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Abstract: The fully developed free convection flow in a vertical slot with open to capped ends discussed by Weidman [5] 

and Magyari [6] is scrutinized in this present work. Exact solution of momentum and energy equations under relevant 

boundary conditions as discussed in [5, 6] is obtained using the D’Alembert’s method. Numerical comparison of this present 

work is made with previous result of [6] and the results were justified using the well-known implicit finite difference method 

(IFDM); this gives an excellent comparison. During the course of numerical investigation, it is found that D’Alembert’s 

approach is a simpler, reliable and accurate tool for solving coupled equations. 
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1. Introduction 

Laminar flow between two differentially-heated vertical 

plates is a classical problem in free convection flow due to its 

applications in industrial and technological world. 

A lot of researchers have worked on fluid flow when 

both ends are capped as well as when both ends are 

opened. Batchelor [1] gives a detailed analysis of the 

conduction and convection regime flow whereas the 

analytical studies and experimental values of τ  were 

carried out by Elder [2]. Daniel [3] discussed a transition 

from the conductive to convective regime for closed 

cavities for flow with large Prandtl numbers. Bu�hler [4] 

reported a significant result of stable laminar convection 

in a tall slender cavity. For conduction regime flow, he 

proposed a generalized case by assuming the ends of the 

channel to be porous. 

Weidman [5] presented a convection regime flow in a 

vertical slot: continuum of solutions from capped to open 

ends and found that identical viscous and thermal boundary 

layer exist at the opposing walls when the cavity is capped. 

In addition, he concluded that as the flow evolves to one with 

open ends, there is intensification (attenuation) of the 

boundary layers near the hot (cold) walls. Furthermore, 

Magyari [6] revisited the work of Weidman [5] and presented 

another approach “normal modes” of solution to the coupled 

energy and momentum equations. The conduction regime is 

seen to correspond exactly with Weidman [5]. Other research 

articles related to the present student can be found in [7-9] 

The aim of this present work is to present an alternative 

approach (D’Alembert’s method) to derive exact solutions 

for the mathematical model presented in [5, 6]. The 

governing momentum and energy equations are solved 

exactly and the impact of all pertinent parameters are 

discussed with the aid of line graph. 

2. Mathematical Analysis 

This work is related to the recent works of Bu� hler [4], 

Weidman [5] and Magyari [6] in which they investigated the 

conduction [4] and the convection [5] regime of the free 

convection flow in a differentially heated tall vertical slot 

with open to capped ends. For the quasi-static transition from 

the open to the capped end situation, a continuum of 

solutions has been obtained for both cases. 

This present work makes use of D’Alembert’s approach 

used by Jha [10] to solve the same problem discussed in [5, 

6]. Following the model and assumptions presented by 
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Weidman and Magyari [5, 6], we have 

���
��� + Gθ = 0                                   (1) 

��

��� − EU = 0                     (2) 

Along with the boundary conditions [5, 6] 

U�− 1 2� � = 0, θ�−1 2� � = −�� 

U�1 2� � = 0, θ�1 2� � = 1 − ��                   (3) 

where E  and G are the Elder and Grashof numbers 

respectively defined by [5] as 

E = ���
��� = �� , ! = "#��$

��  and  = �
�� �⁄ = &

' 	)* = +
,- ./⁄  (4) 

In order to solve equations (1) and (2), we choose the 

D’Alembert’s method as discussed by Jha and Apere [10]. 

We multiply equation (1) by 0 and add it to equation (2) 

��12�3
4
��� − 1GAθ − EU4 = 0                     (5) 

Also the boundary conditions (equation 3) become 

AU�− 1 2� � + θ�−1 2� � = −�� 

AU�1 2� � + θ�1 2� � = 1−��                   (6) 

where 

A = 6/
-7                                           (7) 

The general solution of equation (5) with boundary 

conditions (6) is 

AU + θ = 89:;√-7�=3* >� �?
89:(√-7) − BCDE8�=√-7�

DE8F√-7 >� G           (8) 

From equation (7), we have 

A> = − /
-                              (9) 

The roots of equation (9) are 

A*, 0> = ±JK/
-                          (10) 

Replacing A with A* and A> one after the other in equation 

(8), we obtained 

A*U + θ = 89:;LM�=3* >� �?
89:(LM) − BCDE8(=LM)

DE8;LM >� ?            (11) 

A>U + θ = 89:;L��=3* >� �?
89:(L�) − BCDE8(=L�)

DE8;L� >� ?            (12) 

where 

δ* = ,!0* and δ> = ,!0>                (13) 

Solving equations (11) and (12) simultaneously gives the 

velocity and temperature distributions respectively as: 

U(Y) = *
7M67� P

89:;LM�=3* >� �?
89:(LM) − 89:;L��=3* >� �?

