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Abstract: In this paper, we consider the NP-hard problem of finding the metric dimension of graphs. A set of vertices B of a 
connected graph G = (V, E) resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B. 
The cardinality of the smallest resolving set of G is the metric dimension of G. The metric dimension problem arises in several 
different fields, such as robot navigation, telecommunication, and geographical routing protocol. The slime mould algorithm 
(SMA) is an efficient population-based optimizer based on the oscillation mode of slime mould in nature. The SMA has a 
specific mathematical model and very competitive results, along with fast convergence for many problems, particularly in real-
world cases. SMA has good exploration and exploitation abilities for solving optimization problems. However, complex and 
high-dimensional SMA may fall into local optimal regions. SA is a very preferable technique among the other heuristic 
approaches as it provides practical randomness in the search to avoid the local extreme points. However, SA involves a trade-
off between computing time and solution sensitivity. The SA is used to enhance the fitness of the best agent if it falls in a 
suboptimal region, which will lead to the enhancement of all individuals. We solve the problem as integer linear programming 
and introduce the hybrid algorithm SMA-SA, which combines simulated annealing SA and SMA for determining the metric 
dimension of graphs. Comparisons were performed on the graphs: k-home chain graph, tadpole graph, alternate triangular 
snake graph, and mirror graph. Finally, computational results and comparisons with pure SA, SMA, and PSO algorithms 
confirm the effectiveness of the proposed SMA-SA for solving metric dimension problem. 

Keywords: Mirror Graph, Metric Dimension, Simulated Annealing Algorithm, Slime Mould Algorithm 

 

1. Introduction 

Let G = (V, E) be a connected graph with a vertex set V 

and an edge set E. The distance between two vertices x,y∈V 
is the length of the shortest path between them and is 
indicated by d(x, y). Let B = {b1,b2,...,bk} be an ordered set of 
vertices of G, and let v be a vertex of G. The k−vector 

r(v|B) = (d (v,b1), d(v,b2),...,d(v, bk)) 

is the metric representation of v with respect to B. If vi � vj, 
then r(vi|B) � r(vj|B), B is called a locating set or resolving 
set of G [1]. Let Card (X) denote the cardinality of a set X. 
The metric dimension Md of G is defined as [2], 

Md (G) = min {Card (B): B is a resolving set of G}. 

Let D = [dij] be the distance matrix of G, dij = d(vi,vj) for 1≤ 
i, j ≤ n. For xi∈{0, 1}, 1 ≤ i ≤ n, the function  
F is defined by 

F(x1, x2.,......., xn) = x1 + x2 + ··· + xn. 

Minimizing F subject to the ��2� constraints 

��	
 � ��
�

+��	� � ����
�+............+��	� � ����
�	> 0 for 1 
≤ i < j ≤ n 

is equivalent to finding a basis in the sense that if 
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� , 	
�� ,......., 	
��  is a set of values for which F attains its 
minimum, then B={vi,	
	�=1}is a basis for G and conversely, 
if B={vi1, vi2,......., vin}is a basis for G and if we define	


�� � �1	if	s	 � 	 �� 	for	some	j	�1  j  k"0	$%&'()�*'	  

then F(

� ,	
�� ,.......,	
�� ) is a minimum subject to the given 
constraints. 

Example 1: Consider the graph G of Figure 1. The set 
B={v1,v2} is not a resolving set for G since r(v4|B) = r(v5|B)= 
(2,2). On the other hand, B1={v1,v4}is a resolving set for G 
since the representations for the vertices of G with respect to 
B1 are r(v1,B1) = (0,2), r(v2,B1) = (1,2), r(v3,B1) = (1,1), r(v4,B1) 
= (2,0), r(v5,B1) = (2,1). 

	 	

Figure 1. The graph G and its resolving graph R(G). 

The problem is represented by integer linear programming 
in example 1 as follows: 

Min z= x1+x2+x3+x4+x5 

s. t 
x1+x2 ≥ 1 
x1+ x3+x4+x5 ≥ 1 
x1+x2+ x4+x5 ≥ 1 
x1+x2+ x4+x5 ≥ 1 
x2+ x3+x4+x5 ≥ 1 
x1+x2+ x4+x5 ≥ 1 
x1+x2+ x4+x5 ≥ 1 
x1+x2+x3+x4 ≥ 1 
x1+x2+x3+ x5 ≥ 1 
x4+x5 ≥ 1 
x1, x2, x3, x4, x5 ≥ 0 
Assume that V is the vertex set of G and Vp is the 

collection of all +��, pairs of vertices of G. Let R(G) be the 
bipartite graph with the partite sets V and Vp such that x in V 
is connected to a pair {u, v} in Vp if and only if x resolves u 

and v in G. The resolving graph of G is known as R(G). The 
metric dimension of G is the minimum cardinality of a subset 
S of V such that the neighbourhood N(S) of S in R(G) is Vp. 

