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Abstract: Three-phase-lag theory of thermoelasticity is employed to study the deformation of thermo-elastic solid half-space 

under hydrostatic initial stress, rotation, magnetic field and gravity with two-temperature. The normal mode analysis is used to 

obtain the analytical expressions of the displacement components, force stress, thermodynamic temperature and conductive 

temperature. The numerical results are given and presented graphically when mechanical and thermal force is applied. 

Comparisons are made with the results predicted by the three-phase-lag model, Green-Naghdi III and Lord-Shulman theories. 
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1. Introduction 

The generalized theory of thermoelasticity is one of the 

modified versions of classical uncoupled and coupled theory 

of thermoelasticity and has been developed in order to 

remove the paradox of physical impossible phenomena of 

infinite velocity of thermal signals in the classical coupled 

thermoelasticity. Hetnarski and Ignaczak [1] examined five 

generalizations of the coupled theory of thermoelasticity. The 

first generalization formulates the generalized thermo-

elasticity theory involving one thermal relaxation time by 

Lord and Shulman [2]. Green and Lindsay [3] developed the 

temperature rate-dependent thermoelasticity, where includes 

two thermal relaxation times and does not violate the 

classical Fourier’s law of heat conduction, when the body 

under consideration has a center of symmetry. One can 

review and presentation of generalized theories of thermo-

elasticity by Hetnarski and Ignaczak [4]. The third 

generalization of the coupled theory of thermoelasticity is 

developed by Hetnarski and Ignaczak and is known as low-

temperature thermoelasticity.  

The fourth generalization to the coupled theory of thermo-

elasticity introduced by Green and Naghdi and this theory is 

concerned with the thermoelasticity theory without energy 

dissipation, referred to as (G-N) theory of type II in which 

the classical Fourier law is replaced by a heat flux rate-

temperature gradient relation and Green and Naghdi with 

energy dissipation referred to as (G-N) theory of type III.  

The fifth generalization of the coupled theory of thermo-

elasticity is referred to the dual-phase-lag thermoelasticity by 

Tzau [5] and Chandrasekhariah [6]. Disturbance due to 

internal heat source in thermoelastic solid using dual phase 

lag model has studied by Ailawalia and Singla [7]. 

The stability of the three-phase-lag, the heat conduction 

equation was discussed by Quintanilla and Racke [8]. The 

vibration analysis of wave motion in micropolar thermo-

visco-elastic plate was investigated by Kumar and Partap [9]. 

Some researcher in the past investigated different problems 

of rotating media. It was shown there that the rotation causes 

the elastic medium to be depressive and anisotropic. Abo-

Dahab et al. [10] discussed the rotational effect on Rayleigh, 

Love and Stoneley waves in non-homogeneous fibre-
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reinforced anisotropic general viscoelastic media of higher 

order. Wave propagation in fibre-reinforced anisotropic 

thermoelastic medium subjected to gravity field was studied 

by Abd–Alla et al. [11]. The electro-magneto-thermoelastic 

surface waves in non-homogeneous orthotropic granular half 

space have studied by Kakar and Kakar [12]. 

The two-temperature theory of thermoelasticity was 

introduced by Chen and Gurtin [13], in which the classical 

Clausius-Duhem inequality was replaced by another one 

depending on two-temperature; the conductive temperature 

and the thermodynamic temperature, the first is due to the 

thermal processes, and the second is due to the mechanical 

processes inherent between the particles and the layers of 

elastic material, this theory was also investigated by Ieşan 

[14]. The two-temperature model was underrated and 

unnoticed for many years thereafter. Only in the last decade 

the theory has noticed, developed in many searches, and find 

its applications, mainly in the problems in which the 

discontinuities of stresses have no physical interpretations.  

