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Abstract: Frailty models provide an alternative to proportional hazards models, which are designed to discover the properties 

of the unobserved heterogeneity in individual risks of disease and death. In spite of this distribution of the frailty is normally 

assumed to be continuous. In some circumstances, it is appropriate to recollect discrete frailty distributions. Generally, Gamma, 

Weibull, Exponential, Lognormal, and Log-logistic baseline distributions have fitted with frailty distribution. The Xgamma 

distribution among a unique finite aggregate of exponential and gamma distribution and allowance for the different shapes of the 

hazard function. The study aims to fit the above four distributions with the Xgamma baseline distribution and apply them to test 

popular actual-lifestyles statistics set. The study result revealed that Xgamma with Positive Stable (PS) frailty model is a good 

choice for the Veterans' Administration Lung Cancer study data set and Xgamma with Log-Normal (LN) frailty model is the best 

fit for the Culling dairy heifer cow’s data set. Additionally, Xgamma identifies the baseline distribution with the lowest Akaike's 

Information Criteria (AIC) and Bayesian Information Criteria (BIC) values. The study result proved Xgamma distribution and its 

extended model for frailty distribution is the possible approach in a real-life time or survival analysis. 

Keywords: Xgamma Distribution, Hazard Function, Survival Analysis, Parametric Frailty Models,  

Marginal LOG-Likelihood, Clustered Data Analysis 

 

1. Introduction 

Survival analysis is the study of time-to-event data, 

estimating the time elapsed from a given starting time to the 

prevalence of an event of interest. The study of survival data is 

prevalent in the medical field. However, the researcher can’t 

usually examine the event due to censoring [1]. The event may 

be considered the time of death, recurrence or recovery from 

illness, and the onset (or) time of disease progression [2]. 

Furthermore, the learn population can be separated into 

clusters so that topics in the same cluster behave more 

cohesively than topics in different clusters [3]. 

Frailty models are becoming increasingly popular as a way 

to account for over-dispersion and/or clustering in survival 

data [4]. It is an extension of the proportional hazard model in 

which the hazard function is dependent on an unobserved 

random quantity, the so-called frailty, which operates 

multiplicatively on it [5-8]. The estimation of the frailty model 

can be parametric or semi-parametric including Gamma, 

Exponential, Lognormal, and Positive stable and Inverse 

Gaussian distribution [9]. In recent years, Lindley [10] and 

different baseline distributions have drawn the attention of 

researchers and practitioners in modeling time-to-event 

statistics units [11]. Similarly, Xgamma distribution is a 

mixture of exponential and gamma distribution with mixing 

proportion and was introduced by Subhradev Sen et. al. (2016) 

[12-13]. 

Therefore, in this article, we proposed a frailty model for 

Xgamma distribution and used them in two real-life data sets 

to compare the models. This is organized as follows. Section 2 

deals with the properties of the Xgamma distribution. Section 

3 discusses the frailty model and various frailty distributions 

with probability density function (PDF), Laplace transform (L 

(s)), and estimation of frailty distribution. Section 4, shows the 

applications of Xgamma distribution with frailty model for 

two real-life data sets and data analysis were applied in section 

5. Finally, concluding remarks are given in section 6. 
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2. Xgamma Distribution 

A continuous random variable X is called an Xgamma 

variant ie., �~����� (�), and its pdf is defined as 

�(�) = 
�
(��
) �1 + 
� ��� ��
�, � > 0, � > 0     (1) 

The corresponding cumulative density function (cdf) is 

given by 

�(�) = 1 − (��
�
����� ��)(��
) ��
�, � > 0, � > 0     (2) 

The Survival Properties of Xgamma distribution are 

defined by 

Sx(t)=1-Fx(t), 

therefore 

S(x) =  ��
�
����� ��!
(��
) ��
� , �"#�$%�& �      (3) 

The failure (hazard) rate function for continuous 

distribution with probability density function f(x), cumulative 

density function F(x), and survival function S(x) is defined as 

ℎ(�) = lim∆�→- .(/0��∆12 3�)∆� = 4(�)5(�)  

