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Abstract: This paper examines the transmission dynamics of HIV infection with public health intervention strategies 

treatment and awareness on the proper procedure of ART treatment. For the problem, a deterministic mathematical model is 

proposed and analysed qualitatively using the concept of stability of differential equations. The effective reproduction number is 

computed in terms of model parameters. The existence and stability of disease free and endemic steady states are recognized.  

The disease free and endemic equilibria are indicated to be locally and globally asymptotically stable whenever the effective 

reproduction number is less than unity and greater than unity respectively. This means that, HIV infection will die out in the 

community when the effective reproduction number is less than the threshold value and persist otherwise. Based on the 

sensitivity analysis of the effective reproduction number, we found that the rate of ART treatment and the rate of awareness on the 

proper procedure of ART are influential in reducing the magnitude of the reproduction number and thus they are important in 

decreasing the number of infected population. Numerical simulations support our analytical results that implementing ART 

treatment at every stage of HIV/AIDS had high impact in reducing the infected population than implementing on a single stage 

for those who follow the proper procedure of ART treatment. It also verifies the positive impact of awareness on the proper 

procedure of ART treatment in reducing infected individuals by reducing treatment waning rate. Therefore, our result suggests 

that ART treatment should be implemented together with awareness on the proper procedure of ART treatment to control the 

spread of HIV in the community. 
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1. Introduction 

Human immunodeficiency virus (HIV) infection is a 

disease of immune system caused by HIV virus and it is 

transmitted primarily via unprotected sexual intercourse, 

contaminated blood transfusions (Horizontal transmission) 

and from mother to child during pregnancy, delivery or 

breastfeeding (Vertical transmission). After entering the body, 

the virus causes acute infection, which often manifests itself 

with flue like symptoms and this acute infection is followed by 

a long asymptomatic (chronic stage) period. With no public 

health interventions, as the illness progresses, it weakens the 

immune system more and more making the infected individual 

much more likely to get other infections called opportunistic 

infections that are unusual for healthy individuals (AIDS stage) 

according to CDC. Even though this virus contains on saliva, 

tear, and urine, but it does not show to be at risk of 

transmitting the infection among human population since the 

virus levels on these liquids are very low [1-4]. In HIV 

infection CD4+T -cells depletion occurs inside the human 

body with consequent decrease in secretory IgA production 

that neutralizes other toxin [4, 5]. There is no cure or effective 

vaccine against HIV, however antiretroviral treatment can 

slow the course of the disease and may lead to a near -normal 

life expectancy [6-10]. 

HIV/AIDS transmission in Africa is primarily through 

heterosexual sex and vertical transmission (mother to-child). 

40% of HIV/AIDS cases result from vertical transmission. 

High rates of heterosexual transmission in Africa appears to 

result in part from synergistic (combined action) relationship 

between HIV and STD. This condition fuel an epidemic 

among infants and \children of infected mothers. A smaller 
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contributor to continuing HIV transmission in Africa is the 

unintentional use of infected blood transfusions [1, 3, 11]. 

Sub-Saharan region is the region most affected. In 2017, an 

estimated 66% of new HIV infections occurred in this region. 

South Africa has the largest population of people with HIV 

of any country in the world, at 7.06 million, as of 2017. In 

Tanzania, HIV/AIDS was reported to have a prevalence of 

4.5% among Tanzanian adults aged 15–49 in 2017 [12-15]. 

The whole world is touched by the HIV pandemic, as of 

2017, approximately 36.9 million people are infected with 

HIV globally. In 2018, approximately 43% are women. There 

were about 940,000 deaths from AIDS in 2017. The 2015 

Global Burden of Disease Study (GBD), in a report published 

estimated that the global incidence of HIV infection peaked in 

1997 at 3.3 million per year. Global incidence fell rapidly from 

1997 to 2005, to about 2.6 million per year, but remained 

stable from 2005 to 2015 [12]. South & South East Asia (a 

region with about 2 billion people as of 2010, over 30% of the 

global population) has an estimated 4 million cases (12% of all 

people infected with HIV), with about 250,000 deaths in 2010. 

Approximately 2.5 million of these cases are in India, where 

however the prevalence is only about 0.3% (somewhat higher 

than that found in Western and Central Europe or Canada). 

Prevalence is lowest in East Asia at 0.1%. In 2008, 

approximately 1.2 million people in the United States had HIV; 

20% did not realize that they were infected. Over the 10-year 

period from 1999 to 2008, it resulted in about 17,500 deaths 

per year. In the United Kingdom, as of 2016, there were 

approximately 89,400 cases and 428 deaths. In Australia, as of 

2017, there were about 27,545 cases. In Canada as of 2016, 

there were about 63,110 cases [12, 16]. 

The Global HIV prevention coalition was launched in 

October 2017 to reduce new HIV infection by 75% by 2020 

from 2011 baseline. 25 countries with the highest number of 

new HIV infections were selected for the Global HIV 

prevention coalition. Of these, 17 are African countries 

including Ethiopia [1, 17]. Treatment consists of high active 

antiretroviral therapy (HARRT) which slows the progression 

of the disease. The goal of ART is to decrease HIV related 

morbidity and mortality. In addition, it also decreases the risk 

of transmission of the virus to sexual partners and 

mother-to-child transmission. [18]. 

Mathematical modeling provides us invaluable 

management tools to understand the status of the spread of the 

disease and to identify and predict the effectiveness of 

different control measures. Many mathematical models have 

been used to examine the consequences of HIV infection at the 

population level. Such as in 2012 the research work conducted 

by Abdallah S. Waziri et al. in Tanzania with title  

‘Mathematical Modelling of HIV/AIDS Dynamics with 

Treatment and Vertical Transmission’, the result of their study 

show that using treatment measures (ARVs) and control of the 

rate of vertical transmission have the effect of reducing the 

transmission of the disease significantly[11]. The research 

work conducted by Maimunah and Dipo Aldila in Indonesia, 

published in 2018, with title ‘Mathematical model for HIV 

spreads control program with ART treatment’, suggest that 

ART treatment as an alternative way to control the spread of 

HIV [4]. However, the goal of this paper is to propose 

HIV/AIDS dynamics incorporating treatment and awareness 

on the proper procedure of ART treatment control strategies 

in the transmission of HIV virus. 

The organization of this paper is as follows: In section 2, 

we formulate our model for HIV/AIDS infection transmission 

dynamics. We analyze the positivity and boundedness of the 

solutions of the dynamical system as basic properties of the 

model, which are essential in the proofs of stability, existence 

of disease-free and endemic equilibria as well as their local 

and global stability and analysis of the sensitivity of the 

parameters of the reproduction number are treated in section 

3. In Section 4, we present the numerical simulation to 

support the analytical results of the research. The discussion, 

conclusion and recommendation of the research are present 

in sections 5 and 6 respectively. In the end, we present 

acknowledgement of the research in last section. 

