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Abstract: The article discusses some of the mathematical results widely used in practice which contain the Riemann ζ-

function, and, at first glance, are in contradiction with common sense. A geometric approach is suggested, based on the concept 

of the curvature of space, in which is calculated an algorithm that specifies the representation of ζ-function as an infinite 

diverging series. The analysis is based on the use of Einstein equations to calculate the metric of curved space-time. The 

solution of the Einstein equations is a metric that has a singularity, like the metric in the vicinity of the black hole. The result 

can be interpreted in the spirit of a Turing machine that performs the proposed algorithm for calculating the sum of a divergent 

series. 
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1. Introduction 

Riemann ζ - function is an element of the mathematical 

apparatus, widely used in various areas of modern science: 

mathematics, physics, etc. The results expressed by the ζ-

function for humans dealing with them for the first time seem 

puzzling, although experts perceive them as firmly justified. 

To such results relates the formula representing ζ (-1) in the 

form of divergent series used, for example, in the string 

theory [1]: ( 1) 1 2 3 4 ... 1 /12ς − = + + + + = −  [2]. 

Although the theory of divergent series is sufficiently 

developed [3] nevertheless, it is interesting to try to give a 

different interpretation of known expressions. Typically, the 

sum of a divergent series is not computed, but is searching in 

another way, such as in the case of the known series [3]
1
 S = 

1 1 1 1 1 ..... 1 / 2− + − + − = . The results presented below can be 

interpreted as an attempt to find the sums of divergent series 

by the computational methods. For this purpose, the method 

of physical analogy was used that is often useful in practice, 

and which is confirmed in the present case. 

                                                             
1
 This result is received from the obvious relation S = 1 - S 

2. Physical Approach to Mathematical 

Problem 

Let us formulate a simple physical task - to calculate the 

distance which is gone by a particle for a time t, moving 

along a straight line with constant acceleration. 

Mathematically, the answer can be represented as a finite sum 
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The right side of the formula (1) coincides with the 

expression for the distance traveled by a particle moving with 

acceleration a = 1, the initial speed v0 = ½ and the initial 

position S0 = 0. The time t is assumed discrete and 

dimensionless. Let us restrict ourselves with only one value 

of time t = ∞. The answer is known and can be expressed 

with the help of above mention series: S(∞) = ζ(-1)=-1/12 [1, 

2]. From a mathematical point of view, it is true, because 

obtained by analytic continuation of the Riemann ζ-function 

on the value of the argument u = -1[2]:  
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However, it is neither obvious nor clear. The reason is that 

the value of ζ (-1) is represented by divergent series which 

does not have the sum in the usual sense, inherent in the 

concept of the sum of convergent series [3]. While the sum of 

the convergent series, which is understood as the limit of the 

partial sums of the series is intuitively clear for divergent 

series intuition fails to work and you have to attribute "for the 

word "sum" meaning which is different from the usual" [4]. 

But even agreeing to this extension of the definition, have to 

deal with the fact that different sums are ascribed for one and 

the same divergent series [3]. Other words, the value of the 

sum depends on the "context". Let’s try to give a geometric 

interpretation of the process of finding the "sum" of the 

divergent series and, thus, avoid some contradictions that still 

exist in this regard. 

Recall that the uniformly accelerated motion of the particle 

requires according to Newton's second law, that a constant 

force operates on the particle in the direction of its movement. 

This effect can be achieved by placing at the point x = 0 (the 

direction of movement of the particle is taken as the axis OX 

of our frame of reference) an infinite plane coincident with the 

plane YOZ, having a constant mass density σ. The 

gravitational potential of this plane is equal to (x) 2 Kxϕ = πσ , 

and the force acting on a unit point mass is equal to 

E 2 K= −∇ϕ = − πσ
 
and is directed along ОХ, K – is the 

gravitational constant. The expression for the space-time 

metric may be found from solving the Einstein's equations [5] 

4ik ik ik

1 8 K
R g R T

2 c

π− =                              (3) 

Here R – is the trace of the Ricci tensor R
i
k: R = R

i
i, gik – is 

the metric tensor; Tik - is the energy-momentum tensor; с – is 

the speed of light in vacuum; indices i, k have values 0, 1, 2, 

3. Let us write the expression for the interval 
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The standard notations for g00 and g11 are used [5]. The 

solution is very similar to the Schwarzschild solution of the 

problem of the finding the metric near a point mass [5]. The 

non-zero Christoffel symbols are the follows [5]: 
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The point means a derivative on ct, prime - on x
1
=x. For 

