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Abstract: Implication is an important logical connective in practically every propositional logic. In 1987, the so-called Fuzzy
implication algebras were introduced by Wu Wangming, then various interesting properties of FI-algebras and some subalgebra
of Fuzzy implication algebra, such as regular FI-algebras, commutative FI-algebras, Wd- FI-algebras, and other kinds of FI-
algebras were reported. The main aim of this article is to study Wd-fuzzy implication algebras which are subalgebra of fuzzy
implication algebras. We showed that Wd -fuzzy implication algebras are regular fuzzy implication algebras, but the inverse is
not true. The relations between Wd -fuzzy implication algebras and other fuzzy algebras are discussed. Properties and axiomatic
systems for Wd -fuzzy implication algebras are investigated. Furthermore, a few new results on Wd -fuzzy implication algebras
has been added.
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1. Introduction
In the past years, fuzzy algebras and their axiomatization

have become important topics in theoretical research and in
the applications of fuzzy logic. The implication connective
plays a crucial role in fuzzy logic and reasoning [2]. Recently,
some authors studied fuzzy implications from different
perspectives[16]. Naturally, it is meaningful investigating the
common properties of some important fuzzy implications used
in fuzzy logic. Consequentially, Professor Wu [1] introduced
a class of fuzzy implication algebras, FI-algebras for short, in
1990.

In the past two decades, some authors focused on FI-
algebras. Various interesting properties of FI-algebras [3-
5], regular FI-algebras [1,6,7], commutative FI-algebras [8],
Wd- FI -algebras [9], and other kinds of FI-algebras [10]
were reported, and some concepts of filter, ideal and fuzzy
filter of FI-algebras were proposed [1,11,12]. Relationships
between FI-algebra and BCK-algebra [13,14], MV-algebras
[15], Rough set algebras [16,17], and were partly investigated,
and FI-algebras were axiomatized [18]. In the recent work,
the relationship between these FI- algebras and several famous
fuzzy algebras were systematically discussed[3,19-24].

The organization of the paper is as follows: preliminary

notions and results are introduced in section 2; section 3
relationships between Wd -FI algebras and several classes
of important fuzzy algebras are discussed; Main properties
of Wd -FI algebras is included in section 4. Lastly, the
paper introduces several conclusions and pointers for further
research.

2. Preliminaries

In this section,we summarize some definitions and results
aboutWd -FI algebras,which will be used in the following
sections of the paper.

First, we recall some definitions and properties about Wd

-FI algebras.
Definition 2.1. (see [1]) Let X be a set with a binary

operation →, and 0 ∈ X . An fuzzy implication
algebra, shortly,FI-algebra is an algebra (X,→, 0) of
type(2,0)satisfying

(I1) x→ (y → z) = y → (x→ z);
(I2) (x→ y)→ ((y → z)→ (x→ z)) = 1;
(I3) x→ x = 1;
(I4) if x→ y = y → x = 1, then x = y;
(I5) 0→ z = 1, for all x, y, z ∈ X , where 1 = 0→ 0.
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Definition 2.2. (see [1]). A Hilbert fuzzy implication
algebra, shortly,HFI-algebra is an algebra (X,¡ú,0) of type(2,0)
which satisfies the following conditions for every x, y, z ∈ X:

(H1) x→ (y → x) = 1;
(H2) (x→ (y → z)→ ((x→ y)→ (x→ z)) = 1;
(H3) if 1→ x = 1, then x = 1;
(H4) if x→ y = y → x = 1, then x = y;
(H5) 0→ x = 1,
where 1 = 0→ 0.
On an FI-algebra X , one can define a binary relation ≤ and

operators C, T, S as follows.

x ≤ y ⇐⇒ x→ y = 1, x, y ∈ X; (1)
C(x) = x→ 0, x ∈ X; (2)
T (x, y) = C(x→ C(y)),

S(x, y) = C(x)→ y, x, y ∈ X. (3)

Usually, we also say that X is an FI-algebra for
convenience.

Obviously, the relation ”≤” is a partial ordering on X , i.e.,
the relation is reflexive, antisymmetric and transitive( see [1]).
In fuzzy logic, the property (1) is called the ordering property.

The operator ”C” defined in the above definition is a
negation on X , i.e., the operator is order-inverting and satisfies
C(0) = 1, and C(1) = 0. ”≤” and C are called the
partial ordering and the negation induced by the FI- algebra
X , respectively.

If an FI-algebra X form a lattice with respect to the partial
order ”≤”, then we called FI-lattice.