The initial stress present in the medium also has a 

considerable effect on the propagation of waves by Biot 

(1965). Initial stress in solids has the significant influence on 

the mechanical response of the material from an initially 

stressed configuration and has applications in geophysics, 

engineering structures, and in the behavior of soft biological 

tissues. Initial stress arises from processes, such as 

manufacturing or growth and is present in the absence of 

applied loads. The generalized thermoelastic interaction in a 

fiber-reinforced anisotropic half-space under hydrostatic 

initial stress was studied by Abbas and Othman [15]. The 

effect of rotation on piezo-thermoelastic medium, using 

different theories have studied by Othman et al. [16]. The 

wave propagation in a two-temperature fiber-reinforced 

magneto-thermo-elastic medium with three-phase-lag model 

was discussed by Othman et al. [17]. The analysis of wave 

motion in an anisotropic initially stressed fiber-reinforced 

thermoelastic medium was studied by Gupta and Gupta [18].  

In the classical theory of elasticity, the gravity effect is 

generally neglected. The generalized thermoelastic medium 

with temperature-dependent properties for different theories 

under the effect of gravity field has studied by Othman et al. 

[19]. Surface waves under the influence of gravity were 

studied by De and Sengupta [20].  

The aim of this paper is to study the influence of magnetic 

field, rotation, hydrostatic initial stress and gravity with two-

temperature on thermoelastic isotropic medium in the context 

of the (3PHL) model. Numerical results for the field 

quantities are obtained and represented graphically. 

Comparisons are made with the results predicted by three-

phase-lag model, (G-N III) and (L-S) theories for different 

cases. 

2. Formulation of the Problem 

We consider a homogeneous thermoelastic half-space with 

two-temperature, under the influence of magnetic field, 

initial stress and gravity, rotating uniformly with angular 

velocity ΩΩ n= ,  where n  is a unit vector representing the 

direction of the axis of rotation. All quantities are considered 

functions of the time variable t and of the coordinates x and 

y. The displacement equation in the rotating frame has two 

additional terms Schoenberg and Censor (1973): centripetal 

acceleration ( )∧ ∧Ω Ω u  due to time varying motion only 

and Coriolis acceleration ∧ ɺ2Ω u  where ( , ,0)u v=u  is the 

dynamic displacement vector and angular velocity is 

(0, 0, )ΩΩ = . These terms, do not appear in non-rotating 

media. A magnetic field with constant intensity 

0(0,0, )H=H  acts in the direction of the axisz − . Due to 

the application of initial magnetic field ,H an induced 

magnetic field h  and an induced electric field E are results. 

The simplified linear equations of electrodynamics of slowly 

moving medium for a homogeneous, thermally and 

electrically conducting elastic solid are: 

0
curl   = + ε ɺh J E                                (1) 

0curl  =  µ− ɺE h                                   (2) 

div  = 0h                                      (3) 

0= ( ) µ− ∧ɺE u H                               (4) 

The stress-strain relation 

02 ( ) ( + )ij ij ij ij ijσ µ e λ e γ T T δ p ω δ− − −= +[ ]          (5) 

The displacement components have the following form
 

( , ,0)u v=u . 

The equations of motion in the absence of body force 

, +{ ( )} + (2 )jx, j x x x xσ gv F ρ uρ+ + = ∧ ∧ ∧ ɺɺɺ Ω Ω u Ω u[ ]      (6) 

, +{ ( )} + (2 )jy, j x y y yσ gu F ρ vρ− + = ∧ ∧ ∧ ɺɺɺ Ω Ω u Ω u[ ]     (7) 

The equation of heat conduction under three-phase-lag 

model 

2 2 2+* *

v t
K τ + Kτφ φ φ∇ ∇ ∇ɺ ɺɺ  

2 2

02
1+ + +

2!

q

q e

τ
τ ρc T γT e

t t

∂ ∂( )( )
∂ ∂

ɺɺ ɺɺ=                (8) 

Where ( ),* *

v vτ K + K τ= 0
( )i iF µ= ∧J H  

2= (1 )T b φ∇−                            (9) 

1
( )

2
ij i, j j,ie = u +u                          (10) 

1
( )

2
ij j,i i, jω = u u−                         (11) 
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For a two-dimensional problem in xy-plane, Eqs. (6) and (7) can be written as: 

2 2 2 2 2 2

0 0 0 0

e
( ) + ( + + ) (1 ) [ 2 ]

2 2 x x

p p v
µ u λ µ H γ b H u ρ u u Ω Ω v g

x

φµ ε µ∂ ∂− − − ∂∇ + ∇
∂ ∂ ∂

− − −ɺɺ ɺɺ ɺ
0 - =                      (12) 

