
 

Mathematics and Computer Science 
2023; 8(2): 51-56 

http://www.sciencepublishinggroup.com/j/mcs 

doi: 10.11648/j.mcs.20230802.13 

ISSN: 2575-6036 (Print); ISSN: 2575-6028 (Online)  

 

Some Upper Bounds of Maximum E-Eigenvalues of Uniform 
Hypergraphs 

Hongyu Zhang
*
, Feng Fu, Caoji Yin 

School of Mathematics and Statistics, Qinghai Normal University, Xining, China 

Email address: 

 
*Corresponding author 

To cite this article: 
Hongyu Zhang, Feng Fu, Caoji Yin. Some Upper Bounds of Maximum E-Eigenvalues of Uniform Hypergraphs. Mathematics and Computer 

Science. Vol. 8, No. 2, 2023, pp. 51-56. doi: 10.11648/j.mcs.20230802.13 

Received: February 25, 2023; Accepted: March 16, 2023; Published: March 28, 2023 

 

Abstract: A hypergraphs, as a generalization of a general graph, is often used as an effective tool to describe complex 

structures in discrete mathematics, computer science and other fields. Hypergraph theory and related parameters of hypergraph 

are important research topics in hypergraph theory. In particular, the problem of spectral extremum of graphs has been widely 

concerned. This problem originates from the problem proposed by Brualdi and Solheid in 1986. That is to find the upper and 

lower bounds of spectral radius of a given graph class and characterize the polar graph that reaches the upper and lower bounds. 

Let H be a uniform hypergraph. Let A(H) be the adjacency tensor of H. In this work, by using Perron-Frobenius theorem, 

Hölder’s inequality and inequality of arithmetic and geometric means, we establish some upper bounds for the maximum 

E-eigenvalue of a uniform hypergraph instead of the degrees of vertices and edge number of hypergraph H. In addition, we 

characterize the extremal hypergraphs that reach the upper bounds. 
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1. Introduction 

Denote the set { }1,2, ,n⋯  by [ ]n . Let 

( ) ( )( ),H V H E H=  be a hypergraph with n  vertexes and 

m  edges, where ( ) { }1 2, , , nV H v v v= ⋯  and 

( ) { }1 2, , , mE H e e e= ⋯  represent the vertex set and edge set 

of the hypergraph H , respectively. If every edge 

{ }
1 2
, , ,

li i i ie v v v= ⋯  in a hypergraph H satisfies ie l r= = , 

then a hypergraph H  is called r -uniform hypergraph, 

where [ ], 1,2, ,ji n j l∈ = ⋯  and 1,2, ,i m= ⋯ . Let id  be 

the degree of the vertex iv . If id d=  is satisfied for any 

[ ]i n∈ , then the hypergraph H  is called a d -regular 

hypergraph. Let ∆  and δ  be the minimum degree and the 

maximum degree of hypergraph H , respectively. Tensor's 

definition is as follows. 

Definition 1 [10]. Given any positive integers ,r n , a 

tensor T  of order r  and dimension n  is defined by a 

multidimensional array of element 
1 2 ri i it
⋯

, where 

[ ]1 2, , , ri i i n∈⋯ , 
1 2 ri i it C∈
⋯

. Obviously, a tensor T  of 

order r  and dimension n  has 
r

n  elements. 

The definition of tensor product is given, which is a 

generalization of matrix product [8]. 

Definition 2 [10, 4]. Let 1 2 mn n n
C

× × ×∈ ⋯

A , 

2 3 1rn n n
C +× × ×∈ ⋯

B be two tensors of orders m  and r , 

respectively. Then the product =C AB  of tensors Aand 

B  is a tensor of order ( )( )1 1 1m r− − +  with the 

( )1 2 1, , , , mi α α α −L -th entry is 

[ ]
1 2 1 2 3 2 1 1

2 3 2, , ,
m m m m

m

i ii i i i i

i i i n

α α α α α− −
∈

= ∑⋯ ⋯

⋯

⋯C A B B , 

where [ ] [ ] [ ]1 1 2 1 3 4 1, , , , m ri n n n nα α α − +∈ ∈ × × ×  ⋯ ⋯ . 

Definition 3 [10, 14]. Let 1 2 mn n n
C

× × ×∈ ⋯

A , 
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2 3 1rn n n
C +× × ×∈ ⋯

B  

be two tensors of orders m  and r , respectively. 
1r−

Tx  is 

a n -dimension complex vector with the i -th entry: 

( ) [ ]
2 2 3

2 3

1

, , , 1

,
r r

r

r
r

ii i i i i
i

i i i

t x x x i n
−

=

= ∈∑ ⋯

⋯

⋯Tx . 

r
Tx  is a complex number: 

[ ]
1 2 1 2

1 2, , , 1

,
r r

r

r
r

i i i i i i

i i i

t x x x i n

=

= ∈∑ ⋯

⋯

⋯Tx . 

In 2005, Qi and Lim proposed the definition of tensor 

eigenvalues, respectively [2, 3]. If there exists Cλ ∈  and a 

non-zero vector nC∈x such that 

[ ]11 rr λ −− =Tx x , 

then λ  is the eigenvalue of tensor T , and x  is the 

corresponding eigenvector related with λ  of T , where 

[ ] ( )1 1 1 1
1 2, , ,

Tr r r r
nx x x

− − − −= ⋯x . 