89:(L�) + �� Q DE8(=L�)
DE8;L� >� ? −

DE8(=LM)
DE8;LM >� ?RS                       (14) 

�(T) = *
7�67M P0>

89:;LM�=3* >� �?
89:(LM) − 0*

89:;L��=3* >� �?
89:(L�) +

�� Q0* DE8(=L�)
DE8;L� >� ? − 0> DE8(=LM)

DE8;LM >� ?RS         (15) 

If U = 0 from Eq. (10), then 0* = 0> = V* = V> = 0    (16) 

Then the solution of equation (2) with boundary conditions 

(3) becomes 

�(T) = ;*> − ��? + T                    (17) 

Substituting equation (17) into (1) and applying boundary 

conditions (3), we have: 

U(Y) = -
W ;*. − T>? XT + 3 ;*> − ��?Z           (18) 

Equations (17) and (18) above give the conduction regime 

solution which is exactly the same as presented by Weidman 

and Magyari [5, 6] respectively. 

3. Results and Discussion 

In order to verify the accuracy of the present method, 

we obtained numerical values of equations (14) and (15), 

compare it with the solutions of Magyari [6] and then use 

the well-known implicit finite difference method (IFDM) 

to justify the results. This study has been performed over 

the reasonable range of 0 ≤ �� ≤ 1 2⁄ . The selected 

reference values of �� = 0  corresponds to the open slot 

while �� = 1 2⁄  to capped slot, the aspect ratio \ = 20 at ! = 1.0 × 10W  and _ = 0.5  to determine   from equation 

(4) for the present analysis as given in [5, 6]. Tables 1 and 

2 compare velocity and temperature profiles of the present 

work with those of Magyari [6] and IFDM for atmospheric 

air (�� = 0.72)  and water (�� = 8.1)  respectively. It is 

observed that the numerical values of both methods are 

exactly the same for both velocity and temperature 

profiles while the IFDM validates the results. For (c > 0), 
the velocity is seen to decrease with increase in �� but the 

reverse result is noticed for (c ≤ 0). The reversed result is 

observed for temperature profiles of atmospheric air (�� = 0.72) . On the other hand, for water (�� = 8.1) , 

velocity as well as temperature is seen to increase with 

increase in �� for (c ≠ 0). 
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Table 1. Numerical comparisons of velocity profiles and temperature distributions of Magyari [6] and present work (D’Alembert) for atmospheric air (�� =0.72). 
   Velocity profiles  Temperature distributions fg h i(h)1j4 i(h) present work i(h)	klmn f(h)1j4 f(h) present work f(h)	klmn 

0	 −0.2	 −12.44124 −12.44124 −12.5478 0.002767 0.002767 0.002711 0	0.2 

−101.2117	403.7874 

−101.2117	403.7874 

−99.6343	404.3022 

−0.009642	−0.066382 

−0.009642	−0.066382 

−0.009678	−0.065722 

0.1	 −0.2	 −51.5759 −51.5759 −51.7233 0.009129 0.009129 0.009012 0 −80.9694 −80.9694 −79.7074 −0.007714 −0.007714 −0.007743 0.2 364.6528 364.6528 365.1269 −0.066382 −0.066382 −0.059421 

0.2	 −0.2	 −90.7105 −90.7105 −90.8988 0.015490 0.015490 0.0153 0 −60.7270 −60.7270 −59.7807 −0.005785 −0.005785 −0.005807 0.2 325.5181 325.5181 325.9514 −0.053659 −0.053659 −0.05312 

0.3	 −0.2	 −129.8451 −129.8451 −130.0742 0.021852 0.021852 0.02161 0 −40.4847 −40.4847 −39.8538 −0.003857 −0.003857 −0.003871 0.2 286.3835 286.3835 286.7760 −0.053659 −0.053659 −0.04682 

0.4	 −0.2	 −168.9797 −168.9797 −169.2497 0.028213 0.028213 0.027915 0 −20.2423 −20.2423 −19.9268 −0.001928 −0.001928 −0.001936 0.2 247.2489 247.2489 247.6006 −0.040936 −0.040936 −0.040518 

0.5	 −0.2	 −208.1143 −208.1143 −208.4253 0.034575 0.034575 0.034216 0 0 0 0 0 0 0 0.2 208.1143 208.1143 208.4250 −0.034575 −0.034575 −0.034217 

