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Abstract: In this article, the improved (G'/ G) -expansion method has been implemented to generate travelling wave
solutions, where G(/]) satisfies the second order nonlinear ordinary differential equation. To show the advantages of the
method, the Generalized Burgers-Fisher equation has been investigated. Nonlinear partial differential equations have many
potential applications in mathematical physics and engineering sciences. Some of our solutions are in good agreement with
already published results for a special case and others are new. The solutions in this work may express a variety of new
features of waves. Furthermore, these solutions can be valuable in the theoretical and numerical studies of the considered

equation.
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1. Introduction

Nonlinear partial differential equations (NLPDEs) are
widely used to describe complex physical phenomena in
different fields of study in mathematical physics, engineering
science and other areas of natural science [1]. In Particular,
the generalized Burger's-Fisher equation has a wide range of
applications in mathematical-physics, engineering science,
physics, chemistry etc.

Exact travelling wave solutions of NLPDEs play an
important role in the study of nonlinear physical phenomena.
Looking for exact solutions to nonlinear evolution equations
(NLEEs) has long been a major concern for both
mathematicians and physicists. These solutions may well
describe various phenomena in physics and other fields [1].
But unlike LPDE, NPDEs are difficult to study because there
are almost no general techniques that work for all NPDEs,
and usually each individual equation has to be studied as a
separate problem. Therefore, many authors have been

introducing different techniques to obtain exact traveling
wave solutions for non-linear evolution equations (NLEEs)
for the past many years. Recently, several direct methods
such as Exp-function method [2, 3], sine-cosine method [4],
tanh-coth [7], tanh method [6], auxiliary equation method
[7], the first integral method [8], Improved Adomian
decomposition method [9], Variational iteration method [10],
the Adomian Decomposition Method [11] and others have
been proposed to obtain exact solutions of nonlinear partial
differential equations. Using these methods many exact
solutions, including the solitary wave solutions, shock wave
solutions and periodic wave solutions are obtained for some
kinds of nonlinear evolution equations.

Another important method presented to construct exact
solutions of nonlinear PDEs is the basic (G'G) -expansion
method. The concept of this method was first proposed by
Wang et al. [12], consequently, many researchers applied the
(G¥G) -expansion method to solve different kinds of NLEEs
[13, 14, 15, 16]. More recently, Zhang et al. [17] extended
the basic (G'G) -expansion method which is called the
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improved (G'G) -expansion method to establish abundant
traveling wave solutions of nonlinear PDEs. Many
researchers applied the improved (G G) -expansion method
to different nonlinear PDEs [18, 19, 20, 21, 23]. It has been
shown that this method is straightforward, concise, basic and
effective.

The importance of our current work is, in order to generate
abundant traveling wave solutions, the generalized Burgers-
Fisher equation has been considered by applying the
improved (G'G) -expansion method. The structure of this
paper is organized as follows. In section 2, the improved
(GYG) -expansion method is discussed. Application of
improved (GYG) -expansion method to the generalized
Burgers-Fisher equation is presented in Section 3. In Section
4 ends this work with a brief conclusion.

2. The Improved (G'/G)-Expansion
Method

We consider that the given Nonlinear Partial Differential
Equation in the form of

P(u,ux,ut,uxt,uxx,...) =0 (1)

where P is a polynomial in its arguments, which includes
nonlinear terms and the highest order derivatives, the

subscript stands for partial derivatives and u#(x,¢) is the
unknown function.

REMARKI1: Nonlinear evolution equation (NLEE) is a
NPDE which is dependent of a time t.

EXAMPLE

1. u, =uu, +u, (Burger's equation)

2. u =uuy tu,, tu (1 —u)) (Burger-Fisher equation)

3. u,+pu'"u, +qu, +ru(l-u")=0 , (Generalized Burger-
Fisher equation), and so on

Travelling Wave Solution
A travelling wave solution of a NPDE in two variables

(x,t) is a solution of the form u(x,))=U(1]), (N =x-ct),cis
a speed of traveling wave) where U(/]) is an arbitrary
differentiable function of /7.

The traveling wave transformations
Combining the real variables X and # by a wave variable

n=kx+ax

u(x,)=U7) 2

where w is the speed of the traveling wave.
The traveling wave transformations (2) converts (1) into an
ordinary differential equation (ODE)

oW, kU',aU" kaU",k*U",..) =0 (3)

Where O is a polynomial in U and its derivatives; the
superscripts indicate the ordinary derivatives with respect to 0.