Assume that V = {v1, v2,..., v5} and Vp = {s1, s2,..., *+-., }. 
Let A = (aij) be the +/�, 0 5 matrix with 

aij =�1	�2	*	3� ∈ 4�5�6""	0	$%&'()�*'		  

for 1  �  +/�, and 1  7  5. 
Garey [3] has shown that it is an NP- complete problem to 

evaluate the metric dimension of an arbitrary graph. The 
metric dimension problem occurs in several different fields, 
such as robot navigation [4], telecommunication [5], and 

geographical routing protocols [6]. 
Metric dimension are determined theoretically for several 

graphs in the literature. Metaheuristic algorithms (MAs) have 
become prevalent in many applied disciplines in recent 
decades because of their higher performance and lower 
required computing capacity and time than deterministic 
algorithms in many optimization problems [7]. Only a few 
algorithms have been proposed to compute heuristically the 
metric dimension problem [8–11]. In [8], Kratica et al. have 
developed a genetic algorithm that can be tested on various 
types of graph instances to find the metric dimension of 
graphs. In [9], an algorithm has been proposed for 
determining the metric dimension of a graph. In [10], a 
variable neighborhood search approach has been proposed 
for tackling metric dimension and minimal doubly resolving 
set problems in order to enhance the current upper bounds. In 
[11], a particle swarm optimization has been proposed for 
solving metric dimension problem. 

Recently, the slime mould algorithm (SMA) has been 
proposed [12]. SMA is inspired by a unique slime mould, i e., 
Physarum polycephalum, which is an organism that can live 
freely as a single cell but can also form communicating 
aggregates while searching for food sources. Slime mould 
uses a population that is randomly distributed to begin its 
search for food. Once having identified a food concentration 
during the random search, the slime mould will approach and 
wrap the food and secrete enzymes to digest it while still 
maintaining some exploration ability to search for better food 
sources. To mimic the exploring and exploitation behaviours 
of slime mould. 

SMA has been applied to many applications, such as 
engineering problems [13], global optimization [14], wireless 
sensor networks [15], and optimal reactive power dispatch [16]. 

The SMA has several new features and a unique 
mathematical model that employs adaptive weights to 
simulate the process of creating positive and negative 
feedback on the propagation wave of slime mould based on a 
bio-oscillator to form the optimal path for connecting food 
with excellent exploratory ability and exploitation propensity. 
SMA solves the optimization problem by mimicking the 
foraging and movement behaviors of slime mould. It can 
successfully find a promising, optimal solution. However, it 
still has several drawbacks, including the inconsistent 
convergence speed because of being trapped in local minima, 
the imprecise search accuracy, and the inability to find a 
locally optimal solution when faced with difficult 
optimization problems. 

Simulated annealing is a popular local search meta-
heuristic capable of escaping from local optima. Its 
simplicity of implementation, convergence properties, and 
utilization of hill-climbing moves to avoid local optima. The 
SMA is integrated with the SA to flee from local optima 
because it can accept a worse solution based on probability. 
Moreover, the bitwise operations can increase the diversity of 
the population. Also, see more details in the literature [17-20]. 

In this paper, a new hybrid algorithm that combines both 
simulated annealing and the slime mould algorithm is 
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presented. The developed algorithm, which is called 
SMA_SA is used to solve the metric dimension problem and 
is compared with the original Slime Mould Algorithm (SMA), 
Simulated Annealing (SA), and Particle Swarm Algorithm 
(PSO). The developed approach achieves better results 
compared to other algorithms in terms of time and minimum 
resolving set. However, as with all optimizers, it may have a 
bit of slow convergence in high- dimensional problems. 

The paper is organized as follows: Section 2 includes the 
main features of SA. Section 3 explains SMA. 

Section 4 contains a hybrid SMA_SA for the metric 
dimension problem. In Section 5 contains results and 
discussions on graphs such as the k-home chain graph, the 
tadpole graph, the alternate triangular snake graph and the 
mirror graph. Finally, the work is concluded in Section 6. 

