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Abstract: Road train steady motion mode divergent stability loss compiles with the critical according to A.M. Liapunov case 

of a single zero root. That said both safe and dangerous stability loss scenarios are possible according to N.N. Bautin. Dangerous 

stability loss is followed with a semi-trailer intensive drifting even in case of linear motion. Analyzing the reasons of such system 

behavior requires developing new effective analytical approaches towards defining safe-dangerous articulated vehicle divergent 

stability loss because direct methods for finding corresponding Liapunov indexes may appear ineffective in the analytical form 

being excessively cumbersome. The work presents a formalized approach to analyzing safe stability loss conditions the essence 

of which is in defining conditions when bifurcation set structure rearrangement occurs in linear motion critical speed small 

neighborhood. The kind of approach has been tested by the authors when analyzing single unit vehicle stability. Analytical 

relations are presented defining road train configuration following circular paths with constant Ackermann angle; consideration 

of analytical results accuracy evaluation is performed based on comparing to the results received with numerical analytic 

parameter continuation method; analytical relations are received corresponding to safe linear motion mode stability loss (in the 

sense of N.N. Bautin). The work develops methods of analyzing two-link vehicle non-linear model two-parameter steady modes 

manifold stability. 
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1. Introduction 

Road train handling properties can differ from the 

corresponding properties of a separately taken tractor truck to 

a great extent because of vertical reactions redistribution on 

the tractor truck centre shafts and transverse reaction 

appearing in the point of coupling with a semitrailer [1-5]. 

Special attention from the point of view of traffic security 

should be paid to analyzing conditions which may cause 

abrupt changes (folding bifurcation corresponding to the 

divergent circular steady mode stability loss) semitrailer 

orientation (internal-external) in the circular mode with 

varying movement traveling speed [6]. The multitude of 

parameters when the kind of abrupt transferrings of steady 

states occur is a critical multitude or a bifurcation multitude 

with cuspidal points playing significant role in its structure [7, 

8, 9]. Typical and the simplest bifurcation set implementation 

is semicubical parabola though the algorithms of building 

bifurcation sets in an analytical form even for a case of single 

vehicle have been missing. The results of Troger H., Zeman K. 

and Fabio Della Rossaa [10, 11] were based on a numeric two 

parameter continuation method [12, 13], this complicates 

defining safe conditions of linear movement mode stability 

loss in a space of parameters according to N.N. Bautin [14]. In 

the works of L.G. Lobas, V.G. Verbitskii [6, 15-17] the 

questions of qualitative analyses of wheel vehicles non-linear 

models have been reviewed involving bifurcation theory 

elements. A similar approach is implemented in the present 
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work allowing to receive a more complete bolster – type road 

train model bifurcation multitude representation in an 

analytical form. The work is inspired by J.P. Pauwelussen [18] 

results and is aimed at further development of graph-analytical 

approach to analyzing two-link road train nonlinear model 

steady states multitude using the idea of bifurcation analyses. 

2. Problem State 

Task setting. A critical controlling parameters multitude 

should be found θ, υ responsible for two-link road train steady 

states multitude divergent stability loss. Conditions for steady 

circular states divergent stability loss should be defined which 

correspond to movement with varying traveling speed along a 

curve of a set bend radius (with a fixed Ackermann angle). 

Task solving method. A geometric method of analyzing a 

road train nonlinear model steady states multitude [18] 

combined with dynamic systems bifurcations theory 

approaches [8] give a possibility to get divergent stability loss 

conditions on a handling curve in a general form (a condition 

of divisible steady states implementation). 

A number of simplifying suggestions are accepted in the 

work traditional to tasks of graph-analytical analyses of steady 

states variety for bolster-type road train bicycle mode [18, 19]. 

A scheme of an articulate vehicle is given on figure 1, here v – 

tractor truck centre line of mass direct-axis component; θ – 

controlled module turning angle; a, b – a distance from tractor 

truck centre line of mass to tractor truck front (controlled) axle 

and rear axle centres; c – a distance from tractor track centre 

line of mass to coupling with the second link; d1 – a distance 

from the second link centre line of mass to the point of 

coupling with a tractor truck; Yi – vehicle drift force on axles, 

resistance coefficients to vehicle drift on axles (k1; k2; k3); m- 

tractor truck mass; u – transverse tractor truck centre line of 

mass velocity vector projection; ω – tractor truck rotational 

speed in correspondence to vertical axis; m2 – the second link 

mass; v1, u1 – lengthwise and transverse semitrailer centre line 

of mass velocity vector projection; φ – folding angle (the 

angle between the tractor truck and semitrailer rolling axis). 