Traveling wave solutions

The solution of (3) can be expressed as follows:

umn) = Z a.(GY G)! +Z B.(GY G)™! (4)
i=0 i=1

Where a;(i=0,12,...,m),
constants to be determined and either @, or B, can be zero

but both can't be zero at the same time [21] and G = G(7])

satisfies the following second order nonlinear ordinary
differential equation with constant coefficients:

Bi(i=1,2,..,m) are arbitrary

GG"=AGG'+ uG* +V(G')’ (5)

Where the prime stands for derivative with respect to
1 and A, [, and V are real parameters.

The Cole-Hopf transformation (0(/7) =In(G(17)), transforms

(5) into the generalized Riccati type equation in terms of

o(n):
@' (n) = u+Ag(n)+-n¢ (1) (6)

where (0(/7)=(G'(/7)/G(I7)) .
equation has 25 distinct solutions [24] and (see Appendix I
for details)

Note that from (4), (5) and (6) it follows:

The generalized Riccati

U =4+ A G+ (V=G G)z){iiai CIORE YA G)_i_l]

i=0 i=1

U'(n) = ( U+ A(GY G)+(V -1)(GY G)? ) (A+2(7 =1)(GY G)){iiai (G/G) ™" - iiﬁ} (G/G)™"! ] -

i=0 i=1

m .
(,u+/1(G'/G)+(V—1)(G'/G)2)( 3 i(i—l)a',»(G'/G)’_zj %)

And so forth, where the prime denotes derivative with
respect to 1.
Now, to determine u(x,f) explicitly we follow the

i=0

following steps:
Step 1: transforming (1) into (3) (ODE) using traveling
wave transformations in (2).
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Step 2: substitute (4) including (6) and (7) into (3) to
determine the positive integer m, taking the homogeneous
balance between the highest order nonlinear term and the
derivative of the highest order appearing in (3).

Step 3: Substitute (4) including (6) and (7) into (3) with
the value of m obtained in Step 2, to obtain polynomials in
(GG (i=0,1,...,m)and (G'G)" (i=1,2,...,m) subsequently,
we collect each coefficient of the resulted polynomials to
zero, vyields a set of algebraic equations for
ay, a5 A, BBy, Wand .

Step 4: Suppose that the wvalue of the constants
a,(i=01,..m), 5(i =12,..m), 4 and @ can be found by
solving the algebraic equations obtained in Step 5. Since the
general solutions of (6) are known to us, inserting the values
of a;(i=0L2,.m),5{=L2,..m),dand W into (4), we
obtain more general type and new exact traveling wave
solutions of the nonlinear partial differential equation (1).

3. Application of the Method

In this section, we will apply the improved [G'/ G]

expansion method to construct many new and more general

traveling wave solutions of the generalized Burger-fisher
equation in [22].

Now considering the generalized Burgers-Fisher equation
with higher-order nonlinear terms

ut+pu”ux+quxx+ru(l—u”)20 8)

where n >1, and p, r, and ¢ are real parameters.

To look for travelling wave solutions of (13), we use the
wave transformation (2) and change (3) into the form of an
ODE

wlU'+ pkU"U' +gk*U" +rU(1-U") =0 )
To determine the positive integer m in (4), we need special

transformation as mentioned in [22]

1

Um=rr@m), n=ke+ar wxn=u@) 10

Inserting (15) and its first and second derivative reduce
(14) into

anVV'+ pnkV3V' +qk* (L= n)(V')? +qgk*nVV" + V2 =m*V3 =0 (11)

Now the homogeneous balance between V" and /2" in (16) can be found from

VV":VZV'

Therefore, the solution of (16) becomes

v =ay v [ 5o 5

=2m+2=3m+]1 =>m=1

-1

az20or 5 #0 (12)

Now inserting (12) and its first and second derivative with (5) and (6) into (11) we obtained polynomials in

(GYG) (i=0,1,2,..m) and (G/G)™ (i=1,2,3,..m). Subsequently, we collect each coefficient of the resulted polynomials to

zero, yields a set of algebraic equations for 0’0,0’1,,31, Mand @ as follows:

(G’/ G)4 - =2gk*na,*v + pnka*v + gk*na* + gk*na’Vv? + qk*a’ + qk*a*v* - pnka® -

quzalzv =0

(G’/ G)3 =rnta;® + ana*v + pnka A+ 2qk*a*vA + 2 prkaga,®v + gk*na,*vA + 2qk* naga, -