2. Formulation of the Model 

In this model of HIV infection, public health intervention 

strategies are incorporated. Individuals living with HIV/AIDS 

are grouped according to different stages of infections 

depending on their viral counts. The basic assumptions in 

developing this model are as follows: The total human 

population is closed. The susceptible become HIV infected 

because of direct contact (free sex), blood transfusion from an 

infected human or from the use of a syringe from an infected 

human (Horizontal transmission). This infection is assumed 

not to lead the birth of infected children. Public health 

intervention strategies of ART treatment on infected 

individuals and continuous education campaign on the proper 

procedure of ART (antiretroviral therapy) treatment to avid 

the failure of ART, will be taken in to account. 

The variables and parameters of the model are defined as 

follows: The total human population ���� is divided into five 

classes: susceptible ����, ����� is HIV infected in acute stage, �	��� is pre-AIDS patients, AIDS patients ����  and 

HIV/AIDS treated class �
���, such that  ���� =  ���� + �����+ �	��� + ����+ �
���.  � is the natural mortality rate 

in all classes at time �, for � ≥ 0. We assumed that there is a 

positive recruitment rate Λ  into the susceptible class. 

Susceptible individuals might be infected by direct contact 

with infected humans with the probability of infection � if 

they are infected by acute individuals ���� , ��	 , ��� 

and ��
 if they are infected by chronic ��	�, AIDS ��� and 

treated  ��
�  compartment individuals respectively. We 

assume that more infected humans will limit their capability to 

do daily life activities; therefore, we have � > ��	 > ���. 

Since the use of treatment significantly reduces the viral load, 

treated individuals are less infectious than other groups 

hence  � > ��	 > ��� >  ��
 . Where  �	, �� and  �
  are 

modification parameters. Therefore, HIV infected individual 

is generated following the infection of susceptible individuals 

at a rate � = ��
����
��� ���!"!�# . HIV infective suffer 

AIDS-induced mortality at a rate $. We also assume that the 
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infective ���� proceed to join the treated class at a rate %�. 

Some individuals join the pre-AIDS class ��	� with a rate 

%	, while others seriously infected individuals without 

showing symptoms move directly to the full blown AIDS 

class at a rate %&. The pre-AIDS individuals in class ��	� 

move to treated class ��
� at a rate '� and others move to 

AIDS class ��� at a rate '	 to develop full blown AIDS. The 

full-blown AIDS class ��� individuals move to treated class 

with a rate ( to get treatment. Individuals in the treatment 

class  � �
�  may not follow proper procedure of ART 

treatment due to lack of awareness about the procedure. These 

individuals lead to the failure of treatment and move to AIDS 

class ��� by the rate of failure of treatment ).. 

These assumptions ar translated to the following Schematic 

flow diagram and dynamical system: 

 

Figure 1. Schematic flow diagram for the model. 

*�
*� � Λ + ���� � �	�	 � ��� � �
�
�
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*��
*� � ���� � �	�	 � ��� � �
�
�

� � + �%� � %	 � %& � ���� 

,
�
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 + �( � $ � ��� 
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*� � %��� � '��	 � (� + �) � ���
 

3. Model Analysis 

3.1. Positivity of the Solutions 

Theorem 1. The solutions �����, �����, �	���, ���� and 

�
���� of model (1) are nonnegative for all t �  0 with 

non-negative initial conditions. 

Proof: Since the system of equations (1) represents human 

populations, all parameters in the model are non-negative and 

the total human population is finite at time � � 0, we need to 

show that, given non-negative initial values 

��0� � 0, ���0� � 0, �	�0� � 0, ��0� � 0, �
�0� � 0  
and, the solutions of the system are non-negative. 

Suppose 

 ���� � ����� � �	��� � ���� � �
��� � ���� / 0
1  (2) 

Let us consider the region 

Ω � 3��, ��, �	, �, �
� 4 56: � / 0
18 for system (1). 

From the first equation of the system (1), 

,9
,- � Λ + �� � ���, Where � � ��
����
��� ���!"!�

#  

We obtain 

 ,9
,- / :                       (3) 

Therefore, since ��0� � 0, for � ; ∞, 
Which gives 0 / ���� / Λ� 

From the second equation of the system (1), 

,
�
,- � �� + �%� � %	 � %& � ����, 

We obtain 

,
�
,- / ��                   (4) 

Which gives ����� � =>?-  0
1 @=?- + 1B � 0 

Therefore, since ���0� � 0, for � ; ∞, 

0 / ����� / =>?-  Λ� @=?- + 1B 

From the third equation of the system (1), 

*�	
*� � %	�� + �'� � '	 � ���	 

We have  

      ,
�
,- / %	��                (5) 

Therefore, since �	�0� � 0, for � ; ∞, 

0 / �	��� / =>C�-  Λ� @=C�- + 1B � 0 

From the fourth equation of the system (1), 

*�
*� � %&�� � '	�	 � )�
 + �( � $ � ��� 

We get 

 ,�
,- /  %&�� � '	�	 � )�
          (6) 

D ���� � =>E- F Λ
�

1
F G=E- + 1H � =>E-  Λ� G=E- + 1H � 0 
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Therefore, since ��0� ≥ 0, for � → ∞, 
0 ≤ ���� ≤ =>E-  Λ� G=E- − 1H 

From the fifth equation of the system (1), 

,"!,- = %��� + '��	 + (� − �) + ���
 , 

we obtain 

 ,"!,- ≤  %��� + '��	 + (�           (7) 

Therefore, since �
�0� ≥ 0, for � → ∞, 0 ≤ �
��� ≤ =>I-  01 G=I- − 1H, where , J = �%� + '� + (�. 

Hence, any solution of system (1) �����, �����, �	���, ����, �
���� ∈ ℝ�6  for all � ≥  0. 
3.2. Boundedness of the Solutions 

Theorem 2. 

The Solutions  �K. = ����, �����, �	���, ����, �
���  of 

model (1) are bounded. 

Proof:- The total human population in our model is denoted 

by � and divided in to five subclass which are denoted by �, ��, �	, �, �
  from this we have ���� =  ����+����� + �	��� + ���� + �
���    (8) 

By differentiating both side with respect to time � we get 

,#,- = ,9,- + ,
�,- + ,
�,- + ,�,- + ,"!,-                   (9) 

⇒ *�*� ≤ Λ − ��. 
If 

,#,- ≥ 0 then Λ − �� ≥ 0. Thus ���� ≤ 01 for ��0� ≤ 01, 
where at � = 0, ��0� is initial population. 

Therefore  lim-→O PQR ���� ≤ 01 . This shows that ����  is 

bounded above and increasing. Since ���� is bounded above, 

each other state variable of human population ����, �����, �	���, ����, ST �
��� is bounded above. 

To show that the state variables of human population are 

bounded below, we need to show the boundedness of each 

state variable below for ��0� ≥ 01. 
From the first equation of the system (1), we have 

    ,9,- ≤ : − ��               (10) 

Thus, ���� is bounded below and decreasing. Therefore, 
 lim-→O KUV S�t� ≥ 0?              (11) 

From the second equation of the system (1), *��*� = �� − �%� + %	 + %& + ����   
If ����� is decreasing with time � > 0, ,
X,- ≤ 0  

⇒ ����� ≥ 01 Y ??�C��C��CZ�1[           (12) 

Which gives, 

lim-→O KUV ����� ≥ 01 Y ??�C��C��CZ�1[     (13) 

This shows that ����� is bounded below. 