2. Simulated Annealing 

Simulated Annealing (SA) [21] is a global stochastic 
optimization technique which has been applied to a wide 
range of combinatorial optimization problems [22-28]. It is a 
variant of local search that enables for controlled upward 
movement acceptance. If the cost of a new solution is less 
than the cost of the present solution, the usual SA algorithm 
will adopt it. 

As can be seen, the SA has numerous elements, including 
a Problematic-oriented method. The creation of a suitable 
annealing algorithm is not easy, and it usually entails three 
steps: (1) neighborhood structure, (2) cost function and (3) 
cooling schedule. 

3. Slime Mould Algorithm 

The SMA [12] is similar to other swarm-based algorithms 
in that the individuals would spread out across the research 
domain and are directed towards the global optimum during 
iterations. The method of optimization would be divided into 
several steps, including initialization, searching and 
exploiting. 

3.1. The Initializing Procedure 

Individuals in swarms would be automatically and 
uniformly initialized all over the domain [LB, UB] 

x1= r1 (UB - LB) + LB                            (1) 

where r is a random number from the gauss distribution. For 
each parameter, such as population size, the maximum 
allowed iteration time maxIter and etc, all values should be 
initialized and optimized. 

3.2. The Iterations 

During the exploration and exploiting procedure, iterations 
would be carried out and the locations of each individual 
would be changed and oriented to the global optimum:  


9�% + 1" = ; (�. �<= − >=" + >=	(� < @	
A + 3A . BC. 
D�%" − 
E�%"F		(G 	< H		3I . 
	�%"	H ≤ 	(G ≤ 1	   (2) 

where 
i (t) and xi (t+1) denote the position in the current 
iteration of the i-th candidate in swarms t and next iteration 
t+1; (2 is another random number in Gauss distribution; z is a 
proportional number to randomly pick certain candidates as 
defaults to restart the initialization, z=0.03. 

In the current iteration, 
A(t) and 
B (t) are two randomly 
chosen candidates. 3a and 3b are two more random numbers in 
uniform distribution with intervals of [-a, a] and [-b, b] 
respectively. Here, a and b are two variables relating to the 
number of iterations and the maximum allowable iteration time: 

J = atanh �1 − 9OPQR9ST�	                    (3) 

b=	1 − 9OPQR9ST                         (4) 

Another proportional number for regulating the collection 
of branches is p, which is vital to the DF global best fitness 
value: 

p=%J�ℎ|V	W	XY|                             (5) 

Weights W is the most hard parameter, it is a matrix that 
can be calculated as follows: 

C�	�	" = Z[
\1 + (]. log �1 + A`Wa	A`Wb`	� 	c$���%�$�	

1 − (]. log �1 + A`Wa	A`Wb`	� 	$%ℎ'(	
	    (6) 

Where dY, )Y are the best and worst fitness values for all 
fitness values for all *� (i=1,2,…., n) and *� is the sort of all 
of the fitness values for each individual. 

si =sort(S)                                    (7) 

Algorithm 1 Pseudo-code of SMA 

Initialize the parameters popsize, e	J	
	_�	%	'	(	J	�	%	�	$	�	; 
 Initialize the positions of slime mould f� (� = 1,2, … , �);  
While (% ≤ eJ
_�%'(J�%�$�)  
       Calculate the fitness of all slime mould; 
       gH�J%' d'*%Y�%�'**, fd  
       Calculate the W by Eq. (6); 
For 'Jch search portion  
      gH�J%' H, 3d, 3c; 
     gH�J%' H$*�%�$�* dh EP. (2); 
 End For  
  % = % + 1; 
End While 
Return d'*%Y�%�'**, fd; 

4. SMA_SA Algorithm 

SA is a single-based algorithm which is used to enhance 
the leader position which will have a great impact to the 
whole generation. 
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4.1. Architecture of SMA_SA 

SMA has a good exploration and exploitation abilities in 
solving optimization problems. However, in complex and 
high-dimensional SMA may fall in local optimal regions. To 
solve such a problem SMA algorithm is hybridized with SA. 
The SA is used to enhance the fitness of the best agent if it 
falls in suboptimal region which will lead to the enhancement 
of all individuals. The pseudo code of this algorithm is given 
in Alg. 2. 