 

Figure 1. A two-link road train structural scheme. 

3. Analytical Representation of a 

Handling Curve (a Nonlinear 

Approach) 

The source system defining two-link road train nonlinear 

model steady states multitude has the looks of: 

2
2 1 2 3 2 1( ) cos sin 0m m v Y Y Y m dω φ ω φ− + + + + + = ; 

2
2 1 2 3 2 1cos sin 0cm v aY bY cY cm dω φ ω φ+ − − − = ;    (1) 

2
1 3 2 1 2 1 2 1cos sin sin 0L Y m d v m d u cm dω φ ω φ ω φ− + − = ; 

1

u a

v

ωδ θ += − ; 

2

u b

v

ωδ − += ;
 

1 1
3

1

u b

v

ωδ − +
= ; 

1 1( )cos sinu u c v dω φ φ ω= − + − ; 

1 cos ( )sinv v u cφ ω φ= − − . 

A simplified (partially linear) equations system defining 

road train movement steady mode: 

2 1 2 3( ) 0m m v Y Y Yω− + + + + = ; 

2 1 2 3 0cm v aY bY cYω + − − = ;                   (2) 

1 2 1 3 0d m v L Yω− + = , 

can be solved in relation to drift forces implemented on axles: 
2

1 1 2 2 3 3( ) ( ) ( )
v

Y Y Y
gR

δ δ δ= = = , 

where /i i iY Y N= – a dimensionless drift force on i-n axle 

[18]; linear drift angles: 

1 2

1
3

; ;

( )
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− + +
= − +

 

vertical reactions on axles: 
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With a set movement along the circle with a set radius the 

 
correlation is present where v – direct-axis tractor 

truck centre line of mass (C.M.) component, R – dot locus 

radius on a tractor truck rolling axis the speed of which is 

directed along the tractor truck rolling axis. 

Taking into account that the difference of drift angles on the 

first and second tractor truck axes 1 2 / ,l Rδ δ θ− = − on the 

third and the second axes 3 2 1( ) / ,L c b Rδ δ φ− = − + + − and 

drift angles values corresponding to movement steady states

iδ : 1
1 1 yY (a )δ −= , 1

2 2 yY (a )δ −= , 1
3 3 yY (a )δ −= , two 

correlations are received defining handling curve and folding 

curve in case of an articulated vehicle: 

1 1
1 2/ y yθ = l R +Y (a ) Y (a )− −− ;                        (3) 

1 1
1 3 2/ y y= (L + c b) R +Y (a ) Y (a )φ − −− − − − , 

where āy = v
2
/(Rg) − transverse tractor truck C.M. acceleration 

component. 

The system (3) can be presented in a more general form: 

1 1 2
1 2 1 2

2
12

/ /

/

y y y y y

y y

θ = l R+Y (a ) Y (a )= l g a v +G (a ) G (a )

= l g a v +G (a )

− −− ⋅ ⋅ −

⋅ ⋅
1 1

1 3 2

2
1 32

/

/

y y

y y

= (L +c b) R+Y (a ) Y (a )

= (L + c b) g a v +G (a )

φ − −− − − −

− − ⋅ ⋅
,             (4) 

allowing to define phase variables values corresponding to a 

steady mode with set controlling parameters values θ, υ. 

Thus, from the first system equation (4) it can be concluded 

that steady states parameters of which are going to depend on 

corresponding 2 / /ya = v (R g) = v ω g⋅ ⋅  argument values 

correspond to the cross points of “movable” right line 
2/yl g a ν⋅ ⋅  − θ and “fixed” curve 21 12( ) ( ).y yG a G a= −  

The corresponding folding angle value is received from the 

second equation (4). This way the simplified equation system 

(2) leads to splitting the source system (1). In this case the first 

system equation (4) is defining from the point of view of 

divergent stability loss conditions (has the same form as in 

case of a separately taken tractor track). 