Table 2. Numerical comparisons of velocity profiles and temperature distributions of Magyari [6] and present work (D’Alembert) for water(�� = 8.1). 
   Velocity profiles  Temperature distributions fg h i(h)1j4 i(h) present work i(h)	klmn f(h)1j4 f(h) present work f(h)	klmn 

0	 −0.2	 −0.0538 −0.0538 −0.0475 −0.000013 −0.000013 −0.000014 0 1.1529 1.1529 1.0662 0.000192 0.000192 0.000209 0.2 −24.1320 −24.1320 −23.1604 −0.002342 −0.002342 −0.002626 

0.1	 −0.2	 2.3647 2.3647 2.2733 0.000222 0.000222 0.000250 0 0.9223 0.9223 0.8530 0.000153 0.000153 0.000167 0.2 −21.7134 −21.7134 −20.8396 −0.002106 −0.002106 −0.002362 

0.2	 −0.2	 4.7833 4.7833 4.5941 0.000458 0.000458 0.000514 0 0.6917 0.6917 0.6297 0.000115 0.000115 0.000126 0.2 −19.2948 −19.2948 −18.5188 −0.001871 −0.001871 −0.002098 

0.3	 −0.2	 7.2019 7.2019 6.9149 0.000693 0.000693 0.000778 0 0.4612 0.4612 0.4265 0.000077 0.000077 0.000084 0.2 −16.8762 −16.8762 −16.1980 −0.001635 −0.001635 −0.001834 

0.4	 −0.2	 9.6205 9.6205 9.2357 0.000929 0.000929 0.001042 0 0.2306 0.2306 0.2132 0.000038 0.000038 0.000042 0.2 −14.4576 −14.4576 −13.8772 −0.001399 −0.001399 −0.001570 

0.5	 −0.2	 12.0391 12.0391 11.5565 0.001164 0.001164 0.001306 0 0 0 0 0 0 0 0.2 −12.0391 −12.0391 −11.5565 −0.001164 −0.001164 −0.001306 

 
Figure 1 presents temperature distributions at different 

values of reference temperature (��)  for fixed value of �� = 0.72. It is observed that temperature decrease along 

both walls with increase in variation of reference 

temperature. Also, it is evident that the temperature of the 

open slot is seen to be higher than capped slot. Similar result 

is also noticed in Figure 3 when Prandtl number is fixed at �� = 8.1. In addition, the center of the channel in Figures 3 

and 4 for temperature and velocity of water respectively is 

seen to be independent on the value of reference temperature (��). 
Figures 2 and 4 depict velocity profiles at different values 

of reference temperature for fixed values of �� = 0.72 and 8.1 respectively. It is found that there exist reverse flow at 

the hot wall and the maximum velocity is attained when �� = 0  which corresponds to open slot. This is true 

physically since the barrier to the flow is removed. In 

addition, this reverse flow is seen to be dependent on 

reference temperature	(��). Finally, two points of inflexions 

are observed in each Figures 1 − 4 , at these points, the 

temperature distributions as well as the velocity profiles is 

independent on the reference temperature	(��). 

 

Figure 1. Temperature distribution versus T  at different values of ��  for �� = 0.72. 
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Figure 2. Velocity profiles versus T at different values of �� for �� = 0.72. 

 

Figure 3. Temperature distributions versus T at different values of �� for �� = 8.1. 

 

Figure 4. Velocity profiles versus T at different values of �� for �� = 8.1. 

4. Conclusions 

Fully developed free convection flow in a vertical slot with 
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with the use of D’Alembert approach. Based on the 

numerical values obtained from the exact solutions, we draw 

the following conclusions: 

1. D’Alembert method is a reliable, simple and accurate 

method of solution. This is based on the exactness of the 

numerical comparison in table 1 and 2 with Magyari [6]. The 

graphs plotted are also seen to be exact with figures 2 and 3 

of Weidman [5]. 

2. As an accuracy check on the proposed method of 

solution, the conductive regime solution of equation (17) and 

(18) is seen to be exactly the same with Weidman [5] and 

Magyari [6]. Also, the numerical value of implicit finite 

difference method (IFDM) result is seen to be close to the 

exact solution. 

List of Symbols 

\ aspect ratio r gap width U Elder number 

g gravitational constant s cavity height t fluid pressure �� Prandtl number ) dimensionless velocity T dimensionless coordinate 

Greek Symbols 

u vertical temperature gradient v thermal expansion coefficient ∆x temperature contrast � dimensionless temperature �� continuous variation of the reference temperature y thermal diffusivity z absolute viscosity { kinematic viscosity | fluid density   dimensionless vertical temperature gradient 
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