Algorithm 2 Pseudo-code of SMA_SA  

Initialize the parameters popsize, SMAeJ
_�%'(J�%�$�, 
SAMax_iteration, Number of vertices; 

Create an initial generation in which each candidate 
represent a feasible resolving set 

Initialize the positions of slime mould f� (� = 1,2, … , �);  
While (% ≤ SMAeJ
 _	�	%	'	(	J	�	%	�	$	�	)  
       Calculate the fitness of all slime mould; 
       gH�J%' d'*%Y�%�'**, fd  
       Calculate the W by Eq. (6); 
For 'Jch search portion  
      gH�J%' H, 3d, 3c; 
     gH�J%' H$*�%�$�* dh EP. (2); 
 End For %1=0 
While (%1 ≤ SAeJ
 _�%'(J�%�$�) 
Update best agent using SA algorithm. 
End While 
  % = % + 1;  
End While  
Return d'*%Y�%�'** (the minimum resolving set); 

4.2. The Hybrid SMA_SA 

In this section, the SMA will be combined with the SA to 
solve the metric dimension problem, where the SA is used to 
pay attention to the best so-far regions obtained by the SMA. 

Specifically, SMA is applied at the outset to use up its 
exploration capability within the first half of the iteration for 
searching the search space. SA then starts to pay attention to 
searching for a better solution using the high-ability of SA 
that will exploit around the best-so-far if the distance 
between the fitness value of the current solution and the best-
so-far solution is more than particular value created randomly. 

Otherwise, we propose a hybrid algorithm SMA-SA is 
collaborative combination of the SMA and SA techniques. In 
this hybrid, firstly, SMA has many new features with a 
unique mathematical model that uses adaptive weights to 
simulate the mechanism of generating positive and negative 
feedback of the propagation wave of slime mould based on a 
bio-oscillator to form the optimal path for linking food with 
excellent exploratory ability and exploitation propensity. 
Secondly, the global minimum can be defined by the SA 
algorithm using stochastic searching technology from the 
means of probability and it assures that a global minimum 
can be found when the space of the parameter is sampled 
indefinitely many times during duration annealing. The SA is 
integrated with the slime Mould algorithm to flee from local 
optima because it can accept a worse solution based on a 
probability. In addition, the bitwise operations can increase 
the diversity in the population. Different and large dimension 
sizes of the datasets are used to study the feasibility of the 
proposed algorithm. 

 

Figure 2. SMA_SA. 
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5. Results and Discussions 

The metric dimension problem is an NP-hard 
combinatorial optimization problem with a solution space 
that grows exponentially with the problem dimension, It is 
generally solved using a heuristic technique. Heuristic 
techniques do not ensure that the best solution will be 
discovered, but they do provide good solutions for a variety 
of problems in a reasonable length of time. Generalized 
frameworks for producing heuristics, have lately gained 
popularity as a way to solve large combinatorial optimization 
problems. Metaheuristic techniques relies on two ideas to 
avoid being trapped in local minima: local search with 
globalization mechanisms and population search. We use 
certain metaheuristic algorithms to determine the metric 
dimension of some graphs in this section. 

5.1. Experimental Results 

In this section, we present the computational results on 
graphs such as k-home chain graph, tadpole graph, alternate 
triangular snake graph and mirror graph. Also, we show the 
superiority of a hybrid SMA_SA on the SMA, SA and PSO 
according to metric dimension. On the other hand, the 
proposed SMA_SA outperforms SMA, SA and PSO 
according to CPU time. 

All parameters setting of the all algorithms have been 

taken from the original papers. All algorithms tests were 
performed on a Windows 10 Pro 64-bit operating system; the 
processor was an Intel Core i5 running at 4 GB of RAM and 
the code was implemented in MATLAB 2018a. All 
experiments use the same number of iterations and the same 
criteria. 

Table 1. Parameter setting. 

Parameter Value 

Population size 30 
Number of iterations 500 
Number of runs 20 

1) The SMA_SA, SMA, SA and PSO have been run 20 
times for each graph and the results are summarized in 
Tabs 2–5. The tables are organized as follows: 

2) The columns contain the test the number of nodes N, 
edges M, metric dimension Md, the CPU time (t) used 
to indicate the exact metric dimension and iteration: the 
average number of iterations for finishing the 
algorithms to achieve best solution respectively. 

Tables 2-5: Comparison for SMA_SA, SMA, SA and PSO 
algorithms for computing the metric dimension of k-home 
chain graph, tadpole graph, alternate triangular snake graph 
and mirror graph. (N is the number of vertices). 