2gk*a’ A = ana - gk*na* A = 2 pnkaga* + 2qk*nagav? - 4qk*nagay =0

(G’/ G)2 coana* A +4qk’a, By - 2qk*a’ p + Aqknav: B2 +3qk*naga, A + 2qk*a* vt — pnka,® +

pnka;® 11— 8qk*na, By - 2qk*a, B, - 3rn* aya,® — pnkay’a, + 2 pnkaya,* A = naga, —3qk*naya, A +

pnkay*ayv +qk*a* A* + anaya,y - 2qk*ap* B +m’a” + pnka By +4qk*na, B, =0

(G’/ G)1 : 2gk*nagayv i+ Aqk*a, B A - 4qk*apv B A +8qk* nayv B A + anagay A + gk naga A* + pnkay®a, A +

2rn*aga; + aona - 3rn*a’ B, — qk*na* Au - 2qk* naga, 1+ 2 pnkaga,: 1 - 8qk* na A, = 3rn*ay’a, +

pka*AB, +2qk*a* A =0
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(G G)0 L —dqk*ayv B - gk*nagAB, + pnka,® B+ pnka,*a, 1t — pnka,® By — pnka, B,*v +4qk*na,A* B,
-8qk’na B+ A k> B +m’ay’ —rn*a;’ —647 m aga, B, + qk* B2V = 2qk* B2v + gk’ a (i + pnka,’ B, +
prka, 3% + wnay B, — qk*n B2 +2rn*a, B, + gk*nay BvA +8qk* nayv B + qk* naga A + wnaya, f1 — way By
- 2qk a A* B, + AqkP ay B, — gk n BV +2qk*n By — gk na’ 1f =0
(GVG) ™" gk n B2 A - 2qk> B2 A +8gk* nay B it — cn B + 2gk> B2 Av = dgk>a, A\B 1+ on B
— pnka, BEA +2rn’ay B, + 2qk*nay B v - 3rn* ay’ B, — pnkay*AB, — qk*nB2vA =2 pnka, Bv
- 2qk*nay B —3rn*a, B — wnay B +2 pnka, B + gk nay BA* =0
(G Y G)_2 =3rn’ay B +4qkPna 1 B, + 2qk* Bvit— pnk By + gk BEA? + rn* B = cnay B -
29> B 11 =2 prkag B2 A = prkay® U, = prkay * 1+ prk B = 2qk i B, - an 5 A +
3qk*nayAB, =0
(G Y G)_3 st B+ quznaoﬁl,u2 - pnkﬁ13/1 + quzﬁlz/\,u+ qkzn,Blz/Lu - a)n,Blz,u - 2pnka0,812,u =0

' —4 —
(GVG) ™ : Bk 1P ng = Blkpnp + Bk 17g = 0

Solving the systems of obtained algebraic equations with the aid of algebraic software Maple, we obtain three different sets
of values.

Set 1:
g, =KDt g L p —(kAqnr D) 1 n’p’ = (kAg(n+1))*
0 2np T4 gk )(1-v) T 4 ()21 -v)gPk?
2 2
=Lt 2 PR g A= (13)
(n+Dp
Set 2:
np —kAg(n+1 kq(1=-v)(n+1 1 n?p? = (kAg(n +1))*
a, =P q( )’alzq( X ),Bl=0,ﬂ=— p g q( 2)2)
2np np 4 (n+D)(1-v)qk
2 2
=LY PR a2 (14)
(n+1)p
Set 3:
np B n2p2

=1/2,a; =kq(n+1)(1-v)/ B = A=0,u= )
a a q(n+1)(1-v)/(np), B 16kq(n+1)(1-v) M 16(n+1)2(1—v)k2q2

w=~k(gr(n+1)* + p*)/ (n+1)p (15)

Substituting (13) — (15) into (12) and by (10) respectively we obtain:

1
uy (x,1) :[k)lq(n+l)+np N 2 p? = (kAq(n+1))>? [Qj_l]n "
2np dpgkn(n+1)(1-v) | G
1
e
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1
ua(euf) = l+kq(n+l)(l—v)[£j+ np (gj“l " (18)
B 2 np G ) 16kg(n+1)(1-v)\ G

Substituting the solutions of the (6) (see appendix I) into (16) and simplifying obtains the following solutions of our target
equation (8)
when Q = A*-4u(v-1) > 0and A(v-1) # O(or t(v—1) # 0)