2 2 2 2 2 2

0 0 0 0( ) + ( + + ) (1 ) [ 2 ]
2 2 y

p p e u
µ v λ µ H γ b H v ρ v v Ω Ω u g

y x

φµ ε µ∂ ∂− − − ∂∇ + ∇
∂ ∂ ∂

− + +ɺɺ ɺɺ ɺ
0 - =                      (13) 

2 2
2 2 2 2

02
+ + = (1+ + )[( (1 ) + ]

2!

q* *

v t q e

τ
K τ Kτ τ ρc b γT e

t t
φ φ φ φ∂ ∂∇ ∇ ∇ ∇

∂
−

∂
ɺ ɺɺ ɺɺ ɺɺ                                     (14) 

Where 0h H e= −  

For the purpose of numerical evaluation, we introduce dimensionless variables: 

( ) ( ),
0

x , y = x, y
c

ω∗

′ ′  
0

( ) ( ),0c
u ,v = u,v

T

ρ ω
γ

∗

′ ′
0

{ } { },ij ij

1
σ , p = σ , p

Tγ
′ ′  

0

1
( ) ( ),T , = T,

T
φ φ′ ′

 

( ) ( ),
v q t v q t

t ,τ ,τ ,τ = t,τ ,τ ,τω∗′ ′ ′ ′  
2

0

2λ+ µ
c =

ρ
, 0

2

0

T
e e

c

γ
ρ

′= ,
2

0e
c c

K

ρω∗ = , 

2
2 2

2

0
c

ω∗

′∇ = ∇ , 
0

h
h

H
′ = , (3 2 ) tγ λ µ α= + , 

0

g
g

c ω∗
′ = , .

Ω
Ω =

ω∗
′  

Using the above dimensions quantities, Eqs. (12)-(14) become: 

2 2 2

2 20 0 0 0 0

2 12 2

0

+[ + + (1 )] (1 ) = [(1
2

+ ) 2 ]2 *H ε µ He v
a u a b u u Ω Ω v g

xβ x xc

µ φ
ρρ

∂ ∂ ∂∇ ∇− − −
∂

− − −
∂ ∂

ɺɺ ɺ                            (15)

2 2 2

2 2 0 0

2 2

20

12

2
+[ + + (1 )] (1 ) = [(1+ ) + 2 ]*0 0

0

H ε µ He u
a v a b v Ω Ωu g

y yβ xc
v

µ φ
ρρ

− − −∂ ∂ ∂∇ ∇ +
∂ ∂

−
∂

ɺɺ ɺ                       (16)

2 2
2 2 2 2

1 2 32
+ + = (1+ + )[(1 ) + ]

2!

q *

t q

τ
ε ε τ τ b ε e

t t
φ φ φ φ−∂ ∂∇ ∇ ∇ ∇

∂ ∂
ɺ ɺɺ ɺɺ ɺɺ                                      (17) 

Where 1 2

0

=
*

e

K
ε

ρc c
, 2 11 vε = +ε τ , 

2

3 2 2

0

= 0

e

γ T
ε

ρ c c
, 

2

2

0

,* bω
b =

c

∗

 
0

1 2

0

2
,

2

T p
a

c

µ γ
ρ
+

=  
0

2 2

0

2
.

2

T p
a

c

µ γ
ρ
−

=  

We define displacement potentials q
 
and ψ  which relate to displacement components u and v as: 

= ,x ,yu q ψ−  = +,y ,xv q ψ                                                                               (18) 

Using Eq. (18) in Eqs. (15)-(17), we obtain: 

2 2 2

2 20 0 0 0 0

1 22

0

2
[ + + + (1 )] (1 ) = [(1+ )

2
2 ]2 *

,x

H ε µ H
qa a q b q Ω Ω g

βc

µ φ ψ ψ
ρρ

−∇− −∇− − −ɺɺɺ                           (19) 

2 2

2 0 0 0

2
[( )] = [ (1+ ) 2 ]2

,x

ε µ H
a Ω Ω q g qψ ψ

ρ
− − −∇ − −ɺɺ ɺ                                                   (20) 