From the third equation of the system (1), *�	*� = %	�� − �'� + '	 + ���	 

If �	��� is decreasing with time � > 0, ,
�,- ≤ 0 

Therefore,  

lim-→O KUV �	��� ≥ 01 Y C�C��\��\��1[                    (14) 

This shows that �	��� is bounded below. 

From the fourth equation of the system (1)  *�*� = %&�� + '	�	 + )�
 − �( + $ + ��� 

If ���� is decreasing with time � > 0, ,�,- ≤ 0  
that is A�t� ≥ 01 Y_̂[, 

Where Q = �%& + '	 + `�  and a = �%& + '	 + ` + ( +$ + ��. 
Therefore, lim-→O KUV A�t� ≥ 01 Y_̂[        (15) 

This shows that ���� is bounded below. 

From the fifth equation of the system (1)  *�
*� = %��� + '��	 + (� − �) + ���
 

If �
��� is decreasing with time � > 0, ,"!,- ≤ 0 

Therefore, lim-→O KUV �
��� ≥ 01 Y C��\��bC��\��b�c�1[        (16) 

This shows that �
��� is bounded below. 

Hence, all solutions of the system (1) are bounded. 

Theorem 3. The region Ω = 3��, �� , �	, �, �
� ∈ ℝ�6 : � ≤  018 is positively 

invariant for the model (1) with non-negative initial conditions 

in ℝ�6 . 

Proof: To proof the positive invariance of Ω  (i.e., all 

solutions in Ω remain in Ω for all ��. 

Let 
,#,- = Λ − ��                (17) 

⇒ ���� = 01 − 01 =>1- ≤ 01 − ��0�=>1- , for ��0� ≤ 01 

⇒ ���� ≤ 01 − ��0�=>1-          (18) 

If 
,#,- ≥ 0 then Λ − �� ≥ 0 and 

,#,- ≥ 0 ⇒ ���� ≤ 01 
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Specifically, if ,#,- ≥ 0 then ��0� ≤ 01. Thus ���� ≤ 01 and 

this shows that ���� is increasing and bounded above by 01 and if Λ − �� < 0 then ,#,- < 0. 
Thus ���� > 01  ⇒ ,#,- < 0.  In particular, if ��0� > 01, 

then  ,#,- < 0  and this shows that ���� is decreasing and 

bounded below by 0  because of positivity. Thus, Ω is 

positive-invariant and attracting. Therefore, every solution of 

the dynamical systems with initial conditions in Ω remains in Ω for � > 0. Hence, it is sufficient to consider the dynamics 

for the system (1) in Ω and thus, in the region, the model the 

system (1) is epidemiologically and mathematically well posed. 

Corollary. Let Ω = 3��, ��, �	, �, �
� ∈ ℝ�6 : � ≤  018, then 

the region  is invariant and attracting for system (1). The 

feasible region is Ω = 3��, �� , �	, �, �
� ∈ ℝ�6 : � ≤  018 

3.3. Disease -free Equilibrium Point 

The disease -free equilibrium point of the system (1) can be 

obtained by setting HIV related variables and parameters to 

zero �� = �	 = � = �
 = � = 0       (19) 

then we have : − �� = 0. Therefor the infection-free equilibrium point 

of the HIV/AIDS model is 

efg = h�i, ��j , �	j , �i, �
jk = Y01 , 0,0,0,0[   (20) 

3.4. Reproduction Number 

Theorem 4. The effective reproduction number  �Rm�  of 

HIV/AIDS model (1) is given by 

Rm = �0#1 Y>cbn��n�nZno����>cbC��nZnoC���� �n�noCZ�cn�C��cC�\��noC�\����!�bn�CZ�n�nZC��nZC�\��bC�\���>cbn�n��n�n�nZno� [       (21) 

Proof: In order to compute pg, it is important to distinguish 

new infections from all other changes in the host population. 

We apply the next generation approach in Diekmann et al. 

1990 [23]. 

,Eq,- = Vr��� = ℱr��� −  tr���         (22) 

where K = 1, … ,5 tr��� = wr>��� − wr����            (23) 

and the matrices ℱ���, w���� and  w>��� associated with 

model (1) are given by 

ℱ��� =
xyy
yyy
z
 
��
����
��� ���!"!�# �00000

 
{||
|||
}
, 

w���� =
xyy
yz 0%	�����%&����� + '	�	 + )�
%��� + '��	 + (�: {||

|} and w>��� =
xy
yy
z~������~	�	���~&����~��
���~6���� {|

||
}
 

Where, ~� = %� + %	 + %& + �, ~	 = '� + '	 + �,  ~& = ( + $ + �,  ~� = ) + �, ~6 = � + �  
Let tr��� = wr>��� − wr���� 

Then, we have 

� ,
��-�,-  ,
��-�,-  ,��-�,-  ,"!�-�,-  ,9�-�,- �" = ℱ��� − t���  (24) 

The Jacobian matrices of ����  and w���  for 

ℱ��� and t��� respectively are 4x4 matrices as there are four 

infected classes 

� =  �ℱ�Fr =
xyy
yz�� ���� ��	� ���� ���� ���� ��
� ����0 0 0 00 0 0 00 0 0 0 {||

|}
 

and w = �t�Eq =  � ~� 0 0 0−%	 ~	 0 0−%& −'	 ~& −)−%� −'� −( ~�
�,  where Fr =

���, �	, �, �
�. 

At the infection-free equilibrium pint efg, �  and w 

at efg  �i and wi respectively are: 

�i =  xyy
yz�0#1 ���0#1 �� 0#1 ��!0#10 0 0 00 0 0 00 0 0 0 {||

|}
 and 

wi = � ~� 0 0 0−%	 ~	 0 0−%& −'	 ~& −)−%� −'� −( ~�
� 

Thus . pg = ���iVi>�� Where ���iVi>��  denotes the 

spectral radius of a matrix �iVi>� (that is, the eigenvalue with 

the highest magnitude). To find the eigen values of�iVi>�, we 

consider det ��iVi>� − ��� = 0, where � Ks the identity matrix. 

Thus,⇒ � = 0 ST � = ���0�#1 + �����0�#1 + �� �o0�#1 + ��!��0�#1  

Thus, pg = ���0������0��� �o0���!��0�#1      (25) 

Rm = �0#1 Y>cbn��n�nZno����>cbC��nZnoC���� �n�noCZ�cn�C��cC�\��noC�\����!�bn�CZ�n�nZC��nZC�\��bC�\���>cbn�n��n�n�nZno� [             (26) 
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Where, ~� � %� � %	 � %& � �, ~	 = '� + '	 + �,  ~& = ( + $ + �, ~� = ) + � 

Which represent the average number of new secondary 

cases generated by a single HIV infected individual during 

his/her entire infectious period in a completely susceptible 

population, in the presence of HIV intervention strategy 

[19-21]. 