1
_[ KAg@r+mp  n?p* =(kAgln+ )P (1 1 ) 19
“ () = [ 2np ¥ 4pgkn(n+1)(1-v) 2(v-1) At \/atanh( 2 \/aﬂj
_[ Mg+ +nmp  n®p* = (kAg(n+1)) ( j e (20)
u, (x,t) = E + 2 pain(n D1 =) [ o 1) /1 +/Q coth| =/Qn
u (x.f)= kAg(n+1)+np . ”2p2 —(kAg(n+ 1)) tanh(%\/aﬂ) + @21
R 2np 4 pgkn(n+1)(1-v) 2(v n|JQ |
isec h(EJEq)
1
A+ Rt
PN 7 VIR RN e L2 U Vil B coth( V) £ 22)
LA 2np Apgkn(n+1)(1—=v) | 20v-1)| VQ 1
csch(E\/aﬂ)
1
24+ Rt
u (x.f)= kAg(n+1)+np + n2p2 —(kAg(n+ l)) 1 tanh(%\/aﬂ) + (23)
Is 25 2np 4pgkn(n+1)(1-v) 4(v-1) )
coth(zx/aﬂ)
1
_A + -1 n
_| KAq@+D+np  n’p® —(kAq(n+1)* | 1 24)
w, (x,0)= 7 trant =) | 20D +,Q(4% - B?) - 4JQ cosh(/Qn)
Asinh(x/Qn) +B

o 0 = G0 a1 =) | 200-1) Asinh(/) +B

nzpz—(kﬁq(nﬂ))z[ ! [_A +JQ(4” + B%) - 4JQ cosh(/O /7)]} " (25)

where A and B are two non-zero real constants
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ue (50) = k/lq(n+1)+np+n2p2—(k/lq(n+l))2 -2/ Q cosh(1/24/Q) )
T 2np 4pgkn(n+1)(1-v) | J/Q sinh(+/Q)+ A cosh(1/2/Q)
Na
v | Aty iy =gy 2@ ((112)0)
b 2np 4pgkn(n+1)(1=v) | Q) cosh(x/Q) - Asinh ((1/2)vQ)
-1 ;
v o] Han Dty g =g 2u@cosh((1/2)0)
ho 2np 4pgkn(n +1)(1-v) \/asin(\/a)+)\cosh((l/2)\/§)ii\/§
1
1 n
w (o)< | KGO Ep 0D = (kAg(n+1)? 2/@sinn(1/2))
T A 2np 4pgkn(n+1)(1-v) \/acosh(\/a)—/lsinh((l/Z)x/a)i\/a

when Q = N> =4u(v-1)<0and A(v=1) Z O(or p(v=1) % 0)

4 pgkn(n+1)(1-v)

_1 l
_[KAgn+D+mp _wp?=(kAgnry (1 (= (1 '
ullz(x,t)—( E + (2(‘}_1)( A+ Qtan(z\/_Qﬂnj ]

I3

u (o) = kAqn+D)+np  n'p® = (kAq(n+1)* (1
’ 2np 4pgkn(n +1)(1-v)

2(v-1)

oty |

ull4 (.X,t) :{

kAg(n+1)+np . n’p* = (kAg(n+1))* 1
2np 4 pgkn(n +1)(1-v)

2(v-1)

uy5(x,t) 2(

kAq(n+)+np  n’p’ = (kAg(n+1)’

kAg(n+1)+np + n’ p? = (kAq(n +1))* 1
2np 4pgkn(n+1)(1-v)

2(v-1)

()l +/-Q [cot(%ﬁn) +cs c(%ﬁn)jmi

1

u116 (X, t) = { 2
np 4pgkn(n+1)(1-v)

1 1 1
(4@ {24+ = o= |

1
N—
x|

2np 4pgkn(n+1)(1-v)

u,, (x,1) =[k/\q(n+l)+np N w’ p* = (kAg(n +1))* {

1
-1
2(v-1) [ * Asin(~/-Qn)+B

+/-Q(4? - B?) - AJ-Q cos(-Qn) IJH

y, (6,1) = [k/lq(n +1)+np + n’p* = (kAgq(n+1))’ [ 1 [

2np 4pgkn(n+1)(1-v)

A+ +-Q(4> -B*) + A\/acos(ﬁq)] IT

2v-1) Asin(~/-Qn)+B

KAgn+1)+np  n’p* ~(kAg(n+1))’ —2u-Q cos(1/24/-Q) B
4 pgkn(n +1)(1-v)

ull() (xat) :{ 2l’lp

J=Qsin(+/-Q) + Acos(1/24/-Q)

(—A . ﬁ(tan(%ﬁn) s sec%@,,)mﬂ J

21

(26)

@27

(28)

(29)