2 2
2 2 2 2 2

1 2 32
+ + = (1+ + )[(1 ) + ]

2!

q *

t q

τ
ε ε τ τ b ε q

t t
φ φ φ φ∂ ∂ ∇−∇ ∇ ∇ ∇

∂ ∂
ɺ ɺɺ ɺɺ ɺɺ                                              (21) 

3. Normal Mode Analysis 

The solution of the considered physical variable can be decomposed in terms of normal modes as the following form: 

*
[ , , ]( ) = [ , , ]( )exp[i( + )]

* * * * *

ij iju,v,e,T q,ψ,σ x, y,t u ,v ,e ,T q ,ψ ,σ y ωt axφ φ∗ ∗
              (22) 
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Where ω  is the complex time constant and a  is the wave 

number in x-direction. 

Using (22) in Eqs. (19)-(21), we obtain: 

2 2 *

1 2 3 4(A D ) + ( D ) + 0* * *A q b A A ψ =φ− −                 (23) 

5 4

2

2( D + ) 0* *Aa A ψ q =+−                        (24) 

2 * 2

6 7 8 9( D ) + ( D ) = 0*A A A A qφ− −                  (25) 

where 

2

0 0

1 1 22

0

2
= + + + (1 ),

2H
A a a

c β

µ
ρ

−  

2 2 2 2

2 2 2 2 20 0 0 0 0

2 1 22

0

2
= + + + (1 ) [ + ,

2
1 ]

a H ε µ H
A a a

β
a a a ω Ω

c

µ
ρρ

− − −
 

2

3 1+ ,*A = b a 4 2 ,A iΩω iag= +
2 2

2 2 20 0 0

5 2
[1+ ] ,

ε µ H
A a a ω

ρ
= − Ω −  

2

2 2 2

6 1 2
+ [1+ i ],

q*

t q

τ
A = ε iε ω τ ω b τ ω ω

2!
ω− − −

2

2 2 2 2 2 2 2

7 1 2
(1a + a a a ) [1+ i ],

q*

t q

τ
A = ε iε ω τ ω b τ ω ω

2!
ω− − + −  

2

2 2

8 3
[1+ ],

2

q

q

τ
A = ε ω iτ ω ω

!
−

 

2

2 2 2

9 3
[1+ ].

2

q

q

τ
A = ε ω a iτ ω ω

!
−  

Eliminating *φ  and *ψ  between Eqs. (23)-(25), we get: 

6 4 2 *[D D D ]{ ( ), ( ), ( )} = 0* *A + B q y y ψ yC φ− −      (26) 

Where  

1 7 2 1 5 6 2 6 2 9 2 5 8 2 3 8

2 1 6 2 8

,
A A a A A A A A a A a b A A b a A A

A
a A A a A b

∗ ∗

∗

+ + − − −
=

−
 

2

1 5 7 2 7 2 2 5 6 5 9 3 9 2 3 5 8 4 6

2 1 6 2 8

,
A A A A A a A A A A A b A A a A A A A A

B
a A A a A b

∗

∗

+ + − − − +
=

−
2

2 5 7 3 5 9 4 7

2 1 6 2 8

,
A A A A A A A A

C
a A A a A b∗

− +
=

−
D .

d
=

dy
 

The solution of Eq. (26) has the form: 

3

1

n y* k

n

n=

q = M e
−

∑                              (27) 

3
*

1

1

n y

n n

n=

k
= H M eφ −
∑                               (28) 

3

2

1

n y*

n n

n=

k
ψ = H M e

−
∑                             (29) 

1

n

3
y*

3n n

n=

k
T = H M e

−
∑                           (30) 

where ( 1,2,3)M n =
n

 are some constants, 2

nk
 
are the roots of 

the characteristic equation of Eq. (26). 