Theorem 5. The basic reproduction number �Rim� of HIV 

transmission model (1) is given by 

Rim = �C��CZ�1 Y1 + ��C�\��1 + � CZ��μ + � C�\��\��1����μ�[  (27) 

Proof: We apply the next generation approach in Diekmann 

et al. [23] by setting %� = '� = ( = �
 = 0 in mode (1): *Fr*� = Vr��� = ℱr��� − tr��� 

Where, K = 1,2,3,4, as there are three classes and   Fr = ���, �	, �, �� tr��� = wr>��� − wr����  and the matrices ℱ���, w���� and w>���  are given by 

ℱ��� =
xyy
yz 

���� + �	�	 + ����� �000
 
{||
|}, 

 w���� = � 0%	�����%&�� + '	�	: � and w>��� = xyy
z~������~��	���~�����~�i����{||

}
 

Where, ~� = %	 + %& + �, ~� = '	 + �, ~� = $ + �, ~�i = � + � 

Let, tr��� = wr>��� − wr���� 

Then, we have 

� *�����*�  *�	���*�  *����*�  *����*� �" = ℱ��� − t��� 

The Jacobian matrices of ����  and w���  for ℱ��� and t��� respectively are 3x3 matrices as there are five 

infected classes 

� =  �ℱ�Eq = ��# ���� ���# ���� �� # ����0 0 00 0 0 � and w = �t�Eq =

 � ~� 0 0−%	 ~� 0−%& −'	 ~��, where Fr = ���, �	, �, � 

At the infection-free equilibrium pint efg, � = �, � and w 

at efg are �i and wi respectively: 

�i =  �� ��	 ���0 0 00 0 0 � and wi = � ~� 0 0−%	 ~� 0−%& −'	 ~��, 
Thus . pfg = ���iVi>��, where ���iVi>��  denotes the 

spectral radius of a matrix �iVi>� (i.e, the eigenvalue with the 

highest magnitude). To find the eigen values of �iVi>�, we set  det ��iVi>� − ��� = 0, where � Ks the identity matrix. 

Thus, 

Rim = �C��CZ�1 Y1 + ��C�\��1 + � CZ��μ + � C�\��\��1����μ�[    (28) 

3.5. Local Stability of the Disease-free Steady State 

Theorem 6. The infection-free equilibrium �efg� of model 

(1) is locally asymptotically stable, if Rm < 1 and unstable, if Rm >  1. 
Proof: The Jacobian matrix of the system (1) at the disease 

free equilibrium point eig is 

��eig� =
xyy
yz−� −� −��	 −��� −��
0 � − ~� ��	 ��� ��
0 %	 −~	 0 00 %& '	 −~& )0 %� '� ( −~� {||

|}
, 

as  � = � at  e�g , Where,  ~� = �%� + %	 + %& + ��, ~	 =�'� + '	 + ��, ~& = �( + $ + ��, ~� = �) + �� 

The characteristic polynomial of the matrix ��eig) is given 

by R6��� = det���eig� − �I� and in order to find the roots 

of the polynomial R, we set 

R6��� =   
−� − � −� −��	 −��� −��
0 � − ~� − � ��	 ��� ��
0 %	 −~	 − � 0 00 %& '	 −~& − � )0 %� '� ( −~� − �   = 0 

R6��� = �−� − ��G¡��� + ¡&�& + ¡	�	 + ¡��� + ¡iH = 0  (29) ⇒ � = −� < 0 ST ¡��� + ¡&�& + ¡	�	 + ¡��� + ¡i = 0 

Where, ¡� = 1, ¡& = �−� + ~� + ~	 + ~& + ~�� 

¡	 = �−)( − �~� + ~�~� + ~&�−� + ~� + ~�� + ~	�−� + ~� + ~& + ~�� − �%	�	 − �%&�� − �%��
� ¡� = �~��−)( + ~&~� + ~	�~& + ~��� − ~	�)( + ~&�� − ~�� + �~� + �%&�� + �%��
� + ��)( − )%��� − %	'	��− ~��%	�	 + %&��� − (%&�
 − %	'��
 − ~&�~� + %	�	 + %��
��� 
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¡i � �%	h�)( + ~&~���	 + '	�~��� � (�
� + '��)�� � ~&�
�k
� ~	 Y~��+)( � ~&~�� � �h)( + )%��� + ~�%&�� + (%&�
 + ~&�~� � %��
�k[ 

The disease free steady state is locally asymptotically 

stable, if the necessary and sufficient conditions that all the 

roots of the polynomial in �29� have negatives real parts are 

all the polynomial coefficients must have the same sign (all 

positive in this case), nonzero. In addition, the first column 

containing the term  ¡�  of the Routh’s array should be 

positive by Routh-Hurwitz stability criterion. 

The biological interpretation of locally asymptotically 

stable of the disease-free equilibrium point is that, the 

existence of small number of infectious individuals will not 

be the cause of the outbreak of the disease unless Rm > 1. 

Thus, we need to consider the global asymptotic stability of Eim  to control the disease effectively. To investigate the 

global stability, we define a Lyapunov function [22]. 

3.6. Global Stability of the Disease Free Equilibrium Point 

Theorem 7. Disease-free equilibrium point �Eim�  is 

globally asymptotically stable, if pg < 1 

Proof: Define a Lyapunov function by applying Lyapunov 

theorem. 

w��, ��, �	, �, �
� = ¤��� + ¤	�	 + ¤&� + ¤��
                              (30) 

where 

Let ¤� =  ~	�~&~� − )(� + �	�−)(%	 + ~&~�%	� + ���~	~�%& + )~	%� + )%	'� + ~�%	'	� + �
�(~	%& + ~	~&%� + ~&%	'� +(%	'	� ¤	 = ~�G�	�−)( + ~&~�� + ���ε'� + ~�'	� + �
�~&'� + ('	�H, ¤& = ~�G��~	~� + �
(~	H and ¤� = ~�G��)~	 + �
~	~&H . Since ¤�, ¤	, ¤& and ~�  are all non negative and also all state variables are positive, w��, ��, �	, �, �
� ≥ 0 and w��, �� , �	, �, �
� = w Y01 , 0,0,0,0[ = 0 is the minimum value. �¦�
� = ¤�, �¦�
� = ¤	, �¦�� = ¤& and 
�¦�"! = ¤� are all constants and thus continuous partial derivatives. 