Definition 2.3. (see [1,3]). Let X be an FI-algebra.
(i) X is regular FI-algebra, or an RFI-algebra, if CC(x) =

x, for all x ∈ X .
(ii) X is commutative, or a CFI-algebra, if the binary

operation � defined by (3) is commutative, or the following
condition (I6) holds for all x, y ∈ x:

(I6) (x→ y)→ y = (y → x)→ x.
Then Wd - Fuzzy implication algebra is an algebra of type

(2,0). The notion was first formulated in 1996 by Deng and
some properties were obtained (see [9]). This notion was
originated from the motivation based on fuzzy implication
algebra introduced by Wu (see[1]).

Definition 2.4. (see [9]). A (2,0)-type algebra (X,→, 0) is a
Wd-Fuzzy implication algebra, shortly, Wd-FI algebra, if the
following conditions hold for all x, y, z ∈ X:

(W1) x→ (y → z) = y → (x→ z);
(W2) (x→ y)→ z = (z → y)→ x;
(W3) x→ x = 1;
(W4) if x→ y = y → x = 1, then x = y;
(W5) 0→ x = 1, where 1 = 0→ 0.
Example 1 Consider X = [0, 1], for every x, y ∈ X , defined

x → y = 1, then (X,→, 0) is a Wd-FI algebras. Example 2
Let X = {0, a, 1} be a finite set of distinct elements. We
define

→ 0 0 a 1
0 1 1 1
a 0 1 1
1 0 a 1

Then (X,→, 0) is a FI- algebra, but not Wd-FI algebras. In
fact, (1 → a) → 0 = a → 0 = 0, but (0 → a) → 1 = 1 →
1 = 1, so (W2)does not hold.

3. Relationships Between Wd -FI
Algebras and Two Classes of
Important Fuzzy Algebras

Lemma 3.1. Let (X,→, 0) is a Wd-FI algebra, then for any
x, y, z ∈ X , the following holds:

(W6) x→ 1 = 1, 1→ x = x, for all x ∈ X;
(W7) if x → y = 1, y → z = 1, then x → z = 1, for all

x, y, z ∈ X;
(W8) (x → y) → ((y → z) → (x → z)) = 1, for all

x, y, z ∈ X;
(W9) (x → y) → (x → z) = y → z, (x → z) → (y →

z) = y → x;
(W10) (x→ (y → z))→ ((x→ y)→ (x→ z)) = x.
Proof. (W6) Indeed x → 1 = x → (0 → x) = 0 → (x →

x) = 0⇒ 1 = 1. Thus, we have verified that x→ 1 = 1.
Besides, (1 → x) → x = (x → x) → 1 = 1 → 1 = 1,

x → (1 → x) = 1 → (x → x) = 1 → 1 = 1. that is
1→ x = x.

(W7) If x → y = 1, y → z = 1 holds, then x → z = 1 →
(x → z) = (x → y) → (x → z) = ((x → z) → y) → x =
((y → z) → x) → x = (1 → x) → x = x → x = 1, Thus,
x→ z = 1.

(W8) Indeed (x → y) → ((y → z) → (x → z)) = (y →
z) → ((x → y) → (x → z)) = (y → z) → (((x → z) →
y) → x) = (y → z) → (((y → z) → x) → x) = (y →
z) → ((x → x) → (y → z)) = (y → z) → (1 → (y →
z)) = (y → z) → (y → z) = 1. Hence, for all x, y, z ∈ X ,
(x→ y)→ ((y → z)→ (x→ z)) = 1.

The proof of (W9), (W10) is similar to previous ones.
Lemma 3.2. Any Wd -FI algebra must be an FI - algebra. but

the inverse is not true.
Proof. From the definition 2.3 and (3) of Lemma 3.1, it is

easy to see that any Wd -FI algebra must be an FI - algebra.
By example 2, Wd -FI algebra be an proper subalgebra of FI -
algebra, but FI algebra must be not Wd -FI algebra.

Theorem 3.1. Any Wd-FI algebra must be an RFI- algebra,
but the inverse is not true(see[9]).

We have see that Wd-FI algebra classes are subclasses of
RFI-algebras.

Theorem 3.2. Wd -FI algebra must be not CFI- algebra.
Proof. It is easy to proof that if x 6= y, then the condition

(I6) does not hold, i.e., suppose

(x→ y)→ y = (y → x)→ x,
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then clearly

(y → y)→ x = (x→ x)→ y.

Thus, we have x = y, which contradict to assertion.
Theorem 3.3. (see[9]) Relations between Wd -FI algebra and

HFI - algebra as following :
(1) If (X,→, 0) is a Wd -FI algebra such that, for all

x, y, z ∈ X ,

x→ (y → z) = (x→ y)→ (x→ z)

holds, then (X,→, 0) is a HFI-algebra.
(2) If (X,→, 0) is a HFI-algebra such that, for all x, y, z ∈

X ,
(x→ y)→ z = (z → y)→ x

holds, then (X,→, 0) is a Wd -FI algebra.