(30)

(€2))

(32)

(33)

(34)

(35)

(36)

(37
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u (v.f)= KAg(n+D)+np  n’p =(kAg(n+1))’ 24N -Q sin((uz)@) -1\ N
19\ 2np 4 pgkn(n+1)(1-v) \/3005(\/5)_/18111((1/2)@)
u, () =| K90 D tnp | wp” = (kAq(n + )" 2= cos((1/2)v-Q) | (39)
Iy A 2np 4pgkn(n+1)(1-v) @sin(ﬁ)+ﬁcos((l/2)\/5)i@
w0y =| FAED 0 g = (KAg(n+ DY 23-Q sin((l/z)@) 1\ .
1y 2np 4Apgkn(n+1)(1-v) ECOS(@)—Asin((I/z)E)i@
u (.X' [) — k/lq(n +1)+np . ”lzpz —(k/]q(n+l))2 ~ Ak -1\, (41)
13 2np dpgkn(n+1)(1-v) (v=1)(k +cosh(Ar7) = Asinh (/],7))
uy, (x,0) = k/lq(n2+ Dtnp n’p® = (kAg(n+1))* [ _ cosh(An) + Asinh (/],7) -1\ o
np 4pgkn(n+1)(1-v) (v =1)(k + cosh(An) + Asinh (/]/7))
u1 (x,f):[k/]q(n+l)+"p+”2P2‘(“‘1(’1+1))2[‘ ! ]1] 43)
25 2np dpgkn(n+1)(1-v) | (v=Dn+1

k(gr(n+1)? + p*)
(n+Dp
Substituting the solutions of the (6) (see appendix I) into (17) and simplifying obtain the following solutions of our target
equation (8)
when Q = A =4p(v=1) > 0and A(v—1) # O(or v—1) # 0)

where 77 =kx -

t,and k is constant in  (19)-(43)

1
u(x,t)zl :[%+%;1)\/§tanh(%\/§”jj" (44)
1

u(x,1),, :(%N“I;”T;l)\/ﬁ coth(% @”j]" (45)

1
uy, (1) = G ’“’(” l)f tnh( L/a l7)+zsech(—\/7 n))) (46)

1
uy, (%, t):[% kq(’; DJ_ th(%\/aﬂ)icsch(%\/aﬂ)))n @7)

1

1
1 kg(n+1) % Q(A2 +B%) - Aﬁcosh(\/_n) (49)
uy (x,0) = E 5
np Asinh(/Qn) +B
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1

uy (x,1) = {l Ka(n+1) QA +B?) - 4VQ C"Sh(ﬁ”)}n (50)
7 2 2mp Asinh(:/Qn) +B
where A and B are two non-zero real constants
1
wy (o) =| P kAg(n+1) , kg(1=v)(n+1) -2/ Q cosh(1/24/Q) n 51)
s 2np np JQ sinh(+x/Q) + A cosh(1/2+/Q)
o ey KA Hga=ven [ 2Rsinn((1/2)¥0) (52)
2 2np np \/acosh(\/a)—)l sinh((l/Z)\/a)
o o] A0 rga=ven[ 2@ eosh((1/2)V0) " (53
2ot 2np np JQsin(V/Q)+1 cosh((l/Z)\/a)ii\/a
1
wr (e =| PRAGED) kgD 2/Qsinh ((1/2)V2) ’ (54)
e 2np np V0 cosh(yQ) - Asinh (1/2) V@) £ V@
when Q = A =4u(v=1)<0and A(v=1) # O(or t(v=1) # 0)
1
u(x,1), :(l +M\/$tan[lﬁnnn (55)
2\ 2 2np 2
1
u(x,t), = [l L kg(n+1) ﬁcot(l @”D (56)
B2 2np 2

Here for simplicity we omitted solutions of the form ¥,,, ~#,,, (of the form u;4 —u,5 as in appendix I)

k(gr(n+1)> + p*)

(n+Dp
Substituting the solutions of the (6) (see appendix I) into (18) and simplifying obtain the following solutions of our target
equation (8)
when Q = A =4u(v-1) > 0and A(v-1) 2 O(or t(v=1) # 0)

where 77 =kx -

t,and k is constant in (44)-(56)

| —

l+M[\/5tanh(%\/§/7n+ !

(
2 2np

el ()

16kg(n+1)1-v)| 2(v-1)

uz (x,1) = (57)
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2

l+M[\/5coth(%\/§/7n+ !