A criterion of steady states stability found from the first 

defining system equation (4) based on a geometric 

interpretation can be summarized as follows: a steady mode is 

stable if the inclination of movable right line is larger than the 

inclination of fixed curve in the corresponding crossing point 

(figure 1). A divisible steady mode is going to correspond to 

divergent stability loss, i.e. the contact of movable right line 
2

ya / -l g ν θ⋅ ⋅ and fixed curve 21( ),yG a which leads to the 

following correlation for controlling parameters: 

21 21

1/2/ .21

'
θ = a G (a ) G (a );y y y

'v = (l g G (a ))y

⋅ −

⋅
                         (5) 

The conditions when systems (1) and (2) have quantitative 

discrepancies only should be analyzed. The numerical analytical 

parameter continuation method should be used for building 

balanced curves corresponding to the source system (1). 

Balanced curves corresponding to system (2) can be set 

analytically in a parameters form (according to rotational speed): 

2
12/y yθ = l g a v + G (a )⋅ ⋅ ; 

/yω = a g v⋅ , 

and (according to folding angle): 

2
12/y yθ = l g a v + G (a )⋅ ⋅ ; 

2
1 32/y y= (L + c b) g a v + G (a )φ− − − ⋅ ⋅ . 

Balanced system (1) and (2) curves are represented on 

figure 2 received for the following parameters numeric values 

g = 9,81 m/s
2
; a = 4,217 m; b = 3,376 m; b1 = 2,93 m; d1= 

8,075 m; c = 3,376 m; m = 6417 kg; m2 = 41846 kg; 

k1=100000 Н; k2=300000 Н; k3=300000 Н; κ1=0,8; κ2=0,8; 

κ3=0,8; axial forces in the contact area of wheels with bearing 

surface haven’t been taken into account; rotational drift forces 

were take approximate as an arctangensoid: 

1
2 arctan( / )

2
i i i i iY kκ δ π κ π= ⋅ ⋅ ⋅ ⋅ ⇒

1 1
2 tan( / ) ( ), 1, 2.

2
i i i i i iG Y Y k iκ π κ π−= = ⋅ ⋅ ⋅ =  

 

Figure 2. Balanced curves at a speed of 10 m/s. 

ω(θ)- the navy colour, the solid curve for system (1), the dashed one for (2); φ 

(θ)- the maroon colour, the solid curve for system (1), the dashed one for 

system (2) 

It should be noted that steady mode divergent stability loss 

corresponds to the turning points on the balanced curves with a 

corresponding controlling angle value θ. Thus, the source 

system (1) critical parameters multitude is a bit different from 

the system (2) critical multitude, besides with sufficiently small 
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movement traveling speed (in comparison with the critical 

linear motion speed) there are quality difference there – there is 

a traveling speed interval there for the source system for which 

divergent stability loss is not implemented as opposed to the 

simplified system (2). Nevertheless, the analyses of system (2) 

divergent stability loss can be quite useful at the first stage of 

researching the results of which can be made more specific as 

required base on the complete system (1). 

3.1. Divergent Stability Loss Criterion 

Analyzing steady circular states divergent stability loss 

satisfying the handling curve (the first system (3) equation). 

As the reviewed case is a particular case of losing steady 

circular mode stability, this gives a possibility to define 

common points (if they exist) when combining stability 

diagram (bifurcation multitude) and handling curve on the 

same coordinate plane. 

The condition of common points presence between a 

handling curve and a bifurcation multitude can be written 

down in an analytical form: 

21 / .'
y yG (a ) a = l R⋅                              (6) 

It can be concluded from the “geometric” stability criterion 

that the steady circular states divergent stability loss 

corresponding to the handling curve is related to breaking the 

inequation: 

21 / .'
y yG (a ) a < l R⋅                               (7) 

Let the handling curve be equal to the R=30,5 m parameter 

solving equation (6) in relation to āy, the following is received 

āy = 0,52717, putting this value of scaled transverse 

acceleration into the handling equation gives a critical 

parameter value θ=0,1081 rad, a critical parameter value v = 

12,559 m/s can be found from the correlation 2 / ( ).ya R gν= ⋅  

 

Figure 3. Defining controlling parameters critical values corresponding to 

divergent stability loss on handling curve using bifurcation diagram (solid 

curves correspond to system (1), dashed curves to system (2)). 