4. Main Properties of Wd -FI Algebras

On a Wd -FI algebra X , one define a binary relation ≤ as
follows, x ≤ y if and only if x→ y = 1, x, y ∈ X.

Obviously, the relation ”≤” is a partial ordering on X .
Theorem 4.1. Let X be a Wd -FI algebra, then exist a partial

ordering in X .
Proof. Indeed, ∀x, y ∈ X , x→ y = (1→ x)→ y = (y →

x) → 1 = 1. Thus, we have verified that x ≤ y. Therefore,
for any Wd-FI algebra must be exist a partial ordering in X .

Theorem 4.2. Let X be a Wd -FI algebra, and x, y, z ∈ X .
Then

(W11) If x ≤ y, then z → x ≤ z → y, y → z ≤ x→ z;
(W12) x ≤ CC(x);
(W13) CCC(x) = C(x);
(W14) C(x)→ y = C(y)→ x;
(W15) (Commutativity) T (x, y) = T (y, x), S(x, y) =

S(y, x);
(W16) (Associativity) T (T (x, y), z) = T (x, T (y, z)),

S(S(x, y), z) = S(x, S(y, z));
(W17) (Monotonicity) If x ≤ y, then T (x, z) ≤

T (y, z), S(x, Z) ≤ S(y, z);
(W18) (Identity) T (x, 1) = x, S(x, 0) = x;
(W19) (Duality) S(x, y) = C(T (C(x), C(y))), T (x, y) =

C(S(C(x), C(y)));
(W20) S(x,C(x)) = 1, S(x,C(x)) = 0;
(W21) x→ (y → z) = T (x, y)→ z;
(W22) T ((z → x), (z → y)) = z → T (x, y);
(W23) C(x→ y) = x.
Proof. (W16) T (T (x, y), z) = T (C(x → C(y)), z) =

C(C(x → C(y) → C(z)) = C(((x → C(y)) → 0) →
C(z)) = C((((x → C(y)) → 0) → (z → 0)) = C(z →
(x → C(y)) = C(x → (z → C(y))) = C(x → (z → (y →
0))) = C(x→ (y → (z → 0))) = T (x, T (y, z)).

Similarly, we have S(S(x, y), z) = S(x, S(y, z)).
(W17) Due to x ≤ y ⇔ x → y = 1, then for all

x, y, z ∈ X , it is C(x → C(z)) → C(y → C(z)) = ((x →
C(z)) → 0) → ((y → C(z)) → 0) = (y → C(z)) →

(x → C(z)) = x → y = 1. Hence, T (x, z) ≤ T (y, z).
S(x, Z) ≤ S(y, z). Similarly, we have S(x, z) ≤ S(y, z).

(W18) T (x, 1) = C(x → C(1)) = (x → C(1)) → 0 =
(0 → C(1)) → x = 1 → x = x. S(x, 0) = C(x) → 0 =
(x→ 0)→ 0 = (0→ 0)→ x = 1→ x = x.

(W19) C(T (C(x), C(y))) = C(C(C(x) → CC(y))) =
C(C(C(x) → y)) = C(C(x) → y) → 0 = (0 → 0) →
(C(x)→ y) = 1→ (C(x)→ y) = (C(x)→ y) = S(x, y);

C(S(C(x), C(y))) = C(S(C(x), C(y))) = C(CC(x) →
C(y)) = C(x→ C(y)) = T (x, y).

(W20) S(x,C(x)) = C(x) → C(x) = 1, T (x,C(x)) =
C(x→ CC(x)) = C(x→ x) = C(1) = 1→ 0 = 0.

(W21) T (x, y) → z = C(x → C(z)) → z = ((x →
C(y)) → 0) → z = ((x → (y → 0)) → 0) → z = (z →
0) → (x → (y → 0)) = x → ((z → 0) → (y → 0) = x →
(y → z).

(W22) T ((z → x), (z → y)) = C((z → x), C(z →
y)) = ((z → x) → ((z → y) → 0)) → 0 = z → x,
and z → T (x, y) = z → C(x → C(y)) = z → ((x → (y →
0))→ 0 = z → x.

(W23) C(x→ y) = (x→ y)→ 0 = (0→ y)→ x = 1→
x = x.

Theorem 4.3. Let X be a Wd -FI algebra, and x, y, z ∈ X .
Then 1 → x = x, (x → y) → z = (z → y) → x imply
x→ (y → z) = y → (x→ z).

Proof. x → (y → z) = (1 → x) → (y → z) = ((y →
z) → x) → 1 = ((x → z) → y) → 1 = (1 → y) → (x →
z) = y → (x→ z).