0x ≠  where Tik = 0 the equations (3) can be reduced to the 

equations Rik=0, which for R00 and R11 lead to a single 

equation 

e 0
2 2 2 2 2 2 2 2

ν−λ   ′′ ′ ′ ′ν ν ν λ  λ λ λ ν + − − + − =    
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and the equation for R01 is reduced to identity. Assuming λ = 

-ν, and all time derivatives equal zero, the last equation 

reduces to the form 

( ) 2
0′′ ′ν + ν =                                     (7) 

which has a solution e
ν
 = C1x+C2, С1,2 – are constants. Their 

appropriate choice gives the desired solution 

2

4 K
e 1 x

c

ν πσ
= +                             (8) 

considering the connection of the metric tensor component 

00
g  and the Newtonian potential φ[5]: 2

00
1 2 /= +g cϕ . Let 

write the final form of the interval 

1
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Spatial metric along the direction ОХ (dx=dy=0) is given 

by the expression 
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After integration we obtain the relationship between the 

coordinate x in the system of the remote observer and the 

distance l, passed by the particle, measured in its rest frame 

2

20

c 4 K
l l 1 x

2 K c

πσ= + +
πσ

                     (11) 

l0- is the integrating constant. From the formula (11) one 

can obtain the relationship between the lengths of the line 

segments traversed by the particle, measured in different 

systems 
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                         (12) 

3. The Solution of the Equations of 

Motion 

Let us treat the solutions of the equations of motion of the 

particle in question [5] 
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Given the nonzero Christoffel symbols 

,2/1

11

0

10

1

00
νΓΓΓ ′=−==  and the expression for the derivative 

c

ν xeν /−=′ , where Kπσcx
c

4/2=
 
we receive the system of t

wo equations 

0
1

0
1

2

0

2

02

2
0

2

2

2

2

=
+

+

=






++






−

ds

dx

ds

dx

xxds

xd

ds

dx

x

xx

ds

dx

xds

xd

c

c

c

c
     (14) 

The second equation in (14) is integrated and gives 
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B is a constant. After substitution (15) into the first equation i

n (14) it looks as follows 
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Equation (16) can be integrated once that leads to an expressi

on for the 4-speed (D - is a constant) 
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or in another form in variable x
0
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The constants of integration can be found comparing the 

expression of (18) with corresponding classical result. A 

classic case corresponds to x << xc. Expanding the right side 

of the (18) in x we receive the classical limit of (18)  
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It should be compared with the classical result following 

from the law of conservation of energy 
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x0 – is the value of х wherein the speed v = 0, signs “±” 

correspond to the cases x0 > 0 and x > 0 or to the opposite 

case, taking into account that xx ≥
0

. That last case we have 

to choose due to reasons which will be clear soon. So for the 

sign“-” we receive 

1−=
B

D
                                (21) 

Approach the massive particle to the point xc according to 

the formula (18) spends an infinite time from the point of 

view of a distant observer, as is seen in the Fig. 1: 

 

Fig. 1. Travelling time of the particle T versus coordinate q = x/xc. Solid line 

– coordinate time / cT ct x=  in the system of the distant observer received 

from the solution of (18). Ini- tial point q0 = -1.42 corresponds to the initial 

speed v0=-0,5.  

4. Algorithmic Analysis of the Result 

Let us analyze the resulting expression. In case of 0≠σ  

the observers in the different systems receives different 

values. Of particular interest is the case when 
2

c
x x c / 4 K→ = − πσ , and dl / dx → ∞ , although the value 

of l stays finite. This means that a moving particle while 

approaching the specified point xc on either side, in view of a 

distant observer will never achieves it. This is reminiscent of 

the behavior of a massive particle in the vicinity of a black 

hole, from the point of view of the distant observer. The 

value of xc is an analogue of the event horizon in the 

Schwarzschild problem. 

This makes it possible to remove the contradiction, 
enclosed in the formula (1). According to calculation of an 
observer

2
 moving with the particle, he pass increasingly 

larger segments of the path, while the remote observer 
believes he stands still and the resulting distance traveled by 
him stays finite. 