Divergent instability on handling curve for the source 

system (1) implements with the speed of v = 11,5 m/s − it’s 

received based on the numerical analytical two parameter 

continuation method. 

In case of the simplified system (2) geometric rendering of 

the corresponding steady mode divergent stability loss 

conditions is possible – divisible mode implementation (figure 

3) which is useful when analyzing the results of numerical 

complete system (1) integration. 

 

Figure 4. An illustration to a graph-analytical technique for finding steady 

states corresponding to the set Ackermann angle value; a case of divergent 

stability loss. 

A comparison is available further on for approximate 

analytical expressions defining handling curve and folding 

curve with the results of building these curves base on 

numerical analytical parameter continuation method. The 

diagrams of the handling curve (the navy colour) and the 

“folding” curve (the maroon colour) correspond to the flection 

radius of R = 30,5 m (figure 4). 

 

Figure 5. Combining of handling curve and folding curve of a source two-link 

road train nonlinear model (solid curves) with their approximate variants 

(dashed curves). 
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This way, handling curves and the folding ones (which are 

received when putting 2 /ya = v (R g)⋅ into (4) can serve as a 

nonlinear generalization of handling and folding right lines 

(the later ones correspond to the case of drift forces linear 

approximation) [20]: the speed of angle folding is defined by 

the 
 
expression (similar to the 

 
understeering gradient), the folding angle value at a 

considerably low speed v is set with  

correlation similar to the Ackermann angle . And the 

divergent stability loss (7) condition received when working 

corrects the stability boarder obtained based on a linear model 

in a parameters space to a large extent. 

3.2. Conditions of Safe Two-Link Road Train Linear 

Movement Mode Stability Loss 

The conditions for rebuilding bifurcation multitude 

structure in small neighbourhood of linear movement critical 

speed should be defined. To solve the task the source system 

(1) with the precision up to the third term is going to be 

brought together to a defining equation (the third extent 

polynom) in relation to one phase variable. 

Let’s represent system (1) in an approximate form: 

1 1 2 2 0om v Y N Y N Yω− + + + = ; 

1 1 2 2 0oaY N bY N cY− − = ; 

[ ]{ }2 1 1 1

1

( )

o

m d u L c v b v
Y

L

ω φ ω φ− + + − −
= ; 

2

3

( ) (1 / 2)u c v
Y

g

ω ω φ φ − + + −
 = , 

where oY  − transverse reaction in the joint point influencing 

a tractor track ( oY  and 3Y  are defined with the precision to 

the third term smallness values). Solving this system in 

relation to non-dimesional drift forces: 

1
1

( )obm Y b c
Y

lN

ω− + −
=  ; 2

2

( )oam Y a c
Y

lN

ω− + +
= , 

switching to inverse functions
1

1 1 1Y (x )δ −= , 
1

2 2 2Y (x )δ −= , 

1
3 3 3Y (x )δ −= . Then arguments are put into xi dependences: 

2

2

v
u b

k g

ω ω−= + ; 

2 31 (1 / 1 / )( ) k k vL b c

v g

ωωφ −− +
= + , 

correct in linear approximation (after this procedure xi 

arguments are still going to be set with the precision up to the 

third term of smallness). Taking into account that in a curve of 

flection fixed radius / ,Rω ν= and the difference of drift 

angles on the first and second tractor truck axels 

1 2 / ,l Rδ δ θ− = − on the third and second axels 

Rb)c+(L+=δδ / 123 −−− ϕ , specified to the third term of 

smallness equations of handling and folding are received 

similar to equations (3): 

1 1
1 1 2 2/ ( ) ( )θ = l R+Y x Y x− −− ;                       (8) 

1 1
1 3 1 2 2/ ( ) ( )= (L +c b) R+Y x Y xφ − −− − − −  

where 1 1 2 2( ), ( )x x v x = x v= . 

Figure 6 (а, b) represents handling and folding curves for 

comparison corresponding to approximate dependences (3), 

(8) and curves received based on numerical parameter 

continuation method for a complete system (1). 

 

Figure 6. а) handling curve; b) folding curves (the solid curve corresponds to 

system (1), system (8) – the dash-dotted one, system (3) – the dashed one). 