ℎ(�) = 
� ���1�� !
(��
�
����� ��) , � > 0          (4) 

where ℎ(0) = 
�
(��
) = �(0)  and h (x) is an increasing 

function in x and � with �� (1 + �) < ℎ(�) < �7  

The hazard function can be represented as the cumulative 

hazard function. Therefore, the cumulative hazard function of 

Xgamma distribution is 

8(�) = 9 ℎ(�):� = − log=>(?)@ ; Bℎ�#� ℎ(�) =�- −(CDEFG(�)C� )  

8(�) = −H"�>(�) = −log I(��
�
J� ��1�� !)
(��
)  ��
� K  

Solving this equation, we get 8(�) =  �� + log(1 + �) − (1 + � + �? + �
���
� �)  

To simplify further we get 

8(�) =  �� + log L  (�� 
)
M ��
� 
�� ��1�� !NO       (5) 

3. Frailty Models 

In the proportional hazard model, the response variable is 

the ‘Hazard’. The hazard is the chance of death given that 

patients have survived up to a given factor in time, or the risk 

for death at the second [2]. Most commonly, survival 

information is treated via the skill of the proportional hazard 

regression model [14]. However, the proper information based 

on such proportional hazard models requires a sample 

distribution that is independent and identical. However, in 

reality, subjects may expose to different risk levels. So, frailty, 

random effect, or unknown heterogeneity shout be multiple 

with baseline hazard. Hence frailties were essential considered 

in the analysis for more accurate results than normal survival 

analysis [7]. The frailty model is characterised in terms of 

conditional hazard as 

ℎPQ(�/BP) = ℎ-(�)BP exp= UPQV W@          (6) 

Here, $ ∈ Y = Z1,2 … … ]^  and _ ∈ P̀ = Z1,2 … … &P^ , 

where ℎ-(�)- is the baseline hazard function, BP  the frailty 

time in group i, UPQ  the vector of covariates for concern j in 

group i, and W the vector of regression coefficients. For the 

parametric approach, the Xgamma baseline hazard function ℎ-(�)(parametric function) and its parameter(�) are estimated 

together with regression coefficient ( W)  and frailty ( aP) 

parameters. 

3.1. Marginal Log-Likelihood and Laplace Transform 

In the parameter established, estimation is based on the 

marginal likelihood, with frailties built-in through common 

conditional probability with respect to the frailty distribution. 

Under the assumption of non-informative right-censoring and 

arbitrary variables for the censoring and survival times, given 

the covariate information, the marginal log-likelihood of the 

observed records BPQ = =aPQ,bPQ, �PQ@ [15-17]. 

The statement of difficulty _ ∈ c̀ = Z1,2,3, … &P^  from 

cluster $ ∈ Y = Z1,2,3, … ]^  is couple ePQ = =aPQ,bPQ@, 
where aPQ, = min (?PQ , gPQ)  is the minimum between the 

survival time ?PQ  and the censoring gPQ , and where bPQ = Y(?PQ ≤ gPQ) is the event indicator. Covariate facts may 

also have been collected; in this instance, ePQ = =aPQ,bPQ , �PQ@, 

where �PQ  is the vector of covariance for the ij-th 

observation. Furthermore, if left-truncation is present, the 

truncation time iPQ is collected in the vector T. 

jklmF(b, W, n;  B/i) = ∑ pq∑ bPQ(log �ℎ-=aPQ@� +rsQt�uPt�UPQV Wv + logw(−1)CsjCs=∑ 8-rPQt� =aPQ@ exp=UPQV W@@x −H"�wj=∑ 8-rPQt� =aPQ@ exp=UPQV W@@x        (7) 

Where :P = ∑ bPQrPQt�  the number of events in the i-th 

cluster, and j(y)(. ) the q-th derivative of the Laplace 

transformation [16] of the frailty distribution is described as 

j({) = |[�� ~(−BG)] = 9 exp (BP�- {)�(BP):BP , { ≥ 0.  (8) 

3.2. Estimation and Prediction 

To Estimates b, W �&: n are obtained by using optimizing 

the log-likelihood; this can be done without difficulty if one is 

capable of computing higher order derivatives j(y)(. )  of the 

Laplace transformation up to � = ���Z:1, :2 … . :]^ . 