*w*� = �w���
*��*� + �w��	

*�	*� + �w�� *�*� + �w��

*�
*� = 

= ��~�G−)(~	 + ~	~&~�H� G ¤������~�G−)(~	 + ~	~&~�H − 1H  = ��~�G−)(~	 + ~	~&~�H� G ¤����~�G−)(~	 + ~	~&~�H − 1H 
≤ ?#n�G>cbn��n�nZnoH� G §��n�G>cbn��n�nZnoH − 1H, since � ≤ � = ?#n�G>cbn��n�nZnoH� Gpg − 1H ≤ 0                     (31) 

when pg ≤ 1. Since all parameters are non-negative 
,¦,- ≤ 0, 

if pg ≤ 1 and 
,¦,- = 0 holds if and only if �� = �	 = � =�
 = 0 

The largest compact invariant subsets in ¨��, ��, �	, �, �
�© is the singleton set ¨Eim©. 
Therefore, by Lasalle’s invariant principle (Lasalle 

1976)  eig  is global attractor whenever  pg < 1 (i.e every 

solution of the model approaches to eig as � → ∞ with initial 

conditions in Ω� 

3.7. Endemic Equilibrium Point 

Theorem 8. The endemic equilibrium point of the system (1) 

exist, if pg > 1. 
Proof: The endemic equilibrium point eg = ��∗, ��∗, �	∗, �, �
∗ � of the system (1) can be obtained 

by setting 
,9,- = ,
�,- = ,
�,- = ,�,- = ,"!,- = 0 

Therefore, 

eg = ��∗, ��∗, �	∗, �∗, �
∗� = Y «?∗�1 , ?∗0n��?∗�1� , C�?∗0n�n��?∗�1� , nZ¬­ , nZ®­ , [                  (32) 

Where,  ¯ = ��) + ��~	%&�∗Λ + ��) + ��%	'	�∗Λ� + )~	%��∗Λ + )'�%	�∗Λ ° = ~�~	~&��∗ + ���~&�) + �� − ()� p = ~	~&%��∗Λ + ~&'�%	�∗Λ + (�∗Λc	%& + (�∗Λ%	'	 

From, �∗ = ��
�∗���
�∗�� �∗��!"!∗ �#∗  and eg = ��∗, ��∗, �	∗, �∗, �
∗�, we have �∗ = −� Y1 − 01#∗ pg[ , but at disease free equilibrium 

point �∗ = �∗, thus, 
01#∗ = 1 ⇒ �∗ = −��1 − pg� 

We define �∗ = ��
�∗���
�∗�� �∗��!"!∗ �#∗  is the rate of HIV 
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infection and the disease persist in the community if �∗ � 0, 

that is endemic equilibrium point exist for Rm > 1. 

Where, ~� = �%� + %	 + %& + �� , ~	 = �'� + '	 + �� , ~& = �( + $ + ��,~� =  �) + �� 

�̄ = �) + ��~	%& + ��) + ��%	'	� + )~	%� + )'�%	 p� = ~	~&%� + ~&'�%	 + �(c	%& + (%	'	� 

3.8. Local Stability of Endemic Equilibrium Point 

Theorem 9. The endemic equilibrium point �eg� of model 

(1) is locally asymptotically stable in the region Ω if pg > 1 

Proof: 

Jacobian matrix at the endemic steady state is 

��eg� =
xy
yy
z−² − � −³ −´ −U −T² ³ − �%� + %	 + �� ´ U T0 %	 −�'� + '	 + �� 0 00 %& '	 −�( + $ + �� )0 %� '� ( −�) + ��{|

||
}
 

Where, ² = ��
�∗���
�∗�� ���!"!∗ �#∗ , ³ = �9∗#∗ , ´ = ���9∗#∗ , U = �� 9∗#∗  and T = ��!9∗#∗  

Let  ~� = �%� + %	 + %& + ��, ~	 = �'� + '	 + ��, ~& = �( + $ + ��, ~� = �) + �� 

The characteristic polynomial of the matrix ��eg) is given by h6�ϖ� = det���eg� − ϖT�, where � is identity matrix and in 

order to find the roots of the polynomial ℎ6�¹�, we set    ℎ6�¹� 

=    
V − ¹ −³ −´ −U −T² º − ¹ ´ U T0 %	 −~	 − ¹ 0 00 %& '	 −~& − ¹ )0 %� '� ( −~� − ¹   = 0  

Where,V = −² − � = − ��
�∗���
�∗�� ���!"!∗ �#∗ − �, 

º = ³ − ~� = �9∗#∗ − �%� + %	 + %& + ��, = ���9∗#∗ , U = �� 9∗#∗  and T = ��!9∗#∗  

⇒ ℎ6�¹� =  J6¹6 + J�¹� + J&¹& + J	¹	 + J�¹ + Ji = 0                           (33) 

Where, J6 = −1, J� = �V + º − ~	 − ~& − ~�� J& = �−²³ − Vº + )( + ~&�V + º − ~�� + ~	�V + º − ~& − ~�� + V~� + º~� + T%� + ´%	 + U%&� J	 = �−V)( − º)( − ²³~� − Vº~� − VT%� − ²T%� + U)%� − V´%	 − ²´%	 + ´~�%	+ ~&�−²³ − Vº + �V + º�~� + T%� + ´%	� − VU%& − ²U%& + T(%& + U~�%&+ ~	�−²³ − Vº + )( + ~&�V + º − ~�� + �V + º�~� + T%� + U%&� + T%	'� + U%	'	� J� = �²³)( + Vº)( − VU)%� − ²U)%� − ´)(%	 − V´~�%	 − ²´~�%	 − VT(%& − ²T(%& − VU~�%& − ²U~�%& − ~	�V)(+ º)( + VT%� + ²T%� − U)%� + ~&�²³ + Vº − �V + º�~� − T%�� + VU%& + ²U%& − T(%& + ~��²³ + Vº− U%&�� − VT%	'� − ²T%	'� + U)%	'� − ~&��V + ²�T%� + ~��²³ + Vº − ´%	� + %	��V + ²�´ − T'���− VU%	'	 − ²U%	'	 + T(%	'	 + U~�%	'	� Ji = ~	h²³)( + Vº)( − �V + ²�U)%� − ~&h�²³ + Vº�~� + �V + ²�T%�k − VT(%& − ²T(%& − VU~�%& − ²U~�%&k+ �V + ²�%	�´)( − U)'� − ~&�´~� + T'�� − T('	 − U~�'	� 

The endemic steady state is locally asymptotically stable, 

if the necessary and sufficient conditions that all the roots of 

the polynomial in �33� have negatives real parts are all the 

polynomial coefficients must have the same sign (all negative 

in this case), nonzero. In addition, the first column containing 

the term  J6  of the Routh’s array should be positive by 

Routh-Hurwitz stability criterion. 

 

3.9. Global Stability of the Endemic Equilibrium Point 

Theorem 10. Endemic equilibrium point �Em� is globally 

asymptotically stable, if pg > 1 

Proof: By applying Lyapunov theorem, 

Let ²�»� = » − 1 − ³U Y�¼[ ,  »½p�.  Define a Lyapunov 

function 
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w��, ��, �	, �, �
� = �∗² Y P�∗[ + ��∗² ¾����∗¿ + �	 ∗ ² ¾�	�	∗¿ + �∗² À ��∗Á + �
∗² ¾�
�
∗¿ 

= �� − �∗ − �∗³U À�∗� Á� + ��� − ��∗ − ��∗³U À��∗��Á� + ��	 − �	∗ − �	∗³U À�	∗�	Á� 

+ �� − �∗ − �∗³U Y�∗� [� + ��
 − �
∗ − �
∗³U Y"!∗"![�                            (34) 

�w�� = 1 − �∗� , �w��� = 1 − ��∗�� , �w��	 = 1 − �	∗�	 , �w�� = 1 − �∗� ¤U* �w��
 = 1 − �
∗�
 ,  
are all continuous partial derivatives for ��, ��, �	, �, �
� ≠0. 