The first system (8) equation without a suggestion of 

circular locus flection permanence: 

1 1
1 1 2 2 1 1 2 2/ ( ) ( ), ( ), ( )θ = l v+Y x Y x x x x xω ω ω− −⋅ − = =  

is a defining equation (received with the precision of up to 

the third term of smallness) from one phase variable – 

rotational speed. With fixed controlling parameters θ, υ it 

defines steady states multitude. If limiting only with its linear 

and cubic terms in Taylor series expansion of ω grades a 

required polynomial is received. A formalized approach to 

analyzing safe linear movement mode stability loss is given 

below. Let’s introduce a new generalized iK  parameter which 

value is going to depend on drift forces approximation kind: 

1 3( ) / / , 1, 2.iii i i i iY x x k x K iδ −= = + =  

Further result is going to be received for a particular case of 

c=b, b1=0, in this case coefficients of the defining polynomial 
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can be represented in a visible form: 

2 2 2 2 2 3
1 1 2 1 1 2 2 33

0 (1 / ) (1 / 1 / ) ( / ) (1 / ) (1 / ) / ( )
l v

v V v K K d g m m b a v V k k
v g

θ ω ω = − + − + − + ⋅ ⋅ ⋅ + ⋅ − ⋅   

From analyzing coefficients signs for linear and cubic terms 

in small neighbourhood of critical velocity v<V1 and v>V1 it 

can be concluded that safe linear movement mode stability 

loss (θ=0) implements for a positive coefficient value with the 

highest term of the defining polynomial (v=V1 should be 

considered in the later one) – in this case with the supercritical 

velocity a pair of steady circular movement states appears 

limiting the unstable linear mode destabilization growth. Then 

at least within the small neighbourhood of linear movement 

mode critical velocity, the boarder of bifurcation multitude 

should be higher that the cuspidal point (cusp) indicating the 

implementation of threefold movement mode with v=V1, θ

=0. The mentioned condition is equivalent to the condition of 

linear movement mode stability in a critical case of zero root 

(in the A.M. Lyapunov [21] stability theory), though this 

approach leads to considerable simplification of concurrent 

calculations. 

In other words, bifurcation multitude in a small 

neighbourhood of linear movement critical velocity co-insides 

with a defining polynomial discriminant curve. Earlier in the 

work [22] analytical correlations were received corresponding 

to the conditions of safe linear movement mode stability loss 

for parameters which considerably influence rebuilding of 

bifurcation mode relating to d1, b1, m2, k3. Though it’s 

necessary to remember that results strongly depend on a 

particular approximation kind of drift forces dependences. 

Thus in the present work drift forces have been approximated 

as an arctangensoid, in the work [22] fractional surdic 

approximation was used which with other equal conditions led 

to discrepancy of the received critical d1 parameter value at 

about 5 m. Above is the condition of safe two section road 

train linear movement mode stability loss which in a certain 

sense doesn’t depend on a particular drift forces 

approximation kind - the chosen drift forces approximation 

type should allow transferring to inverse functions or at last 

allow the possibility of defining their Taylor series expansion 

first nonlinear (cubic) terms: 

1 3

2 2
1 2 2 31 1 1 1

( ) / / , 1, 2.

(1/ 1/ ) ( / ) (1 / ) (1 ) / ( )>0,

i iii i i iY x x k x K i

V K K d g m m b a V k k

δ
−

= = + =

− + ⋅ ⋅ ⋅ + ⋅ − ⋅
 (9) 

where: 

2

1 1 2 1 2

2

2 3 1 3 2

2 2

/ ( );

2 / ( );

1/ ( /12) / ( ), 1,2i i i

V k k l g k k

V k k d g k k

K k k iπ

= ⋅ ⋅ −

= ⋅ ⋅ −

= − =

 

in case of drift forces approximation as an arctangensoid.
 The addend in inequation (9) is generated by linear 

approximation terms and this makes it stable with various 

kinds of wheel slipping forces approximation. V1 value defines 

critical velocity of an articulate vehicle linear movement 

mode, V2 – is a value possessing dimension of velocity. 