Hence q-th derivate is given by equation (8) 
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jy({) = (−1)y|(By exp(−B{))      (9) 

The frailty term BP  can be predicted by B�� = |(�/UP , ic;  b�, W�, n�), where UP  and iP  are the data and truncation 

time of the i-th cluster, respectively [16, 17]. Therefore, 

conditional expectations become 

|(�/UP , ic; b, W, n) =− �=�s��@(∑ ��(��(�)�s ���� �s�� ��)�s����=�s@(∑ ��(��(�)�s ���� �s�� ��)�s��� , (10) 

3.3. Gamma Frailty 

A continuous random variable X that takes any 

non-negative values and it follows a Gamma distribution if its 

pdf of the form 

�(�) = 
����������� (��/
)�(�/
) , � > 0,  

and it’s denoted by �~��� ∗ (�). where �(. ) denotes the 

gamma function. It relates to the gamma distribution 

Gamma(µ, �). mean (µ)=1, and variance = �. 

The associate Laplace transformation is given by 

j({) = (1 + �{)���, { ≥ 0,  

and it is easy to show that, for q≥1, 

jy({) = (−1)y(1 + �{)�yw∏ (1 + H�y��Dt- x j({).  

Therefore, in Equation 7, we have 

log �(−1)yj(y)({)� = �� + �
� log(1 + �{) + ∑ log(1 +y��Dt-H�)                     (11) 

This analyses the close relationship between any two-event 

time from the same cluster [5] in the multivariate situation and 

can be computed as 

i = 

�� ∈ (0,1).  

3.4. Lognormal Frailty 

Let us consider that the continuous random variable X with 

scale parameter�, and lognormal frailty distribution LN* (�) 

has a density 

�(�) = (2��)��/���� exp p − (DEF�)�
�
 ¡¢ , � > 0   (12) 

If �~j£(�), subsequently, the closed form of the Laplace 

transform does not exist. Consequently 

jy({) = (−1)y 9 �y��~(−�{)�- �(�):�  

jy({) =(−1)y �√�¥
 9 �y��~(−�{) ���- ��~ �− ��
 (log (�)�� :�  

we have (s≥0) needs to be roughly estimated. The 

modification of the variable u=log(x) has allowed us to: 

jy({) =

(−1)y �√�¥
 9 (exp (¦))y��~(−exp (¦){) ����� ��~ �− §�
�
� :¦  

jy({) = (−1)y �√�¥
 9 ��~ p�¦ − exp(¦) { − §�
�
¢��� :¦  

Using the Laplace integral approximation, we can 

approximate this. Let 

�(¦; {, �) ≔ −�¦ + exp (− exp(¦) { + §�
�
  

�ˡ(¦; {, �) ≔ CFC§ (¦; {, �) = −� + exp(¦) { + §
  

�ˡˡ(¦; {, �) ≔ C�FC§� (¦; {, �) = exp(¦) { + �
 > 0  

To approximate g(.), the first three terms of its Tylor series 

expansion are used instead of û. 

�(¦; {, �) ≈�(û; {, �) + (¦ − û)�ˡ(¦; {, �) + (§�û)�
� �ˡˡ(¦; {, �)  

The value of û is chosen such that �ˡ(¦; {, �) = 0, such 

that jy({) can be approximated by 

jy({) ≈(−1)y �√�¥
 ��~Z−�(û; {, �)^  ∗
9 ��~ p− (§�û)�

� �ˡˡ(û; {, �)¢ :¦���   

= (−1)y �√
 ��~Z−�(û; {, �)^w�ˡˡ(û; {, �)x��/�
  

Recognizing the kernel of a normal density with a mean of û 

and a variance of 1/�ˡˡ(û; {, �) leads to the last line. This is 

known as Laplace approximation. 