Let V�F� = F − Q − Q ³U YÊ[,  then VST F = Q, V�F� = 0 

and for F > Q, V�F� > 0, and also V�Q� = 0 is the minimum 

value of V. Thus, w��∗, ��∗, �	∗, �∗, �
∗ � = 0 is minimum 

functional value. Hence w��, ��, �	, �, �
� ≥ 0. 

The derivative of w along the solution of the model is 

,¦,- = �¦�9 ,9,- + �¦�
� ,
�∗,- + �¦�
� ,
�∗,- + �¦�� ,�∗,- + �¦�"! ,"!∗,-                       (35) 

*w*� = Λ − ���� + �	�	 + ��� + �
�
�� � − �� − �∗� : + �∗� ���� + �	�	 + ��� + �
�
�� � + �∗� �� 

+ ���� + �	�	 + ��� + �
�
�� � − �%� + %	 + %& + ���� − ��∗��
���� + �	�	 + ��� + �
�
�� � 

+ ��∗�� �%� + %	+%& + ���� + %	�� − �'� + '	 + ���	 − �	∗�	 %	�� + �	∗�	 �'� + '	 + ���	 

+%&�� + +'	�	 + )�
 − �( + $ + ��� − �∗� %&�� − �∗� '	�	 − �∗� )�
 + �∗� �( + $ + ��� 

+%��� + '��	 + (� − �) + ���
 − �
∗�
 %��� − �
∗�
 '��	 − �
∗�
 (� + �
∗�
 �) + ���
  

We let Ã = Λ + 9∗9 ��
����
��� ���!"!�# � + 9∗9 �� + ��
����
��� ���!"!�# � + 
�∗
� �%� + %	 + %& + ���� + 
�∗
� �'� + '	 +���	 + �∗� �( + $ + ��� + %��� + '��	 + (� + "!∗"! �) + ���
  and 

Z = β�H� + ψ	H	 + ψÈA + ψÉTÉ�N S + μS + S∗S Λ + �ξ� + μ�H� + H�∗H�
β�H� + ψ	H	 + ψÈA + ψÉTÉ�N S 

+�τ� + μ�H	 + H	∗H	 ξ	H� + �ω + γ + μ�A + A∗A ξ&H� + A∗A τ2H2 + A∗A εTH + �ε + μ�TH + TH∗TH ξ1H1 + TH∗TH τ1H2 + TH∗TH ωA 

Then,  ,¦,- = Ã − Ï and ,¦,- ≤  0 KV Ã < Ï. ,¦,- = 0 if and only if ��, ��, �	, �, �
� = ��∗, ��∗, �	∗, �∗, �
∗�. 
The largest compact invariant subsets in ¨��, ��, �	, �, �
�©  is the singleton set¨Em©. Therefore, by Lasalle’s invariant 

principle (Lasalle 1976),  Em is global attractor whenever pg > 1. 

Table 1. Definition and parameter values for the model. 

Parameter Description Value Reference � Total human population 1000 [4] Λ Recruitment rate 
100065 × 365 [4] 

� Death rate of unrelated HIV/AIDS 
165 × 365 [4] %� Rate of ART treatment on acute stage 0.01�*¤J>�� [4] %	 Rate of transition to pre-AIDS (Chronic) stage 

15 × 365 [4] %& Rate of transition to full blown AIDS stage from acute stage 0.00055�*¤J>�� [12] '� Rate of ART treatment on pre-AIDS stag 0.01 �*¤J>�� [12] '	 Rate of movement to full blown AIDS from pre-AIDS 
13 × 365 [4] 
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Parameter Description Value Reference 

) Rate of transition for the failure of treatment 
0.5365 [4] ( Rate of ART treatment on AIDS stage 0.01 �*¤J>�� [4] $ Death rate due to HIV/AIDS 0.00008�*¤J>�� [20] � Probability of infection of HIV by acute stage 0.0025 [4] �	 Modification parameter for the infectiousness in class �	 0.75 [4] �� Modification parameter for the infectiousness in class � 0.5 [4] �
 Modification parameter for the infectiousness in class �
 0.001 [22] 

 

3.10. Sensitivity Analysis of the Effective Reproduction 

Number 

To conduct the sensitivity analysis, we adopt the normalized 

forward sensitivity index. The partial derivative is the rate of 

change of prediction with respect to each parameter using the 

approach in (Chitns et al 2008), (Edward and Nyerere 2015), 

(Numfor 210). The degree of sensitivity index of the 

reproduction number with respect to a parameter say ℎ , 

measures the relative change in variable when the parameter ² changes as ÔÕ®Ö = �®Ö�Õ Y Õ®Ö[. The value ÔÕ®Ö = 1, shows an 

increase of ² results in an increase of pg and a decrease of ² 

results in decrease of pgand ÔÕ®Ö = −1, shows an increase of ² results in a decrease of pg and a decrease of ² results in 

an increase of pg. In our case, we calculate the sensitivity 

indices of the parameters using the values of the parameters 

from different literatures in table 1. 

First let us analyse pg, to understand whether implementing 

treatment of ART in the acute stage (with rate %��, in pre AIDS 

stage (with rate '��, in the AIDS stage (with rate () on a 

single stage or simultaneously in all stages leads to control the 

spread of HIV in the community effectively. It is true that from 

the effective reproduction number pg 

limC�→O pg = �� hc�\��\��1�k���!��\��\��1��b�×�1���\��\��1�G>cb��b�×�1��c�1�H > 0                            (36) 

lim\�→O pg = �� ��c�1�CZ�cC��cC������!�bCZ��b�×�1�C���b�×�1�C���C��C��CZ�1�G>cb��b�×�1��c�1�H > 0                  (37) 

limb→O pg = ����>cC���c�1�C�����!��\��\��1�CZ��\��\��1�C��C�\��C�\���C��C��CZ�1��\��\��1�1 > 0             .            (38) 

Thus, effective HIV treatment that targets treating individuals in acute stage with high rate �%� → ∞� or treating individuals in 

pre-AIDS stage with rate �'� → ∞� or treating individual in AIDS stage with rate �( → ∞� could lead to effective control of 

HIV transmission, if all the above limits are less than unity. That is respectively if, ���h)�'� + '	 + ��k + ��
h�'� + '	 + ���( + $ + ��k < �'� + '	 + ��G−)( + �( + $ + ���) + ��H, �����) + ��%& + )%� + )%	�� + ��
�(%& + �( + $ + ��%� + �( + $ + ��%	 < �%� + %	 + %& + ��G−)( + �( + $ + ���) + ��H 
and ��	�−)%	 + �) + ��%	� + ��
��'� + '	 + ��%& + �'� + '	 + ��%� + %	'� + %	'	 < �%� + %	 + %& + ���'� + '	 + ��� 

Secondly, let us try to answer the question that, at which stage of HIV/AIDS, ART treatment should be implemented to control 

the spread of HIV in the community effectively? To answer this question, first we target treatment of ART for individuals at every 

stage of HIV/AIDS.�%� ≠ 0, '� ≠ 0, ( ≠ 0�. 