2np

u32 (xs t) =
np

16kq(n+1)(1-v) [

el o))

2(v-1)

1 kq(n*D) [Jﬁ[tanh(%\/aﬂ) *isec h(%\/a”)j] +

2 2np
1"33 (xat) =

1

np _
16kg(n+D)(1-v)| 2(v-1)

l+M[«/§[coth(%\/§/7)iCSCh(%\/a”)DJr

2 2np
M34 (xat) =

np __ 1 1 1
16kq(n+l)(1—v)[ 0D [@(coth(zx/aﬂ)icsch(z \/ﬁq)m

1 +M(\/§(tanh(%\/§/7) + COth(%\/a”)D *

2 4np
u35 (X, t) =

np 1
16kg(n+1)(1-v){ 4(v-1)

2 2np
u36 ()C, t) =

np

Asinh(x/Qn) +B

1 _kg(n+l) [ i«/Q(Az +B%) - A\/acosh(\/aﬂ)J .

{\/5 (tanh(% Jan) + coth(% x/ﬁn)m

16kg(n +1)(1-v)

1
2(v-1)

Asinh(/Qn) +B

[ +JQ(4% + B*) - AQ cosh(\/an)

+/Q(A4% + B?) + 4/Q cosh(-/Qn)

l _kq(n+1)|
2 2np

LI37 ()C, t) =

np

Asinh(/Qn) +B J *

-1
[Jﬁ [tanh(% Jan) £isec h(%\/aq)jn

-1

-1

)

where A and B are two non-zero real constants

-1
_ 1 Q(A4+ B*) + ANQ cosh(\/aﬂ) H

1
16kq(n+1)(1-v) [2@ —1)[ Asinh(/Qn) +B

2
u(x, t)38 =

np

np

1 +kq(n+1)(1—v)( ~243Q cosh(1/24/Q) J+

JQ sinh(/Q) + A cosh(1/2/Q)

16kg(n+1)1-v)

( ~24:Q cosh(1/24/Q) ]_1

JQ sinh(+/Q) + A cosh(1/2/Q)

n

N

—_

=

(58)

(39)

(60)

(61)

(62)

(63)

(64)
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1 + kg(n+1)(1-v)

25

=

2@ sinh ((1/2)VQ)

+

2

u39 (x’t) =

np

np

)
JQ cosh(vQ) - Asinh ((1/2) V)
2u@sinn((1/2)v@) )

(65)

16kg(n+1)(1-v)| /Q cosh(Q) - A sinh ((1 /2

C)

BRI

0 ~241Q cosh ((1/2) )

2 np
u310 ()C,t) =

np

1, kg(n+1)1-

JQsin(/Q) +Acosh ((1/2)VQ ) £ i/Q '
—2,U\/§ cosh((l / 2)\/6)

(66)

16kq(n +1)(1=7)| VQ'sin(/Q) + Acosh((1/2)v/Q) £ i@

1 + kq(n+1)(1-v)

S | =

2pnQsinh ((1/2)VQ)

+

2 np
M3“ (xa t) =

np

JQ cosh(v/Q) - Asinh ((1/2)vQ) /2

24/ Qsinh ((1/2)VQ)

e

(67)

16kg(n+1)(1-

Y| V@ cosh(v@) - Asinh ((1/2)vQ ) £V

when Q = A =4u(v-1) > 0and A(v-1) # O0(or t(v—1) # 0)

1, kg(n+1)
2 2np
uy (x,0) =
np

3 =

(_,1 +\/$tan(%\/$'7j] + (68)
1

16kg(n+1)(1-

1, kg(n+1)
2 2np
u}13 (X,t) =
np

sl

el )

v){ 2(v-1)

I [ =

(69)
1

16kg(n+1)(1

[romelsem)]

|

- 2(v-1

Here for simplicity we omitted solutions of the form %3, ~43,. (of the form u;4 —u,5 as in appendix I)

k(gr(n+1)* + p*)
(n+l)p

where 77 = kx -

4. Results and Discussion

t,and k is constant in (57)-(69)

al [22] applied the basic (GVG) -expansion method to
generalized Burger-fisher equation which is our target
equation where G =G(f]) satisfies G"+AG'+uG=0 and

Recently, Abaker A. Hassaballa et al [23] applied the
proposed method, improved (G'G) -expansion method to
Burger-fisher equation which is special the case of our target
equation where G =G() satisfies G"+AG'+ UG =0 and
obtained five exact traveling wave solutions in terms of
hyperbolic functions. Another authors, Abdollah Boharfani et

found a few exact traveling wave solutions as compared to
[23] and our solutions.