Table 2. Results on k-home chain graph. 

k-home chain graph 

N M 

SMA_SA SMA SA PSO 

Md t (sec) 
iteration 

(generation) 
Md t (sec) iteration Md t (sec) iteration Md t (sec) iteration 

5 6 2 0.03 1 2 0.2 1 2 0.5 1 2 0.39 1 
8 12 2 1.15 1 2 2.43 1 2 5.31 2 2 3.98 1 
11 18 2 3.27 2 2 6.33 5 2 10.99 13 2 7.15 3 
14 24 2 5.46 3 2 11.88 11 2 23.45 27 2 10.61 16 
17 30 2 8.74 3 2 19.69 23 3 45.32 59 2 22.17 13 
20 36 2 10.96 4 2 32.11 39 4 72.45 74 2 36.07 47 
23 42 2 37.93 5 2 24.25 44 5 222.78 96 3 54.25 52 
26 48 2 13.12 5 2 107.83 56 5 398.33 151 3 91.22 83 
29 54 2 29.77 7 2 98.34 63 6 536.92 192 3 112.76 127 
32 60 2 35.14 8 2 182.56 69 7 787.21 217 4 198.09 192 
35 66 2 44.9 11 2 221.67 85 8 856.8 281 4 312.15 135 
38 72 2 125.45 15 3 109.13 97 9 1111.67 303 4 454.28 109 
41 78 2 77.8 20 3 355.81 118 9 1321.44 327 5 579.03 173 
44 84 3 111.32 22 4 429.28 131 10 1643.28 363 6 765.89 145 
47 90 4 82.87 25 5 512.55 179 11 1986.75 395 6 833.52 209 

Table 3. Results on tadpole graph T3,M. 

Tadpole graph 

N M 

SMA_SA SMA SA PSO 

Md t (sec) 
iteration 

(generation) 
Md t (sec) iteration  Md t (sec) iteration  Md t(sec) iteration 

4 4 2 0.03 1 2 0.44 1 2 2.45 1 2 0.28 1 
5 5 2 0.09 1 2 2.7 1 2 5.12 1 2 3.95 2 
6 6 2 1.3 2 2 4.84 2 2 12.37 4 2 5.19 5 
7 7 2 1.66 2 2 6.98 2 2 23.88 11 2 8.06 8 
8 8 2 2.87 2 2 10.33 3 2 47.94 24 2 17.85 13 
9 9 2 4.93 3 2 19.64 4 2 81.36 42 2 29.03 6 
10 10 2 6.65 4 2 31.87 7 3 98.61 73 3 54.89 24 
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Tadpole graph 

N M 

SMA_SA SMA SA PSO 

Md t (sec) 
iteration 

(generation) 
Md t (sec) iteration  Md t (sec) iteration  Md t(sec) iteration 

11 11 2 8.12 4 2 38.11 19 3 135.42 98 3 49.63 51 
12 12 2 31.49 6 2 24.27 34 4 196.77 127 3 104.18 18 
13 13 2 15.11 6 3 79.65 52 5 248.35 151 3 163.32 74 
14 14 2 20.94 11 3 113.99 61 5 294.13 189 4 201.28 97 
15 15 2 78.39 12 3 47.32 75 6 361.71 214 4 219.11 110 
15 15 2 55.63 15 3 198.56 94 7 439.15 278 5 256.02 134 
16 16 3 36.32 21 4 252.17 69 8 491.18 319 5 337.24 171 
17 17 3 44.83 27 4 293.81 156 9 557.19 393 6 389.15 206 

Table 4. Results on alternate triangular snake graph. 

Alternate triangular snake graph 

N M 

SMA_SA SMA SA PSO 

Md t (sec) 
iteration 

(generation) 
Md t (sec) iteration Md t (sec) iteration Md t(sec) iteration 

3 3 2 0.02 1 2 0.15 1 2 4.18 1 2 2.83 1 
6 7 2 0.19 1 2 3.39 1 2 15.86 1 2 5.04 2 
9 11 2 5.71 2 2 10.45 3 2 61.93 6 2 14.59 5 
12 15 2 12.45 2 2 21.56 8 2 118.45 17 2 35.18 13 
15 19 2 29.53 3 2 27.14 17 2 193.82 29 2 28.13 10 
18 23 2 37.65 3 2 73.22 25 3 306.41 35 3 85.46 37 
21 27 2 42.11 5 2 106.49 34 4 445.15 69 3 103.15 43 
24 31 2 63.99 16 2 145.78 51 4 491.72 115 3 188.23 62 
27 35 2 89.67 7 3 181.99 73 5 618.11 154 4 224.17 28 
30 39 2 113.34 7 3 218.51 88 6 776.84 189 4 257.06 119 
33 43 2 99.72 10 3 276.64 112 7 929.71 213 5 391.42 138 
36 47 2 175.21 13 4 329.32 36 9 1087.56 287 5 459.13 91 
39 51 3 226.49 25 4 387.59 133 9 1419.75 316 6 563.01 152 
42 55 3 199.37 37 4 419.72 49 11 1502.39 342 6 699.84 197 
45 59 4 157.81 28 5 502.39 82 12 1803.72 376 7 791.32 163 

Table 5. Results on mirror graph. 