~� = %� + %	 + %& + � = 0.01114, ~	 = '� + '	 + � = 0.01094  ~& = ( + $ + � = 0.01012,  ~� = ) + � = 0.00141 U� = ~	~&~� − )(~	 = 6.227048 × 10>�, U	 = %	�~&~� − )(�= 3.1295 × 10>�i U� = ~	~�%& + )~	%� + )%	'� + ~�%	'	 = 1.6658 × 10>� U� = (~	%& + ~	~&%� + ~&%	'� + (%	'	 = 0.0000012279 Ù = −)(~�~	 + ~�~	~&~� = 6.9369 × 10>�� U� + �	U	 + ��U� + �
U� = U� + 0.75U	 + 0.5U� + 0.001U� = 9.09796 × 10>� 

Rm = � ÀU� + �	U	 + ��U� + �
U�Ù Á = 2.27449 × 10>�i6.9369 × 10>�� = 22.74496.9369 = 3.2788 
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Let us target the treatment of ART is only on acute stage alone �'� � ( � 0� ~� = %� + %	 + %& + � = 0.01114, ~	∗ = '	 + � = 0.00094 ~&∗ = $ + � == 0.00012, ~�∗ = ) + � = 0.00141 

Considering treatment target only on a single stage acute ���� �K. = '� = ( = 0� U�∗ = 1.59 × 10>�i, U	∗ = 9.306 × 10>��, U�∗ = 1.4304 × 10>�, U�∗ = 1.128 × 10>�, Ù∗ = 1.7717 × 10>�	 U�∗ + �	U	∗ + ��U�∗ + �
U�∗ = U� + 0.75U	 + 0.5U� + 0.001U� = 7.382 × 10>� 

p∗m = � ÀU�∗ + �	U	∗ + ��U�∗ + �
U�∗Ù∗ Á = 10.4165 

From these results, we can observe that strategy that focuses 

on treating individuals at every stage reduces the basic 

reproduction number (Theorem 10) from Rim = 13  to pg = 3, whereas, the second strategy that focuses on treating 

individuals only in acute stage alone reduces the basic 

reproduction number from Rim = 13  to p∗m = 10 , Thus, 

HIV can not be eliminated by implementing the second 

strategy. Similarly, implementing treatment on any single 

stage of HIV/AIDS alone is not effective to control the spread 

of HIV. In general, the first strategy that targets on treating 

individuals at every stage reduces reproduction number faster 

than implementing at one stage alone and hence leads to 

elimination of HIV/AIDS in the community (verified by 

figure 2A and 2B). Therefore, infected individuals should be 

treated at every stage of HIV/AIDS and hence all treatment 

parameters are very important to reduce the magnitude of 

reproduction number. 

Table 2. Sensitivity indices of the effective reproduction number to model 

parameters. 

Parameter Sensitivity index Β 1 Ε 0.64545 ξ� −0.061845 ξ	 −0.0008786 ξ& −0.0020858 τ	 −0.0011675 Γ −0.18435 

From the values of sensitivity indices in table 2, we can see 

that an increase in transmission rate of HIV ���  will 

increases the infective (acute stage) population. In addition, an 

increase in waning (failing) of ART treatment rate �)� will 

increase the AIDS population. Thus, HIV transmission rate 

and ART treatment waning rate have positive impact on the 

magnitude of effective reproduction number. An increase in 

transition rate from infective (acute) stage to treated, 

pre-AIDS and AIDS stages, decrease the infective population 

which in turn increase the treated population. As movement 

from infective increases, the infective population decreases 

and hence the pre-AIDS and AIDS population decrease with 

time until they reach the equilibrium point. 

On the other hand, HIV/AIDS related mortality rate �$�, 
ART treatment rate  �%��  of HIV/AIDS have negative 

influence on the magnitude of reproduction number. However, 

we cannot control HIV prevalence by disease mortality, since 

our objective is saving life. An increase in ART treatment 

control strategy has positive impact in controlling HIV 

transmission and hence we can reduce the transition to 

pre-AIDS and AIDS classes by high rate of treatment. The 

transition rate �'	� from pre-AIDS to AIDS class has again 

negative impact on the magnitude of reproduction number, but 

we can reduce this transition by increasing the ART treatment 

rate �'�� on pre-AIDS class. 

From the sensitivity index in table 2, the transmission rate 

of HIV ���, treatment rate �%�� and rate of failure of ART 

treatment �)�  are highest in magnitude, thus, effective 

reproduction number is more sensitive to these parameters. 

4. Numerical Simulation 

We carried out numerical simulations to verify and support 

the impact of basic model parameters on the reproduction 

number, using set of model parameters whose values are taken 

from literature. The model parameter values and respective 

sources are present in table 1. 

The basic reproduction number pfg ,  of the dynamics 

without public health intervention strategy based on the 

standard data from literature is 

Rim = �C��CZ�1 Y1 + ��C�\��1 + � CZ��μ + � C�\��\��1����μ�[ = 13 (39) 

Whereas the effective reproduction number pg with control 

strategy is given as 

Rm = � Y��������� �o��!��� [ = 3.2788         (40) 

From the above results, the basic reproduction number tells 

us a single HIV infected individual can generate about 13 new 

secondary infections in the community during his/her entire 

infection period in a completely susceptible population in the 

absence of HIV treatment and continuous education campaign 

on ART. The effective reproduction number tells us about 3 

new infections were generated by a single infected individual 

in the community where ART treatment intervention, targeted 

at every stage of HIV/AIDS and continuous education 

campaign using different medias about the correct procedure 

of ART treatment in treated class are implemented. Thus, we 

can observe that pg << pig  and our public health 

intervention strategies are effective to control the spread of 
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HIV/AIDS infection. 

Rg��� � �1,311.5�� 

 

Figure 2. Effective reproduction number pg versus HIV transmission rate �. 

From figure 1, HIV transmission rate ��� reduces the 

magnitude of reproduction number to the values less than 

unity with rate lesssthan 0.0007624  and reproduction 

number increases as transmission rate increases. 

Consider the case treatment targets only in acute 

stage �K. = '� � ( � 0�. 

Thus, 

 Rm�%�� �
0.0123115 � 10.1229%�

%� � 0.00114
 

Consider the case treatment targets on every stage of 

HIV/AIDS �K. = %� Â 0, '� Â 0. ( Â 0�. 

Thus, 

 Rm�%�� �
3.05305%� � 0.003498 

%� � 0.00114
 

 

Figure 3. Effective reproduction number pg versus ART treatment rate in 

acute stage, %� as variable, when '� � ( � 0  and when '� and  (  are 
non-zero positive constants. 