In our case, we applied the improved (G'G) -expansion
method to the generalized Burger-fisher equation where
G=G() satisfies GG"= AGG'+ uG*> +v(G')2 as a result we

have constructed more general solutions and many new exact
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traveling solutions. results which have been shown in the Table 1.

It is important to point out that some of constructed
solutions are in good agreement with already published

Table 1. Comparison between published results and our obtained solutions.

1) Abaker A. Hassaballa et al Solutions [23]
i). Equation (18) with
2
£=x-UBYT) o
2a

w:/‘2+(n—2/1)(a+2/1) _a
4 4

:(g[l_g ,,,mnh(gﬁg)]) or
w, = (%[1—%%—2 tanh(%\/OIT E)j)

ii). Equation (19) with

2
“p+a’) o

=x-
g 2a

pop? 1 @=20@+2h) _a
4 4

, =(%[1—% l//coth(%x/zf)]) or
we(H-en(37) )

iii) Equation (20) with
2
F=x-UB* ¢
2a
y=r+ (@-2M\a+2}) _a*
4 4
1_

a+2a|[ 2 2= :
”21()5’[): o g_z/]tanh 2 Y or
24

a-2A

1-

=i
uzl(x,t):a”/] rtanh( rnj

20 a-2A
24
a-24

iv) Equation (21) with

2
{:x—(zt’lz%)[&

_ 2
l//:/12+(a 2A)(a +2A4) _a
4 4

1_

=il
N 113
uzz(x,t)=a+u 7—24 COth(E Y /7]‘ or

2a

v). Equation (22) with

Our Solutions
i). Equation (44) and (14) with

n=lLk=Lp=a,r=-f,q=-landv=0

kgrn+)? +p?) _ @7 +a)
p(n+1) 2a

o i)

ii). Equation (45) and (14) with

§=n=ki-

n=Lk=Lp=a,r=—fF,g=-landv=0

kgrn+)? +ph) _ @ +a®)
p(n+1) 2a

{34 31

iii) Equation (19) and (13) with

f:/]:kx—

n=Lk=Lp=a,r=-8,q=-1LAby —Aandv=0

E= pop Mo’ +p?) _ @ptead),
p(n+l1) 2a

u, (x,0) =

A
-——+
a+2) _a*-4p%| 2 o
2 8a | ya?

a tanh l\/0’20

4 4
1_

=222 I (1) |

a-2A
24
a-2A

iv) Equation (20) and (13) with

n=Lk=Lp=a,r=-F,q=-1,Aby -Aandv=0

E= pojp-Mar+?+ph) _ @p+ah),
p(n+1) 2a

A

-+
a+2) _a*-4p?| 2

- 7 or
Sar \/07 coth[l\/O'TI]J
4 4
1_

u (x,f):aJrM \/LT cmh[ FOJ
2 2a

a-2A
24
a-2A

up, (x,0) =

i). Equation (57) and (15) with
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n=Lk=lLp=a,r=-F,g=-landv=0

2
ap+a’), o

2a

£=x-

w=/12+(a—2/l)(a+2/l) _at
4 4

SRR (19 WL
u3(x,t)—2 4tanh[8{j 4coth[8{j

2) Abdollah Boharfani et al Solutions [22]
i). Equation (34) with

_kgr(n+ )’ +p?)

p(n+1)
upy = gk p2 coth 1 p2 & +i
2 20\ 22 20D\ 22 2
_kar(n+)? +p?)

§=hx

S | =

iii) Equation (32) with

§=n=ki-

{:/7:]0(

[ 2 2
£ wy = 1,49k | p n P,
2 2p \] qzkz 2n+1)\ 22

kgrn+1) +p?) _
p(n+1)

_@g+a’),

2a

=l
uz (x,8) = [%—%tanh [—l]] ;[%[%tanh [%UJB ]

11 a,) 1 a
=— ——tanh| =& | -—coth| =
2 4an[8§j 4% [s‘tj

Our Solutions
i). Equation (45) and (14) with

_kgr(n )’ +p?)
p(n+1)

2 2\
1 gk | p n D
uy =| —+-— coth n
N ) 2p\/q2k2 (2(n+1)\/q2k2
iii) Equation (44) and (14) with

§=n=kx

_kgran+?+p?)
p(n+1)

S

=kx
d p(n+1)
1

= l+q— pz tanh pz

: 2 zp\jqzkz 2(n+1)\jq2k2

Beside the above table, we found some new exact traveling
wave solutions, such as, up, U, o, Ui, T, o,
u23_u211 ’ u214_u225 ’ u33_u311 > u314_u325

which are not being revealed in the previous literatures.