Mirror graph 

N M 
SMA_SA SMA SA PSO 

Md t (sec) iteration Md t (sec) iteration Md t (sec) iteration Md t (sec) iteration 

4 4 2 0.03 1 2 0.17 1 2 4.72 1 2 1.53 1 
6 7 2 0.14 1 2 3.26 1 2 23.12 1 2 4.72 3 
8 10 2 4.36 2 2 7.69 2 2 51.72 4 2 10.04 6 
10 13 2 12.98 2 2 10.31 3 2 109.37 11 2 27.19 2 
12 16 2 16.76 3 2 29.81 7 2 185.47 19 2 51.87 19 
14 19 2 35.43 14 2 52.97 32 2 296.11 28 2 94.15 25 
16 22 2 27.16 26 2 79.13 39 3 365.35 51 3 128.11 48 
18 25 2 61.79 31 2 101.75 54 4 461.19 103 4 199.02 71 
20 28 2 94.32 12 3 88.19 17 5 578.14 142 4 271.19 79 
22 31 2 85.14 27 3 161.33 88 5 646.84 171 5 379.04 54 
24 34 2 142.87 42 3 117.38 53 6 829.59 199 5 447.25 123 
26 37 2 125.62 21 3 199.13 144 7 1017.21 248 6 431.08 168 
28 40 3 206.34 73 4 381.78 91 8 1325.52 301 6 495.63 191 
30 43 3 178.11 49 4 476.39 72 10 1502.23 324 7 682.54 218 
32 46 3 195.13 38 4 592.75 105 12 1701.38 352 8 723.84 246 

 

5.2. Comparison 

To further demonstrate the excellence of SMA_SA, we 
choose SMA, SA and PSO algorithms to conduct experiments 
under the same conditions and compared the results. 

The results on graphs are shown in Tables 2, 3, 4 and 5, 
which indicate that SMA_SA algorithm, outperforms other 
algorithms on graphs, reaching 82.87 sec in SMA_SA, 
512.55 sec in SMA, 1986.25 sec in SA and 833.52 in PSO 
for k-home chain graph, and 44.83 sec in SMA_SA, 293.81 

sec in SMA, 557.19 sec in SA and 389.15 in PSO for tadpole 
graph and 157.51 sec in SMA_SA, 502.39 sec in SMA, 
1803.73 sec in SA and 791.32 in PSO for alternate triangular 
snake graph and 195.13 sec in SMA_SA, 592.75 sec in SMA, 
1701.38 sec in SA and 723.84 in PSO for mirror graph. It 
proves the correctness and superiority of SMA_SA. 

Figures 2, 3, 4 and 5 show that the superiority of the proposed 
SMA_SA on the SMA, SA and PSO according to the metric 
dimension and CPU time. For example, the metric dimension 
for tadpole graph at N= 17 is 3, but it is 4, 9 and 6 by SMA_SA, 
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SMA, SA and PSO respectively. All figures show that the 
superiority of the proposed SMA_SA on the SMA, SA and PSO. 

 

Figure 3. Comparison between Md and t(sec) of SMA_SA, SMA, SA and 

PSO for computing the metric dimension of k-home chain graph. 

 

Figure 4. Comparison between Md and t(sec) of SMA_SA, SMA, SA and 

PSO for computing the metric dimension of tadpole graph. 

 

Figure 5. Comparison between Md and t(sec) of SMA_SA, SMA, SA and PSO 

for computing the metric dimension of alternate triangular snake graph. 

 

Figure 6. Comparison between Md and t(sec) of SMA_SA, SMA, SA and 

PSO for computing the metric dimension of mirror graph. 

6. Conclusion 

In this paper, we proposed a hybrid algorithm SMA-SA 
that combines SA with SMA for determining the metric 
dimension of graphs. The experimental results analysis with 
pure SMA, SA, and PSO algorithms confirms the 
effectiveness of the proposed algorithm SMA-SA, for solving 
metric dimension problem. 
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