Dimensionless variables of the stress components yield the 

following: 

,2

2
+ (1 )xx ,x yσ = u v T

β
p− − −                      (31) 

, 2

2
+ (1 )yy y ,xσ = v u T

β
p− − −                      (32) 

1 2+xy ,y ,xσ = a u a v                            (33) 

2 1+yx ,y ,xσ = a u a v                            (34) 

Using Eq. (18) and Eqs. (27)-(30) in (31)-(34) we get: 

3

4

1

i( )
n

n n

n=

kt+ ax y
u = H M e

ω −
∑                        (35) 

3

n=1

i( )
n

5n n

t+ a x yk
v = H M e

ω −
∑                   (36) 

3

1

i( )
n

xx 6n n

n=

t+ a x yk
σ = H M e p

ω − −∑                (37) 

3

7

1

i( )
n

yy n n

n=

t+ ax yk
σ = H M e p

ω − −∑                   (38) 

3

8

1

i( )
n

xy n n

n=

t k+ a x y
σ = H M e

ω −
∑                   (39) 

3

1

i( )
n

yx 9n n

n=

t k+ a x y
σ = H M e

ω −
∑                   (40) 

3

3

1

i( )
n

n n

n=

t+ a x yk
T = H M e

ω −
∑                   (41) 

Where 

2

9

1 2

6 7

( )
= ,8 n

n

n

A k A
H

A k A

−
−

−
4

2 2

5 2

,n

n

A
H =

A a k
−

−
2 2

3 1 [1 ( )],*

n n nH = H b k a− −  4 2
= ( + ),n n nH ia k H  

5 2
( + ),n n nH = k iaH−

6 4 5 32

2
[ (1 ) ],n n n n nH = i a H k H H

β
− − −

7 5 4 32

2
[ + (1 ) ],n n n n nH = k H i a H H

β
− − −  

1 4 5
( + ),8n n n 2 nH = a k H i a a H−

2 4 5
( + ).9n n n 1 nH = a k H iaa H−  

4. Boundary Conditions 

The boundary conditions on the plane surface 0y =  are 
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1

i( )
xx

t+ a x
σ = P+ Pe

ω−
2

i( )t + a x
T = P e

ω 0xyσ =      (42) 

Using Eqs. (37), (39) and (41) in boundary conditions (42), 

we get three equations in three constants ( 1,2,3)M n =
n

 as: 

3

6 1

1

n n

n=

H M = P∑                              (43) 

3

8

1

= 0n n

n=

H M∑                               (44) 

3

3 2

1

n n

n=

H M = P∑                                 (45) 

Solving Eqs. (43)-(45) the constants ( 1,2,3)nM n =
 
are 

defined as follows 

1

1

∆
M =

∆

2

2

∆
M =

∆

3

3

∆
M =

∆  

where 
 

61 83 32 82 33 62 83 31 81 33 63 82 31 81 32( ) ( ) + ( ),∆ = H H H H H H H H H H H H H H H− − − −

1 1 83 32 82 33 2 83 62 63 82( ) ( ),∆ = P H H H H P H H H H− − −
 

2 1 83 31 81 33 2 61 83 63 81( ) + ( ),∆ = P H H H H P H H H H− − −
 

3 1 82 31 81 32 2 62 81 61 82( ) + ( ).∆ = P H H H H P H H H H− −
 

5. Numerical Results 

To study the effect of gravity, rotation, initial stress, 

magnetic field and two-temperature, we now present four 

cases and some numerical results. For this purpose, copper is 

taken as the thermoelastic material for which we take the 

following values of the different physical constants. 

10 27.7 10 . ,N Mλ −= ×  
10 1 23.86 10 . .µ Kg m s− −= × , 

1 1300K w.m .K− −= , * 2.97 10^13,K = ×  

5 11.78 10 ,tα K− −= ×  

38954 .Kg mρ −= , 1 1383.1 .ec J Kg K− −= , 0
293T K= , 

0ω = ω +iξ , 1
0.1,P =  2

0.2P =  

The numerical technique, outlined above, was used for the 

distribution of the real part of the displacement component 
,u  the temperature ,T and the stress components

 
,xyσ
 xxσ

 
of 

the problem.
 

Case 1: Figures 1-4 show the variation of the physical 

quantities based on (L-S), (G-N III) and (3PHL) in the case 

of 0,1p = , when 0.1b = , 0.1Ω = , 0
0H = , 0g = , 

0.5x = , 0.3t = , 0.5a = , 0
0.2ω = − , 0.6ξ = , 0.05υτ = , 

0.2tτ = , 0.8qτ =  

Figure 1 depicts that the displacement component u  

increases with the decrease of initial stress in the three theories. 