One can say that in the formula (1), the right side is a 
record of calculation algorithm which is performing by an 
observer or by a calculation device in its rest frame. The 
steps of the algorithm description look as follows:  

I. Take a segment of length 1. 
II. Take a segment of length 2 and attach it to the first 

segment. 
III. Follow this procedure infinitely, providing that length 

of the subsequent segment is greater the length of preceding 
one by 1. 

                                                             

2 The terminology adopted in physics is used to describe the activity on the 

measurement of some quantity. So, as has often been noted [6] between the 

processes of measurement and calculation is no fundamental difference, there is 

reason a person (computing device) that calculates algorithm to name him (it) an 

observer. 
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IV. Measure the length of the resulting segment. 
The final measurement is performed by the remote 

observer or device. From the standpoint of general relativity 
their results differ as described above, which explains the 
contradiction of the formula (1). The use of such "physical" 
approach implies that the numbers in the formula (1) are 
regarded as coordinate values in some different frames of 
references (coordinate maps) applied to the real numbers 
axis. 

5. Calculation the Sum of the Divergent 

Series 

As was mentioned earlier the sums of the divergent series 
in practice are not calculated but is found from the 
considerations of another kind [5]. Nevertheless we’ll try to 
calculate the sum S(∞) (1) with the help of formulas derived 
above. To this end, using the formula (18) we try to take into 
account the initial values for the acceleration a0 = a(0)=1, the 
velocity v0 = v(0) = ½ and the position S0 = S(0) = 0.  

It appears that the condition for the velocity cannot be 
satisfied for real x as seen from the Fig. 2  

 

Fig. 2. Velocity of the particle (18) in the system of the distant observer 

versus coordinate; ( ) (1 ) , /= + − = cV q q q q x x . 

Thus we slightly change our task and instead searching of 
the sum S(∞) (1) we will find an another sum S1(∞), where 
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It is obviously that S(∞)=S1(∞) +ζ(0)=S1(∞)-0,5 [2]. The 
initial values for the S1 are just the same as for the S except 
the value for the initial speed which looks as follows: v0 = -
½, and easily can be satisfied what gives the value for the q0 
=-1,42. 

The condition S10 = 0 means that the initial point should 
be placed at the point q0 = -1,42. Then the distance which has 
been travelled by a massive particle before its stop at point qc 
= x/xc = - 1 is equal to -1 – (-1,42) - 0,5 = -0,08 from the 
point of view of the distant observer. This coincides with the 
exact value for ζ(-1)=-0,0833(3) up to two decimal places, 
which is due to the finite precision of calculations (10

-3
). 

6. Analysis of the Equation (6) 

The described method can be used to find the sums of 

other divergent series related to the ζ-function. Consider the 

formula for the trivial zeros of the ζ-function 

0)2(
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where k – is a positive integer [2]. To apply the method 

described above, one should consider the motion of the 

calculating device along the OX-axis with the alternating 

acceleration. This, obviously, requires finding other solutions 

to the equation (6). Put (x) (t)ν = −λ = α + β . Equation (6) 

then reduces to the system of two equations (m is a parameter 

of the variables separation) 
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Their solutions look as follows 
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where C1,2 – are constants, and erf и erfi – probability 

integrals of a real and imaginary argument [7]. 
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7. Conclusions 

The result obtained can be interpreted in the spirit of the 

theory of relativity of A. Einstein if we treat the calculation 

as a physical process implemented by material bodies and 

displayed on the axis of real numbers, which serves as a 

space of one dimension. The transformation (11) make it 

possible to explain the results of the calculations with the 

Riemann ζ-function mentioned above and eliminate their 

contradiction with common sense. 

Riemann ζ- function for more than a century, is the focus 

of mathematicians all over the world in connection with 

attempts to prove the famous Riemann hypothesis [8] 

concerning its non-trivial zeroes. Numerous attempts both 

numerical [9] and theoretical [10, 11, 12] were made in order 

to prove or reject the Riemann hypothesis. 

The present work could shed new light to this problem. 

The used above physical objects can be interpreted in the 

spirit of a Turing machine that performs the above proposed 
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algorithm, assuming the read-write head has a mass and 

moving with the variable speed along the resting tape on 

which the result will be written and which is identified as the 

system of distant observer.  

An overview of the different versions of the relativistic 

Turing machine is given in the paper [13]. 

From the physical point of view, the result received above 

can be considered as yet another confirmation of the general 

theory of relativity, along with known experimental 

confirmations [14]. 
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