5. Conclusions

In this article, we apply the improved (G'/ G) -expansion
method where G satisfies the second-order nonlinear
ordinary differential equation to generate more general
solution and a rich class of new exact traveling wave
solutions of nonlinear PDE, namely, the generalized Burgers-
Fisher equation. As result we obtained more general solution
and many new exact traveling wave solutions compared to

the result obtained by the improved (G Y G) -expansion
method and the basic (G'/ G) -expansion method where G
satisfies the second-order linear ordinary differential
equation. The presented solutions may express a variety of
new features of waves. Moreover, the obtained exact
solutions reveal that the improved (G'/ G) -expansion
method with the second-order nonlinear ordinary differential
equation is a promising mathematical tool, because, it can
establish abundant new traveling wave solutions with
different physical structures. Subsequently, the used method
could lead to construct many new traveling wave solutions
for various nonlinear PDEs which frequently arise in
scientific real time application fields.

Appendix
when Q = A= 4u(v=1) > 0and Av=1) # O(or p(v=1) # 0)
Uy (x,0) = = z(vl— 5 (/1 ++/Q tanh Gx/ﬁnj]
Uy (x,1) = - 2(v1— 5 (/1 ++/Q coth [;\/5/7]]
Uy (x,0) = = ST [/1 +J/Q (tanh(% JOn) tisec h(% Jﬁn)D
y (x,6) = —— 5 [/1 N/ (coth(%\/aﬂ) x csch(%\/aﬂ)j]
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us (x,1) = ( ? (2/1 +J/Q [tanh(—f /7)+coth(—x/7 q))ﬁ
(v-1

ug(x [):; -1+ \/m A\/acosh(\/_fy)
o 2(v-1) Asinh(/Qn) +B

1 +./Q(A4% + B?) + 4JQ cosh(Qr7)
u7(x,t)=2— -A- -
(v-1) Asinh(x/Qn)+B

where A and B are non-zero constants.

e (f) = —243/Q cosh(1/24/Q)
’ \/—s1nh(x/—)+/]cosh(1/2\/—)

2p/Qsinh((1/2)VQ)
\/acosh(\/a)—Asmh( 1/2) )

Uy (x,1) =

—2,[1\/6005}1((1 /2 \/5)
JQsin(/Q) + 4 cosh((1/2)\/6)+i\/§

uy(x,1) =

2/Qsinh((1/2)Q)
JQ cosh(/Q) - A s1nh((1/2)\/5) +/Q

u (x,t) =

when Q = A —4u(v-1)<0and A(v-1) 2 O(or u(v—1) # 0)

U, (x,t) =

! [—/1+ -Q tan[l\/zﬂjj
2(v-1) 2

u3(x,0) =

1
201 [—/\ +/-Q CO{EEOD

U (x,t) =

[—/] +/-Q (tan(%ﬁ/]) * sec(% \/517)

1
2(v-1)

us(x,t)=—

)
)
)( 24 +/-Q (tan(—ﬁq)mot(—ﬁn)n

. +/-Q(4% - B%) - AV-Q cos(ﬁq)]

= -
u17(x,l) 2(\}_1)[ As]n(ﬁ[])+B

1 [_/] _2-Q(4°-B) +AJ§cos(ﬁn)]

2(v-1) Asin(/-Qn7) +B

(/1 E(cot(— \/5/7) tcs c(—@/]}

2(v— 1)

Uy (x,1) = T

ug(x,t) =

where A and B are non-zero constants and satisfy the condition A -B*>0
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—Zﬂﬁ cos(l/ 2\/5)

mcos(x/z)—/i sin((1/2)x/5)
1/2)v-0)

(
(172)v=a) V-0
2p-Qsin((1/2)v-Q)

ﬁcos(ﬁ)—) sin((l/Z)@)iﬁ

Ak

(v=1)(k +cosh(A77) = Asinh (A77))

cosh(A77) + Asinh (/117)

uo(x,1) = J=Q sin(+/-Q) + Acos(1/24/-Q)
2=Qsin((1/2)v-Q)
Uy (X,1) =
_2/1\/5005(

1) =
Uy (x,1) J=Q sin(=Q) + A cos
Uy (x%,1) =

when £=0and A(v=1)#0
l/l23(-x:t) ==
M24(-x7t) ==

where k is an arbitrary constant.
when (v=1)#Z0and £=1=0

Uys(x,1) ==
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