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Abstract: In this paper we study the one-sided Hausdorff distance between the Heaviside function and some transmuted 

activation functions. Precise upper and lower bounds for the Hausdorff distance have been obtained. Numerical examples are 

presented throughout the paper using the computer algebra system MATHEMATICA. The results can be successfully used in the 

field of applied insurance mathematics. 
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1. Introduction and Preliminaries 

In this paper we discuss some computational and 

approximation issues related to several classes of transmuted 

activation functions. 

Sigmoidal functions find numerous applications in various 

fields related to Life sciences, chemistry, physics, artificial 

intelligence, signal processes, pattern recognition, machine 

learning, demography, economics, probability, financial 

mathematics, statistics, fuzzy set theory, etc. 

The following are common examples of activation 

functions [2]: 
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Sigmoidal functions (are also known as “activation 

functions”) find multiple applications to neural networks [9], 

[10], [11], [12], [13], [2]. 

Definition 1. Define the Heaviside step function as: 

                        (1) 

About approximation of the Heaviside step function by 

some cumulative distribution functions, see [14]. 

Definition 2. The arctan activation function (sigmoidal 

Cauchy cumulative distribution function)  is defined for 

 by [1]: 

                    (2) 

Definition 3. A random variable  is said to have a 

transmuted distribution if its cumulative distribution function 

(cdf) is given by [3], [4]: 
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where  is the cdf of the base distribution. 

Definition 4. The Hausdorff distance  between two 

interval functions  on , is the distance between 

their completed graphs  and  considered as closed 

subsets of  [5], [6], [7]. 

More precisely, we have 
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wherein  is any norm in , e. g. the maximum norm 

; hence the distance between 

the points ,  in  is 

. 

In this work we prove estimates for the one–sided 

Hausdorff approximation of the Heaviside function by 

transmuted Cauchy function. 

The results are relevant for applied insurance mathematics 

[14]. 

The transmuted Cauchy distribution function has been used 

also in the analysis of extreme values. 

Let us point out that the Hausdorff distance is a natural 

measuring criteria for the approximation of bounded 

discontinuous functions [7], [8]. 

Definition 5. Consider the following transmuted Cauchy 

function 
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where . 

 

Figure 1. Approximation of the Heaviside function by transmuted Cauchy 

function for the following data: , ; Hausdorff distance 

. 

 

Figure 2. Approximation of the Heaviside function by transmuted Cauchy 

function for the following data: , ; Hausdorff distance 

. 

Approximation of the Heaviside function by transmuted 

Cauchy function for specific values of ,  and  can be 

seen on Fig. 1 and Fig. 2. 

2. Main Results 

We study the Hausdorff approximation  of the Heaviside 

function  by the transmuted Cauchy function (5) and look 

for an expression for the error of the best one–sided 

approximation. 

The following Theorem gives upper and lower bounds for 

: 

Theorem 2.1 For the Hausdorff distance  between the 

function  and the transmuted Cauchy function (5) the 

following inequalities hold for  and : 
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Proof. We need to express  in terms of  and . 

The Hausdorff distance  satisfies the relation 
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Consider the function 

 

In addition  and  is strictly monotonically 

increasing. 

By means of Taylor expansion we obtain 
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Hence  approximates  with  as  

(see Fig. 3). 

Further, for  and  we have 

 

This completes the proof of the theorem. 

 

Figure 3. The functions  and  for , . 

On Fig. 3 can be seen a good approximation of the function 

. 

Some computational examples using relations (6) are 

presented in Table 1. 

Table 1 shows that at fixed  and decreasing values of 

parameter , Hausdorff distance  is reduced. The reader 

can visualize that declining trend. 

Table 1. Bounds for  computed by (6) for various , . 

λ b d1 dr d from (7) 

0.18 0.2 0.135494 0.270829 0.251167 

0.001 0.2 0.128663 0.263831 0.228837 

0.1 0.1 0.0826817 0.20615 0.185118 

0.18 0.1 0.0850281 0.209575 0.198145 

The last column of Table 1 contains the values of  

computed by solving the nonlinear equation (7). 

The resulting "fork" to the root < <
l r

d d d  and particularly 

the assessment above are satisfactory. 

3. Conclusion 

New estimates for the Hausdorff distance between an 

interval Heviside step function and its best approximating 

transmuted Cauchy function are obtained. 

The assessment of the value of the best Hausdorff 

approximation is in close contact with many interesting 

problems in the field of mathematics in insurance - an 

assessment of the value of the achieved liability insurance - 

unfortunately at a slow pace, which is in unison with the law 

of diminishing marginal returns. 

In the present paper we do not consider transmuted 

cumulative distribution functions, such as the 

Raised–Cosine transmuted function: 
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Half–Cauchy transmuted function: 

 

Kumaraswamy–Half–Cauchy transmuted function: 
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Hyperbolic–Secant transmuted function: 

 

where . 

Based on the methodology proposed in the present note, the 

reader may formulate the corresponding approximation 

problems on his/her own. 

The Hausdorff approximation of the interval step function 

by the logistic and other sigmoid functions is discussed from 

various approximation, computational and modelling aspects 

in [15]–[25]. 

4. Remarks 

Definition 6. The cut function  on  is 

defined for  by 
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Definition 7. The smooth sigmoid raised-cosine cumulative 

distribution function (SRCCDF.cdf)  is defined for 

, ,  by: 

        (8) 

Approximation of the cut function by (SRCCDF.cdf) 

. 

Note that the function (8) has an inflection at its ”centre” 

 and its slope at  is equal to . 

On Fig. 4 can be seen the cut and (SRCCDF.cdf) for 

specific concrete values of ,γ δ  and b . 

The following Theorem is valid. 

Theorem. The function  with  is the 

SRCCDF.cdf function of best Hausdorff one-side 

approximation to function  and for H-distance  the 

following holds for : 

 

The proof of the Theorem follows the ideas given in this 

paper and will be omitted. 

 

Figure 4. The cut and (SRCCDF.cdf) for , . 

Considering this interesting result, the reader may 

formulate and explore the generalized transmuted cumulative 

distribution functions of the above functions -  

and . 

As an example, 
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