Figure 7, (а, c) depicts the influence of peculiar d1 

parameter variation in its critical value neighbourhood (d1
* 

=14,435 m) on bifurcation multitude type, bifurcation curves 

are build for undercritical (d1=14 m) and supercritical (d1=15 

m) parameter values, bifurcation curves fragments in small 

neighbourhood of linear movement mode critical velocity are 

represented on figure 7 (b, d). Qualitative changes in 

bifurcation diagram structure (the later are received 

numerically based on the two parameter continuation method) 

correlate with the analytical result (9). With numerical 

building the following set of parameters was used g = 9,81 

m/s
2
; a = 1,92 m; b = 0,82 m; c = 0,82 m; m = 5310 kg; m2 = 

6481 kg; k1=305091 Н; k2=103496 Н; k3=154079 Н; κ1=0,8; 

κ2=0,8; κ3=0,8. 

 

a) 

 

b) 



 Mathematical Modelling and Applications 2018; 3(2): 31-38 37 

 

 

c) 

 

d) 

Figure 7. Controlling parameters bifurcation multitude corresponding to 

system (1). 

а) bifurcation multitude with undercritical d1 parameter value; b)- bifurcation 

multitude fragment with undercritical d1 parameter value in central cusp 

neighbourhood; c) bifurcation multitude with supercritical d1 parameter value; 

d) bifurcation multitude fragment with supercritical d1 parameter value in 

central cusp neighbourhood 

 

Figure 8. Bifurcation multitude of controlling parameters with supercritical 

d1, parameter value corresponding to system (2). 

Bifurcation multitude of complete system (1) and 

simplified system (2) can have considerable differences – this 

comes out of the safe linear movement mode stability loss 

conditions received analytically. Thus figure 8 represents 

bifurcation multitude corresponding to approximate system 

(2) to compare it to its exact equivalent on figure 7 (c). 

For system (2) conditions of safe stability loss can be easily 

obtained from the corresponding defining equation (the first 

(4) equation) represented with the precision of up to cubic 

terms of scaled transverse acceleration power expansion: 

2
12

32
1 21 2

22

/ ( )=>

( / 1/ 1/ ) (1 1/ ) 0.

1/ ( /12) / ( ), 1, 2.

y y

y y

i i i

l g a v G a

gl v k k a K K a

K k k i

θ

θ

π

= ⋅ ⋅ +

= + + − + + − =

= ⋅ =

 (10) 

Analyzing solutions number of the latest equation in small 

critical velocity neighbourhood 1Vν = (it’s supposed that 

21>k , 0)k θ = is performed. Equation (10) with these 

suggestions can be presented in the following form: 

2 22
32 2 12 2

2 22
1 2 21 1

1
/ (1 ) /12( ) 0y y

v k k k k
gl v a a

V k k k k

π ⋅ − ⋅⋅ − + =
⋅ ⋅ ⋅

, 

then with 1v V>  and 
2 2

1 1 2 2k kκ κ⋅ > ⋅  there are three steady 

states there (one stable and two unstable) and with 1v V>  and 

2 2
1 1 2 2k kκ κ⋅ > ⋅  - there is one there (unstable). If 

2 2
1 1 2 2k kκ κ< , then with 1v V>  there are three steady states 

there (one unstable and a pair of stable ones) – the case of 

stable steady states pair appearing (i.e. with 
2 2

1 1 2 2k kκ κ>  

bifurcation multitude branches in critical velocity small 

neighbourhood 1v V>  are located below returning point and 

with 
2 2

1 1 2 2k kκ κ<  above it). 

This way, in system (2) semitrailer parameters only 

implicitly influence conditions of safe linear movement mode 

stability loss (included into dimensionless drift coefficients on 

tractor truck axels), as opposed to conditions (9). Elimination 

of such qualitative differences between systems (1) and (2) 

required nonlinear connection restoring (with precision of up 

to third smallness term) for sub systems tractor 

truck-semitrailer which appears as a transverse force in the 

joint point. In case of the suggested approximate system (2) 

correction, an analytical means of building handling and 

folding curves reveals broadening of their usage area 

according to the normal acceleration parameter. 

4. Conclusions 

A general equation of handling and folding for a two-link 

road train nonlinear model is received, the handling equation 

co-insides in dimensionless form with the handling equation 

of the given tractor truck and can be used for evaluating 

conditions of divergent stability loss in an explicit form; 
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obtained analytical conditions of safe linear movement mode 

stability loss are compared to the results of numerical building 

of road train nonlinear source model divergent stability loss 

diagram based on the parameter continuation method. 
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