In the absence of initial stress (i.e. p = 0 ), u  begins to increase, 

then smooth decreases again to decay zero at infinity and in the 

presence of initial stress (i.e. 1p = ), u  decreases and increases 

until it develops to zero. Figure 2 demonstrates that the 

temperature T  decays meaning that the temperature decrease 

for 0,1p =  and take the form of a wave until it develop to zero. 

Figure 3 represents that the stress component xyσ  increases with 

the increase of initial stress p in the three theories and take the 

form of the wave until it decays to zero, and decreasing with the 

decrease of the initial stress in the three theories and takes the 

form of the wave until it decays to zero. Figure 4 depicts that the 

stress component xxσ  increases with the decrease of initial stress 

and decays to zero. 

 

Figure 1. Variation of the displacement component u  in the absence and 

presence of p.  

 

Figure 2. Variation of the temperature T in the absence and presence of p.  

 

Figure 3. Variation of the stress component xy
σ  in the absence and presence 

of p.  
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Figure 4. Variation of the stress component xxσ  in the absence and presence 

of p.  

Case 2: Figures 5-8 exhibit the variation of the physical 

quantities based on (L-S), (G-N III) and (3PHL) in the case 

of 0, 0.1,Ω =  when 0.1b = , 1P = , 0
0H = , 0,g =  

0.5x = , 0.3t = , 0.5a = , 0
0.2ω = − , 0.6ξ = , 0.05υτ = , 

0.2tτ = , 0.8qτ =  

Figure 5 depicts that the displacement component u  

increases with the decrease of rotation and decays to zero at 

infinity. Figure 6 demonstrates that the temperature satisfies 

the boundary condition at 0y =  and decreases, in the three 

theories at 0, 0.1,Ω =  to a minimum value in the range 

0 2y≤ ≤  and increasing in the range 2 4,y≤ ≤ until it 

decays to zero. Figure 7 explains that in the absence of 

rotation the stress component 
xyσ

 
decreases in the range 

0 1,y≤ ≤
 
in three theories, and increases in the range 

1 3.y≤ ≤  While in the presence of rotation, 
xyσ

 
decreases in 

the range 0 1y≤ ≤ , then, increases in the range 2 5y≤ ≤  

and takes the form of the wave until it develops to zero in (L-

S) and (G-N III) and (3PHL) theories. Figure 8 shows that at 

0,Ω =  the stress component xxσ  satisfies the boundary 

condition and decreasing to a minimum value in the range 

0 1,y≤ ≤
 
while, increases in the range 1 6y≤ ≤  and decays 

to zero in the context of three theories. However, at 0.1,Ω =  
it increases in the range 0 2,y≤ ≤  then, decreases in the 

range 2 8y≤ ≤  and decays to zero in the three theories.  

 

Figure 5. Variation of the displacement component u  in the absence and 

presence of rotation. 

 

Figure 6. Variation of the temperature T  in the absence and presence of 

rotation. 

 

Figure 7. Variation of the stress component xy
σ

 
in the absence and presence 

of rotation. 

 

Figure 8. Variation of the stress component 
xxσ  in the absence and presence 

of rotation. 

Case 3: Figures 9 (a, b) -12 (a, b) show the variation of the 

physical quantities based on (L-S), (G-N III) and (3PHL) in 

the case of 0,9.8g =
 
respectively, when 0.1,b = 0,P =  

0 0H = , 0Ω = , 0.5x = , 0.3,t =  1.5a = , 
0

2.5ω = − , 

3ξ = , 0.05υτ = , 0.2tτ = , 0.8qτ =  

Figure 9(a, b) depicts that the displacement component u  

increases with the increase of gravity in the three theories. In 

the absence and presence of gravity (i.e. 0,9.8g = ), u  

begins to increase then smooth decreases and takes the form 

of wave and try to return to zero. Figure 10(a, b) demonstrate 
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that the temperature T  decreases for 0,9.8g =  and takes the 

form of a wave until it develop to zero. Figure 11(a, b) show 

that the stress component 
xyσ  decreases for 0,9.8g =  and 

takes the form of a wave until it develop to zero. Figure 12(a, 

b) depict that the stress component xxσ decreases with the 

increase of gravity in (L-S) and (G-N III), and increases in 

(3PHL) at 9.8g = . But it decreases at 0g =  in three 

theories.  