From figure 2, when treatment intervention is implemented 

only in acute stage, the effective reproduction number reduce 

slowly. As the treatment increases the reproduction number 

decreases. But when treatment intervention is implemented in 

all stage of HIV/AIDS, it reduces the reproduction number 

faster than intervention only in acute stag. In both cases, the 

graph supports the analytical result that treatment only in one 

stage and simultaneous treatment in all stages of HIV/AIDS 

has negative impact on the magnitude of effective 

reproduction number pg, however simultaneous treatment in 

all stages is very much important in eliminating the spread of 

the disease in the community. 

pg�)� �
15.51) � 0.0014

1.46) � 0.49
 

 

Figure 4. Effective reproduction number pg versus ART treatment waning 

rate ). 

From figure 3, If the rate of failure of treatment due to 

improper use of procedure of ART treatment increases, the 

magnitude of the reproduction number also increases. In 

particular if the failure of the treatment rate is greater than 

0.03477 , reproduction number is above unity (disease 

transmission increase in the community). The reproduction 

number is below unity when the treatment waning (failing) 

rate is between 0  and  0.03477  (disease dies out in the 

community). 

Rm�γ� �
0.0081 � 3.89γ

0.0055 � 17.18γ
 

 

Figure 5. Effective reproduction number pg versus AIDS induced death rate 

$. 

From figure 4, when disease induced death rate increase, 

the effective reproduction number decrease and less than unity 

for $ � 0.0001956. This verifies that AIDS induced death 

rate has negative impact on the magnitude of effective 

reproduction number, but we cannot reduce the effective 

reproduction number by killing people as our objective is 

saving life. However, it is true that AIDS induced death rate, 

can be controlled by ART treatment together with continuous 

education campaign on the proper procedure of ART 

treatment. 
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5. Discussion 

Human immunodeficiency virus (HIV) infection is a 

disease of immune system caused by HIV virus and 

transmitted primarily via unprotected sexual intercourse, 

contaminated blood transfusions (Horizontal transmission) 

and from mother to child during pregnancy, delivery or 

breastfeeding (Vertical transmission). 

In this paper, we proposed a deterministic mathematical 

model, incorporating public health interventions ART 

treatment, which is, targeted at every stage of HIV/AIDS and 

continuous education campaign on the proper procedure of 

ART treatment in the transmission dynamics of HIV infection. 

The population is grouped in to Susceptible ���, Acute stage ����, Pre-AIDS stage ��	 �, AIDS stage ��� and Treated 

individuals are in compartment ��
� by modifying ����	� 

model, where treatment is targeted only on pre-AIDS stage 

and individuals in pre-AIDS class will return back to acute 

stage by the help of treatment. In most researches like in [4, 11] 

awareness on the proper procedure of ART treatment is not 

considered as a major problem for the failure of treatment. In 

our research, we tried to understand the effect of control 

measures treatment and education campaign on ART with 

only horizontal transmission way of HIV, to gain useful 

strategies to the effective prevention and intervention against 

HIV prevalence. The basic reproduction number �pig� and 

the effective reproduction number �pg� are determined by 

applying the next generation approach in Diekmann et al. 

1990 [23]. The disease free  �eig�  and endemic �eg� 

equilibria are indicated to be locally and globally 

asymptotically stable for pg < 1 and pg > 1 respectively in 

the mathematical results. This shows that HIV/AIDS dies out 

in the community, if the treatment rate and treatment waning 

rate bring �pg� less than unity and the disease persist in the 

community, if pg > 1. We have shown that pg < pig , and pg = pig when the treatment rate and treatment waning rate 

equal to zero �%� = '� = ( = ) = 0� . This mean that 

treatment rate and education campaign to decrease ART 

waning rate will reduce the basic reproduction number and 

thus they are important to control HIV transmission. On the 

other hand, in the absence of these two interventions the 

spread of the disease will be high. 

By evaluating the sensitivity indices of the effective 

reproduction number with respect to model parameters, the 

influential parameters for the spread of the disease are 

identified and thus HIV transmission rate, ART treatment rate 

and ART waning rate are influential parameters. The most 

influential one is HIV transmission rate. From the values of 

sensitivity indices, an increase HIV transmission rate and 

increase in failure of treatment rate may increase the 

magnitude of reproduction number. On the other hand, 

HIV/AIDS related mortality, ART treatment, movement to 

acute stage, movement to pre-AIDS and full-blown AIDS 

stages have negative influence on the magnitude of 

reproduction number. The movement from acute stage to 

pre-AIDS and AIDS stages can be control by high rate of ART 

treatment on infective (Acute stage). The transmission rate of 

HIV can be reduced by education campaign on the danger of 

HIV/AIDS primary. However, we cannot control HIV 

prevalence by disease and natural mortality, since our 

objective is preventing people from dying of the disease and 

save life. Therefore, sensitivity analysis helps to focus on high 

sensitive parameters of the reproduction number in order to 

combat the transmission with low cost, if there is economic 

constrained. Both ART treatment and continuous education 

campaign on ART treatment (to decrease the failure of ART) 

had positive impact in reducing the disease prevalence. 

Moreover, numerical simulations support the analytical results, 

that both in an increase in ART treatment and continuous 

education campaign on the proper procedure of ART 

treatment (to reduce the rate of failure of treatment) will 

reduce the magnitude of the basic reproduction number 

6. Conclusion and Recommendation 

We rigorously analysed a deterministic mathematical model 

of the transmission of HIV virus in a population with 

treatment and continuous education campaign on the proper 

procedure of ART treatment (to reduce the failure of treatment 

rate). We have seen that there exists a feasible region where 

the model is well posed and a unique disease free steady state 

exists in the region. 

The disease free and endemic equilibria were obtained and 

their stabilities investigated. It was established that the disease 

free and endemic equilibria are locally and globally 

asymptotically stable for the effective reproduction number pg < 1 and pg > 1 respectively. This shows that HIV/AIDS 

dies out in the community, if the effective reproduction number 

is less than unity and persist otherwise. Moreover, based on the 

parameter values, we have pg < pi. This mean that both ART 

treatment and continuous education campaign on procedure of 

ART treatment will reduce the basic reproduction number. That 

is implementing treatment with high rate will reduce the 

movement from infective (acute stage) to pre-AIDS and full 

blown AIDS stages and an increase continuous education 

campaign on the proper procedure of ART treatment through 

different medias will reduce the failure of ART treatment, with 

this we can control the transmission of HIV. 

In addition, from the numerical simulation, by increasing 

treatment rate, controlling HIV transmission rate and failure of 

treatment rates, the spread of the disease can be reduced 

significantly and finally the disease die out in the community. 

There are different ways of preventing new HIV infections 

such as Education campaign through different media about the 

danger of AIDS, providing condoms at a very low cost,  

creating awareness on correct use of condoms and designing 

Strategy of community-based management of sexually 

transmitted infections (STIs). 

Once the disease emerge in the community, based on the 

findings of our research, proper implementation of preventive 

mechanisms, ART treatment and continuous education 

campaign on the proper procedure of ART treatment must be 

the major concern to control the spread of the disease. 

Therefore, we recommend for the stakeholders to design 

policies, planning, budgeting finance and resource allocations 

primarily focusing on prevention and then all possible public 
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health interventions to combat against HIV transmission in the 

community. 
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