3.5. Inverse Gaussian Frailty 

The density of the inverse Gaussian frailty distribution 

IG* (�) is 

�(�) = �√�¥
 ��«�. ��~ �− (���)�
�
� � , � > 0.  

The mean and variance are 1 and�, respectively. For the 

Laplace transform, one has 

j({) = ��~  �
  =1 − √1 + 2�{@! , { ≥ 0,  

and, for q≥1, 

jy({) = (−1)y(1 + 2�{)�¬� ­¬� �����√�
��(G� ����
­ ����M®�
��(G� ���N . j({),   (13) 

Where K is the modified Bessel function of the second kind 

[18] 

°̄(±) = �� 9 ?°���- ��~ p− ²� �? + �J�¢ :? ³ ∈ ℝ, ± > 0.  

The basic construction approach for obtaining the 

previously mentioned equation and derivative of the Laplace 

transform for any distribution for which the moments of 



90 Ashok Kumar Palanisamy and Muthukumar Madaswamy:  Frailty Models Under Xgamma Distribution with   

Application to Survival Data 

�/UP , ic; b, W, n , the conditional frailty given the data are 

known. 

Noting that ¯��(±) = ® ¥�² exp(−±), we have 

H"�=(−1)yj(y)({)@ =
− y� log(2�{ + 1) + log M¯y�����(U)N −  ��  H0� � ¥���! − U¡ +

�
 =1 − √1 + 2�{@,                (14) 

With U = √2��� �{ + ��
� , with multivariate data, an 

inverse Gaussian distribution frailty [5, 19] yields given by 

i = �� − �
 + 2 ��� (�/
)
� 9 ��� (��)���/
 :� � ∈ (0,1/2)  

3.6. Positive Stable Frailty 

The family of positive stable distributions with two 

parameters. A scale b > 0, as well as the so-called index µ < 1. The positive stable frailty distribution PS*(³), with ³ = 1 − µ, is produced by imposing b = µ. 

The related probability density function is given by 

�(¦) = − �¥§ ∑ �(¶(��°)��¶! (−¦��)¶�¶t� {$&=(1 − ³)¸�@, ³ ∈(0,1).  

Both the mean and variance are unknown. As a result, the 

variance of the frailty term does not correlate to the 

heterogeneity parameter. Because of this, we purposefully 

refer to it as "instead of" to prevent misunderstanding. 

The accompanying Laplace transform has a much simpler 

shape than the probability density function. 

j({) = |�¹(−{��°), { ≥ 0,  

And Wang, Klein, and Moeschbereger (1995) found that, 

for q≥1, 

j(y)({) = (−1)y(1 − ³){�°)yw∑ ºy,k{�k(��°)y��kt- xj({),  

Where the ºy,k′{  are polynomials of degree m, given 

recursively by ºy,- = 1, 
ºy,k = ºy��,k + ºy��,k�� py����° − (� − �)¢ , � =1,2, … … , � − 2,             (15) 

ºy,y�� = (1 − ³)��y �(y�(��°))�(°) .  

It follows that 

H"� ((−1)yj(y)({) = �=H"�(1 − ³) − ³H"�({)@ +H"�w∑ ºy,k{�k(��°)y��kt- x − {��°     (16) 

With clustered data, Kendall’s tau for positive stable 

distribution frailty is 

i = ³ ∈ (0,1). 
4. Application to Real-Life Data 

Application I: We consider the Veterans' Administration 

Lung Cancer data set [20-21] to fit the frailty model for the 

Xgamma distribution. The data set contains the Lung cancer 

data of the first and second recurrence time of 130 patients, 4 

different clusters, and eight variables namely (i) Treatment 

(1=Standard; 2=Test) (ii) Cell type (1=Squamous, 

2=Smallcell, 3=Adeno, 4=Large) (iii) Survival time (iv) 

Status (0=censored, 1= recurrence) (v) karnofsky 

Performance Score (100=good) (vi) Diagnostic time (Months) 

(vii) Age (in year) (viii) Prior therapy (0-No, 1-Yes). 