Hence, x→ (y → z) = y → (x→ z).
Theorem 4.4. A (2,0)-type algebra (X,→, 0) is a Wd-fuzzy

implication algebra if and only if it satisfies that
(W1

′
) (x→ y)→ z = (z → y)→ x;

(W2
′
) 1→ x = x;

(W3
′
) x→ x = 1;

(W4
′
) If x→ y = y → x = 1, then x = y;

(W5
′
) 0→ x = 1, where 1 = 0→ 0.

Proof. Immediate from theorem 4.2 and definition 2.3.
Condition (W3) and (W6) states that 1 are a logical unit and

the greatest element of Wd -FI algebra. Note that a logical
unit is always unique. We say that an Wd -FI algebra X has a
negation if X admits a smallest element 0 such that the map:
C : x 7→ C(x) is bijective, where C(x) = x→ 0.

For an Wd -FI algebra with negation, we define two binary
operation on X as follows: for any x, y ∈ X ,

x ⊥ y = C(x)→ y,

x>y = C(x→ C(y)).

Theorem 4.5. Let X be a Wd -FI algebra.Then for any
x, y, z ∈ X we have:
1)x⊥y = y⊥x, x>y = y>x;
2)(x⊥y)⊥z = x⊥(y⊥x), (x>y)>z = x>(y>x);
3)x⊥1 = 1, x>1 = x, x⊥0 = x;
4)x>C(x) = 0, x⊥C(x) = 1;
5)x⊥y = C(C(x)>C(y)), x>y = C(C(x)⊥C(y));
6)C(x)→ C(y) = y → x,C(x)→ y = C(y)→ x;
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Proof. 1) Applying (W2) and the definition of operator ⊥
,we have x⊥y = C(x) → y = (x → 0) → y = (y → 0) →
x = y⊥x. By (W1) and the definition of operator >,we can
obtain that x>y = C(x → C(y)) = (x → (y → 0)) → 0 =
(y → (x→ 0))→ 0 = C(y → C(x)) = y>x.

2) Using (W2) and the definition of operator ⊥, we get
(x⊥y)⊥z = C(x⊥y) → z = ((x → 0) → y) → z =
(z → 0)→ (x→ 0)→ y) = (x→ 0)→ ((x→ 0)→ y)) =
C(x)→ (C(z)→ y) = x⊥(z⊥y) = x⊥(y⊥z).

Similarly, (x>y)>z = C((x>y) → C(z)) = C(C(x →
C(y)) → (z → 0)) = c(((x → (y → 0)) → 0) → (z →
0) = C(((z → 0) → 0) → (x → (y → 0)) = C(z → (x →
(y → 0))),
x>(y>z) = x>(C(y → C(z)) = C(x → CC(y →

C(z))) = C(x → (y → (z → 0))) = C(x → (z → (y →
0))) = C(z → (x→ (y → 0))),

Hence, (x>y)>z = x>(y>z).
3) x⊥1 = C(x) → 1 = (x → 0) → 1 = (1 → 0) → x =

0→ x = 1,
x>1 = C(x → C(1)) = c(x → (1 → 0)) = C(x → 0) =

CC(x) = x,
x⊥0 = C(x) → 0 = (x → 0) → 0 = (0 → 0) → x =

1→ x = x.
4) x>C(x) = C(x → CC(x)) = C(x → x) = C(1) =

1→ 0 = 0,
x⊥C(x) = C(x)→ C(x) = 1;
5) C(C(x)>C(y)) = C(C(x) → CC(y))) = C(C(x) →

y))C(x)→ y = x⊥y, i.e.x>y = C(C(x)>C(y)),
C(C(x)⊥C(y)) = C(CC(x) → C(y)) = C(x →

C(y)) = x>y, i.e.x>y = C(C(x)⊥C(y));
6)By (W2), we have C(x) → C(y) = (x → 0) → (y →

0) = y → ((x→ 0)→ 0) = y → x and
C(x)→ y = (x→ 0)→ y = (y → 0)→ x = C(y)→ x.

5. Conclusion

The main aim of this article is to study Wd-fuzzy
implication algebras which are subalgebra of fuzzy implication
algebras. We showed that Wd -fuzzy implication algebras are
regular fuzzy implication algebras, but the inverse is not true.
The relations between Wd -fuzzy implication algebras and
other fuzzy algebras are discussed. Properties and axiomatic
systems for Wd -fuzzy implication algebras are investigated.
Furthermore, a few new results on Wd -fuzzy implication
algebras has been added, two new operations were introduced
in Wd -fuzzy implication algebras and some further properties
were given.

The work of this paper clearly suggests that Wd-fuzzy
implication algebras provide a fertile area for future research.
In future we will study the following topics:

(1) A HFI algebra form a Wd-fuzzy implication algebra
under what conditions?

(2) A RFI algebra form a Wd-fuzzy implication algebra
under what conditions?
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