 

(a). 

 

(b) 

Figure 9. (a,b) Variation of displacement component u in the presence and 

absence of .g  

 

(a) 

 

(b) 

Figure 10. (a,b) Variation of the temperature T in the presence and absence 

of g  

 

(a) 

 

(b) 

Figure 11. (a,b) Variation of the stress component 
xxσ

 
in the presence and 

absence of g .
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(a) 

 
(b) 

Figure 12. (a,b) Variation of the stress component xy
σ

 
in the presence and 

absence of
 

g .
 

Case 4: Figures 13-16 show the variation of the physical 

quantities based on (L-S), (G-N III) and (3PHL) theories, in 

the case of 0,0.1b =  and 8

0 10H = , when 0g = , 0,P =  

0Ω = , 0.1x = , 0.3t = , 2.5,a =  
0

1.2ω = − , 1.1υτ = , 

1.5tτ = , 3.5121qτ =  

Figure 13 depicts that the displacement component u  

decreases to the minimum point in the range 0 1,y≤ ≤  and 

increasing in the range 1 3.5,y≤ ≤  in the three theories for 
8

0 = 10H  and decays to zero. Figure 14 demonstrates that 

the temperature T  begins from the value 0.2  and satisfies 

the boundary condition at 0y =  in the three theories. The 

temperature T decreases to the minimum point between 

1 2,y≤ ≤  in the three theories, and decays to zero. Figure 15 

depicts that the stress component 
xyσ  satisfies the boundary 

condition and increases in the three theories at 0,0.1.b =  In 

the absence of magnetic field (i.e. 
8

0 = 10H )
 xyσ begins to 

increase then smooth decreases and takes the form of wave 

and try to return to zero. Figure 16 explains that

 

the stress 

component xxσ  begins from the value 0.1  and satisfies the 

boundary condition at 0y =  in three theories, then it 

decreases to the minimum point between 1 2,y≤ ≤  in the 

three theories, in the absence of a magnetic field (i.e. 
8

0 = 10H ) and decays to zero. 

 

Figure 13. Variation of the displacement component u.  

 

Figure 14. Variation of the temperature T  

 

Figure 15. Variation of the stress component .
xy
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Figure 16. Variation of the stress component .xxσ  

6. Conclusion 

By comparing the figures obtained under the three 

theories, important phenomena are observed: 

1. Analytical solutions based upon normal mode analysis 

of the thermoelastic problem in solids have been 

developed. The method that is used in the present article 

is applicable to a wide range of problems in hydro-

dynamics and thermoelasticity. 

2. There are significant differences in the field quantities 

under (GN-III), (3PHL) and (L-S) theories. 

3. The presence of the gravitational field, magnetic field, 

initial stress, rotation and two-temperature plays a 

significant role on all physical quantities. 

4. The comparison of the three theories of 

thermoelasticity, (L-S), (3PHL) and (G-N III) is carried 

out. 

5. The value of all the physical quantities converges to 

zero, and all the functions are continuous. 

Nomenclature 

λ, µ Lame' constants i
u  the displacement vector 

h  the induced magnetic field    

Vector 
ρ  the mass density 

E  the induced electric field 

Vector 
p  the initial stress 

0
ε  the electric permeability 

for free space 

ec  specific heat at constant  

strain 
a  the volume coefficient of 

thermal expansion 

K (≥ 0) the thermal 

conductivity 
*K  the material 

characteristic of the theory 0T  the reference temperature 

T  the thermodynamic 

Temperature 

φ  the conductive 

temperature 

vτ  the phase lag of thermal 

displacement gradient. 
qτ  the phase lag of heat flux 

tτ  the phase lag of 

temperature gradient 
ijδ  the Kronecker delta 

b the parameter of two 

temperature 
J  the current density vector 

0
H  the initial uniform 

Magnetic field 
iF  the Lorentz force 

0
µ  the magnetic 

permeability for free space 
g  the gravity 

ij
ω  the skew symmetric tensor called the rotation tensor 
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