatog-

raphy-mass spectrometry (GC-MS), high-performance liquid 

chromatography (HPLC), spectrophotometry, as well as im-

munology and electronic nose, have been well developed for 

permethrin determination [18, 20-24]. However, these meth-

ods are not suitable for field use because they require either 

bulky equipment, well-trained users, and use of chemi-

cal/biological reagents, or sophisticated and time-consuming 

separation/preparation of samples.  

To the best of our knowledge SERS has not been reported 

for the detection of permethrin though it has been proven as a 

rapid, simple, and cost-effective method with high sensitivity 

and field-compatibility. In this work, we investigated SERS 

spectra of permethrin on silver nanofilm (AgNF) SERS sub-

strates and demonstrated the feasibility of the SERS technique 

for quantitative permethrin analysis.  

2. Materials and Methods 

2.1. Materials 

Permethrin (mixture of cis and trans isomers) and butyla-

mine (BuNH2) were purchased from Sigma-Aldrich (Mil-

waukee, WI, USA). Silver nitrate (AgNO3) was obtained from 

Fisher Scientific (Fair Lawn, NJ, USA). Both anhydrous 

ethanol and methanol were supplied by Pharm Co. All other 

chemicals were analytical grade and purchased from Sig-
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ma-Aldrich or Fisher Scientific and used as received. Deion-

ized (DI) water with a resistivity of 18.2 MΩ·cm (Millipore 

Milli-Q System) was used throughout the experiments. Eth-

anolic permethrin samples in the concentration range of 0 – 

1000 mg L
-1

 (ppm) were prepared by diluting a methanol 

solution of 10
5
 ppm permethrin with anhydrous ethanol. 

2.2. Preparation of AgNF SERS Substrates 

The AgNF SERS substrates were prepared on glass slides 

by a one-step electroless deposition process according to the 

procedure reported in the literature [25]. Briefly, the glass 

chips (5×5 mm
2
) were cleaned in a piranha solution at ~ 80°C 

for 1 h, followed by rinsing with water. After sonicated in 1 M 

NaOH solution for 30 min, the glass chips were washed with 

water and ethanol, and then dried under a stream of com-

pressed air. The cleaned glass chips were put into wells of a 

6-well plate (20 chips in each well). Then 14 mL fresh pre-

pared ethanolic AgNO3/BuNH2 (5mM/2.5mM) solution was 

added into each well and allowed to react for 16 h. The AgNF 

deposited on the glass chips were rinsed thoroughly with 

ethanol and air-dried in the hood. 

2.3. Instruments and Methods 

Normal Raman (NR) spectra of permethrin solid and its 

SERS spectra were collected with a portable PeakSeeker 

Pro-785 Raman spectrometer coupled with a fiber-optic probe 

and a microscope (Agiltron Inc, Woburn, MA). A 785 nm laser 

wavelength with 10 mW was used as an excitation source. A 

50× microscope objective was used. The Raman band of a 

silicon wafer at 520 cm
-1

 was used to calibrate the spectrom-

eter. The measurements were conducted in the backscattering 

geometry.  

For SERS analysis, 10 µL of permethrin/ethanol solution 

was applied to the AgNF substrate with a pipette and the 

droplet was spread on the whole substrate surface. After 

air-drying within 5 min, the SERS spectra were collected. For 

reliable and reproducible SERS results, an averaged spectrum 

was obtained from 5 spectra collected on 5 randomly selected 

locations on the AgNF substrate for every sample in the 

quantitative SERS analyses. 

3. Results and Discussion 

3.1. NR Spectra of Permethrin 

Permethrin has a molecular formula of C21H20Cl2O3 (46 

atoms), and a molecular structure as shown in Figure 1. It 

produces 132 normal vibration modes [17]. The NR spectrum 

of permethrin solid in the range of 200 – 2000 cm
-1

 is shown 

in Figure 2. Characteristic Raman bands of permethrin can be 

observed in the spectrum, and assignments of the bands 

based on the literature are listed in Table 1 [17]. Typically, 

the strongest peak located at 1003 cm
-1

 can be assigned to 

benzene ring breathing mode. The C=C stretching of benzene 

appears at 1595 cm
-1

 as a shoulder of the peak of the alkenyl 

(C=C) stretching mode located at 1620 cm
-1

. The peaks at 

1721 and 1213 cm
-1

 are due to the C=O and C-O stretching 

vibration modes, respectively. The peaks at 843 and 724 cm
-1

 

can be assigned to in-plane deformation modes of benzene 

ring and cyclopropyl ring, respectively. The symmetric 

stretching vibration of C-Cl appears at 661 and 622 cm
-1

. 

 

Figure 1. Molecular structure of permethrin. 

 

Figure 2. Normal Raman spectrum of permethrin solid. 

Table 1. Normal Raman bands of permethrin and their assignments[17]. 

Bands (cm-1) Assignments 
Bands 

(cm-1) 
Assignments 

1721 υ (C=O) 915 in-plane def. of cp 

1620 υ (C=C) 884 υ (C-C) 

1595(shoulder) υ (C=C)ben. 867 γ (C-H)ben 

1439 δ asym (CH3) 843 in-plane def. of ben. ring 

1418 δ (C-H)cp 791 in-plane def. of cp 

1388 δ sym (CH3) 771 γ (C-H)ben. 

1376 δ (CH2) 753 γ (C-H)ben. 