Application II: We considered a culling data set [22-23]. 

The data set contains 13836 observations and 6 variables 

namely (i) Cow’s Identifier (ii) Time to Culling (in the month) 

(iii) Status (0=Censored, 1= Observed) (iv) Herd: Herd 

Identifier (v) Time asses (somatic cell count day) (vi) Log 

SCC (Logarithm of the somatic cell count). 

5. Data Analysis 

R studio version 1.2.50 was used for analysis. Xgamma 

baseline distribution codes/function and frailty model were 

created based on R packages of “survival” [24], “parfm” [18], 

“frailtypack”, “frailtyEM” [16], “Kendall’s tua” [5] was used 

to measure the relationship between any two event times from 

the same cluster. The lowest value of Akaike’s Information 

Criteria (AIC=log-likelihood) + 2 (P), where P is the number 

of parameters) and Bayesian Information Criteria (BIC=-2 

(log-likelihood) +P(log/n) is used to identify the best model 

for real-life data. 

6. Results 

To the best of our knowledge, the perfm command in the R 

software can be used to generate a parametric frailty model 

with an Xgamma baseline distribution. Table 1 provides the 

Xgamma distribution for the baseline hazard distribution and 

four frailty distributions for each data. The model result 

provided that Xgamma distribution with Gamma (Ga), 

Lognormal distribution (LN), Inverse Gaussian (IG), and 

Positive Stable (PS) frailty model gave almost close result to 

covariates in Veterans Administration lung cancer study and 

culling of dairy heifer cows’ data sets. The Xgamma 

distribution with Positive Stable frailty distribution was found 

to be best compared to other models for the Veterans' 

Administration Lung Cancer data set due to the lowest AIC 

(1451.167) and BIC (1471.607) values (Table 1). The 

estimated hazard ratio [95% Wald CI] of significant (p<0.05) 

covariates are shown in Figure 1. The frailty value was 

predicted for each Veterans Administration lung cancer data 

based on the Positive stable (PS) frailty model, as shown in 

Figure 2. 
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Table 1. Result of Comparing four frailty models with Xgamma baseline distribution for Veterans' Administration Lung Cancer study data set. 

Parameters

/Covariate 

Frailty Models 

Gamma Log-Norma (LN) Inverse Gaussian (IG) Positive Stable (PS) None 

Estimate SE 
P- 

value 
Estimate SE 

P- 

value 
Estimate SE 

P- 

value 
Estimate SE 

P- 

value 
Estimate SE 

P- 

value 

Frailty 0.207 0.18 
 

1 0 
 

0.321 0.414 
 

0.232 0.125 
 

- - 
 

Θ 0.363 0.131 
 

0.403 0.145 
 

0.373 0.141 
 

0.378 0.143 
 

0.402 0.136 
 

Treatment 0.212 0.199 0.286 0.099 0.186 0.595 0.205 0.2 0.305 0.183 0.202 0.363 0.098 0.181 0.586 

KPS -0.041 0.004 
<0.001

*** 
-0.038 0.004 

<0.001

*** 
-0.04 0.005 

<0.001

*** 
-0.041 0.004 

<0.001

*** 
-0.046 0.004 

<0.001*

** 

Diagnosis 

time 
-0.003 0.009 0.727 0.001 0.009 0.903 -0.003 0.009 0.752 -0.003 0.009 0.782 -0.002 0.009 0.856 

Age -1.019 0.007 
0.006*

* 
-0.016 0.007 0.027* -0.019 0.007 

0.009*

* 
-0.019 0.007 

0.011*

* 
-0.018 0.007 

0.001**

* 

Prior 0.074 0.227 0.744 -0.085 0.221 0.701 0.076 0.228 0.738 0.069 0.227 0.76 -0.086 0.216 0.691 

AIC 1462.18 
  

1454.46 
  

1458.38 
  

1451.167 
  

1451.17 
  

BIC 1482.62 
  

1478.82 
  

1474.91 
  

1471.607 
  

1471.61 
  

*Significantly differed at ***0.1% level (P < 0.001), **0.5% level (P < 0.005), *5% level (P < 0.05); KPS: Karnofsky Performance score; SE: Standard Error 

 

Figure 1. Hazard ratio for covariates in Veterans' Administration Lung Cancer data by Lognormal (LN) frailty with xgamma baseline distribution (Significant 

covariate with 95% CI has coloured in red). 