1279 breath of cp 724 in-plane def. of cp 

1247 υ asym(C-O-C) 661 υ sym (C-Cl) 

1213 υ (C-O) 618 υ sym (C-Cl) 

1170 υ (C-O) 571 in-plane def. of ben. ring 

1147 δ (C-H)ben. 540 
out-of-plane def. of ben. 

ring 

1117 υ (C-C) 514 δ (C-C-C) 

1090 δ (C-H)ben. 453 γ (=C-Cl) 

1066 
in-plane def. 

of cp 
395 δ (C-C-C) 

1026 υ (C-O) 355 τ (C-O-C-C) 

1003 
breath of ben. 

ring 
325 δ (C-O-C) 

969 γ (C-H)cp 261 τ (C-C-C-C) 

937 ρ (CH3) 230 τ (C-C-C-C) 

υ: stretching; δ: scissoring; γ: out-of-plane bending; ρ: rocking; τ: torsion; 

ben.: benzene; cp: cyclopropyl; def.: deformation; asym: asymmetric; sym: 

symmetric. 

3.2. SERS Spectra of Permethrin 

The SERS spectrum was recorded at a high concentration 

of permethrin at the beginning of the study to obtain a clear 
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SERS spectrum. The SERS sample was prepared by drop-

ping 10 µL of 1250 ppm methanolic permethrin solution on 

the AgNF SERS substrate and then air-dried prior to the 

SERS measurement. The measured SERS spectrum is shown 

in Figure 3. Compared with Figure 2, the SERS spectrum has 

a similar profile to the NR spectrum. The primary character-

istic SERS bands of permethrin are marked in the figure. The 

strongest peak still appears at 1003 cm
-1

 due to the benzene 

ring breathing mode. The bands of the C=C stretching of 

benzene, the scissoring vibration of C-H on benzene ring and 

the scissoring vibration of C-C-C are observed to be moder-

ately enhanced in the SERS spectrum, but have shifted from 

1595, 1090 and 395 cm
-1

 to 1592, 1078 and 390 cm
-1

, respec-

tively. Some of other characteristic peaks are also observed in 

the SERS spectrum, exhibiting the shifts of a few to >10 cm
-1

. 

However, for low concentrations of permethrin, only the 

1003 cm
-1

 peak due to the breath vibration of benzene ring 

was significantly enhanced in the SERS spectra. Therefore, 

this SERS band will be used for the quantitative SERS detec-

tion of permithrin and the determination of detection limit. 

 

Figure 3. SERS spectrum of permethrin on AgNF SERS substrate. 10 µL of 

1250 ppm permethrin solution was dropped onto the AgNF and air-dried 

prior to SERS measurement. 

3.3. Quantitative Detection of Permethrin 

Figure 4A shows the SERS spectra of permethrin on the 

AgNF SERS substrates recorded for the concentrations of 10 

to 1000 ppm in the region from 700 to 1300 cm
-1

. In the 

background spectrum of the AgNF substrate, there exists a 

very week Raman band around 1000 cm
-1

 (data not shown). 

This band may interfere with SERS detection of low concen-

tration permethrin because the characteristic SERS band of 

permethrin appears at 1003 cm
-1

. Due to its interference, the 

permethrin SERS band for low concentrations (< 10 ppm) is 

difficult to be discerned. Thus, 10 ppm was determined to be 

the detection limit of the AgNF substrate towards permethrin.  

From Figure 4A, it can be seen clearly that a steady increase 

in SERS intensity or peak height of the permethrin 1003 cm
-1 

Raman band is observed as the permethrin concentration 

increases from 10 to 1000 ppm. To evaluate the Ag films for 

quantitative analysis, the peak heights of the permethrin Ra-

man bands are plotted as a function of the permethrin con-

centrations (Figure 4B). A linear regression was fit to the plot 

and is also shown in Figure 4B. The fitting equation is y = 

1.7361x + 519.91 (y is the peak height at 1003 cm
-1

, and x is 

the permethrin concentration in ppm). A high regression co-

efficient (R
2
) value of 0.963 indicates a high goodness of fit. 

These results indicate that permethrin peak intensity increases 

linearly and proportionally with the permetrin concentration 

in the dynamic range between 10 to 1000 ppm. This linear 

dependence indicates a potential of the SERS approach for 

quantitative permethrin analysis.  

 

Figure 4. (A) SERS spectra of different concentrations of permethrin depos-

ited on the AgNF SERS substrates (from bottom to top: 10, 50, 100, 250, 500, 

and 1000 ppm) and NR spectrum of permethrin solid. The SERS Spectra 

were baseline-corrected and shifted vertically for clarity but the relative 

intensities were kept unchanged. (B) Plots of the peak height of the 1003 cm−1 

band against the permethrin concentration. The linear regression line was 

obtained by fitting the experimental data with a linear Eq. y = kx + b.  

4. Conclusions 

The SERS spectra of permethrin were measured on the 

AgNF SERS substrates. The characteristic SERS bands of 

permethrin were analyzed and assigned to the corresponding 

modes based on the NR spectra of permethrin. The SERS 

band at 1003 cm
-1 

was identified for the evaluation of quanti-

tative analysis. The detection limit was determined to be 10 

ppm on the AgNF substrates. In the range of 10 – 1000 ppm, 
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a good linear relationship between the peak height of the 

1003 cm
-1 

band and the permethrin concentration is observed. 

In summary, the results obtained in this work indicate that 

SERS is a promising technique for the identification and 

quantification of permethrin. 
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