 

Figure 2. Predicted frailty values for each veteran’s Lung Cancer data based on Lognormal frailty model with xgamma baseline distribution. 
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Table 2. Result of Comparing four frailty models with Xgamma baseline distribution for Culling of dairy heifer cows’ data set. 

Parameters/

Covariate 

Frailty Models 

Gamma Log-Norma (LN) Inverse Gaussian (IG) Positive Stable (PS) None 

Estimate SE P-value Estimate SE P-value Estimate SE P-value Estimate SE P-value Estimate SE P-value 

Frailty 0.103 0.038 
 

0.132 0.04 
 

0.107 0.039 
 

0.009 0.006 
 

- - 
 

Θ 0.101 0.005 
 

0.098 0.005 
 

0.101 0.005 
 

0.1 0.005 
 

0.1 0.005 
 

LSCC 0.08 0.02 <0.001*** 0.079 0.201 <0.001*** 0.08 0.02 <0.001*** 0.079 0.02 <0.001*** 0.08 0.019 <0.001*** 

AIC 14182.9 
  

14179.1 
  

14183.6 
  

14188.9 
  

14190.62 
  

BIC 14203.5 
  

14199.8 
  

14203.5 
  

14209.6 
  

14204.38 
  

*Significantly differed at ***0.1% level (P<0.001), **0.5% level (P<0.005), *5% level (P<0.05); LSCC: Logarithm of the somatic cell count; SE: Standard error 

 

Figure 3. Hazard ratio for covariates in Culling of dairy heifer cow’s data by Lognormal (LN) frailty with xgamma baseline distribution (Significant covariate 

with 95% CI has coloured in red). 

 

Figure 4. Predicted frailty values for each culling of dairy heifer cow’s data based on Lognormal frailty model with xgamma baseline distribution. 

In the culling of dairy heifer cow’s study data, Xgamma 

distribution with Lognormal (LN) frailty distribution was 

identified as the best model due to minimum AIC (14179.1) 

and BIC (14199.8) values. The estimated hazard ratio with 

confidence interval [95% wald CI] of significant covariates 

are shown in Figure 3. The frailty values were predicted for 

culling of dairy heifer cows date based on the Lognormal 

frailty models, as shown in Figure 4. 

7. Conclusions 

Estimating frailty or random effect for survival models is 

essential and has produced better outcomes than ordinary 

models for lifetime data analysis. This research demonstrated 

the modeling and application of frailty models with the 

Xgamma distribution as the baseline hazard function. The 
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marginal likelihood estimation method was used to estimate 

and evaluate the significance of the parameters in the models 

under consideration to compare them. 

To compare the four frailty models and non-frailty models 

with Xgamma baseline hazard, two real-life data sets for 

Veterans' Administration Lung Cancer, and culling of dairy 

heifer cow’s data were used. The AIC and BIC were applied to 

determine which of the frailty models investigated provided 

the best fit for this data set. The study's findings revealed that 

(i) the Positive Stable (PS) model with Xgamma baseline 

hazard is the best model for the Veterans' Administration 

Lung Cancer data set, (ii) the best model for the culling of 

dairy heifer cow’s study data is the Lognormal (LN) frailty 

model with Xgamma baseline hazard. The study results reveal 

that the Xgamma distribution with frailty outperformed the 

non-frailty model (Xgamma without frailty). 

Frailty models with an Xgamma baseline distribution are 

the best alternative method for utilizing clustered survival data. 

In the survival analysis, the previous identification of an 

appropriate baseline and frailty distribution for estimating the 

parameter was determined to be the best technique. 
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