In 2012, Cooper and Dutle defined the adjacency tensor 

( )HA  of a r -uniform hypergraph H [1]. 

Definition 4 [1]. Let ( ) ( )( ),H V H E H=  be a uniform 

hypergraph with n  vertexes. The adjacency tensor ( )HA  

of hypergraph H  is a tensor of order r  and dimension 

n , whose ( )1 2, , , ri i i⋯ -th entry is 

( ) { } ( )
1 2

1 2

1
, , , ,

1 !

0, 
r

r

i i i

if i i i E H
ra

otherwise

 ∈ −= 



⋯

⋯

 

Qi et al. gave the definition of E -eigenvalue of a uniform 

hypergraph [11]. 

Definition 5 [11]. Given a tensor A  of order r  and 

dimension n . Let Cλ ∈  and nC∈x , if 

1, 1r Tλ −= =Ax x xx , 

then x  is the E -eigenvector of tensor A  related with its 

eigenvalue λ . 

Lemma 1 [6, 7, 13]. (Perron-Frobenius theorem) Let 

A  be a non-negative weakly irreducible tensor of order 

r  and dimension n , where , 2r n ≥ . Let λ  is the 

maximum eigenvalue of A . Then λ  is the only 

eigenvalue that satisfies the corresponding eigenvector is 

positive. 

In 2009, Bulo and Pelillo published the first paper on the 

spectrum of a hypergraph, and used the concept of 

H-eigenvalue of a tensor introduced by Qi in 2005 [12]. By 

the upper bound of clique numbers of graphs derived from 

Sós and Straus, Motzkin-Strau theorem is extended to 

specific hypergraphs [15]. In particular, Bulo and Pelillo 

extended and improved the spectral boundary introduced by 

Wilf, and established a link between the cluster number and 

the spectral hypergraph theory [12]. In 2012, Cooper and 

Dutle systematically studied hypergraph theory through 

adjacency tensor, and extended the basic results of graph 

theory to hypergraphs [1]. Kang and Liu et al. gave some 

upper bounds on the compactness of the eigenvalues of 

hypergraphs as follows [5]. 

( )
{ } ( )

2 3

1 2

1

1 1 1

1 1 1

1
, , ,

1
max

1 r

i i ir

r

r

r r r
i i i

i n
v v v E H

H d d d
r

ρ

−

− − −
≤ ≤

∈

  
  ≤ + + +  −   

∑
L

L . 

Equality holds if and only if the hypergraph H  is a 

regular hypergraph. 

Besides, Yi gave a upper bound of H -eigenvalue of a 

hypergraph [9]. 

( )
{ } ( )

( )
1 2 3

1 2

2 1 1

, , ,

max
r

i i ir

r r
i i i i

v v v E H

H d d d dρ − −

∈
≤

⋯

⋯ . 

In this work, several upper bounds of the maximal E

-eigenvalues of uniform hypergraphs are established in terms 

of their degrees by using Perron-Frobenius theorem and 

Holder inequality. In addition, the extremal hypergraphs are 

characterized. 

2. Main Results 

Let ( )( )1E H v  be all edges containing vertex 1v . Write 

{ } ( )( ) ( )( )
2 3

11 12
, , ,

r

i ir

e
i i i

e E H vv v v e E H v

x x x x

∈∈

=∑ ∑
L

L  

for short. 

Theorem 1. Suppose H  is a r  uniform hypergraph 

with n  vertices. Then 

( )
( )

2

4 1

r r

r
rλ

−
−

−≤ ∆ . 

Equality holds if and only if the hypergraph H  has only 

one hyperedge, which contain all vertices. 

Proof According to Lemma 1, 

( ) [ ]1 2, , , , 0,
T

n ix x x x i n= > ∈x L . 

Let the entry 1x  corresponding to vertex 1v  be the 

largest entry in the eigenvector x . Suppose edge 

{ }1 1 2, , , re v v v= L  is the edge with the largest product of 

eigenvector entries. According to the characteristic equation, 

we have 
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( )( )1

1 1 2 3
e

r

e E H v

x x d x x xλ
∈

= ≤∑ L ,            (1) 

( )( )

( )( )

( )( )

2

3

1
2 2 1

1
3 3 1

1
1

,

,

.

r

e r

e E H v

e r

e E H v

e r
r r

e E H v

x x d x

x x d x

x x d x

λ

λ

λ

−

∈

−

∈

−

∈

 = ≤


 = ≤




 = ≤



∑

∑

∑
M

             (2) 

Multiply the corresponding 1r −  inequalities (1), then 

( ) ( ) ( )2
11

2 3 2 3 1

rr
r rx x x d d d xλ −− ≤L L .         (3) 

If the both sides of inequality (2) are 1r −  power at the 

same time, then 

( ) 11 1 1
1 1 2 3

rr r r
rx d x x xλ −− − −≤ L .           (4) 

Multiply the two sides of inequality (3) and (4), respectively, 

then 

( ) ( ) ( ) ( ) ( )
2

112 1 1 1
1 2 3 1 2 3 2 31

rrr r r
r r rx x x x d d d d x x x xλ −−− − −≤L L L .  (5) 

By [ ],id i n≤ ∆ ∈  and (5), we obtain 

( ) ( ) ( ) ( )2
2

22 1 2 1 2 2 2 2
1 21

r
rr r

rx x x xλ
−

−− −≤ ∆ L .       (6) 

From the mean inequality and 1T =xx , it arrives 

( ) ( )
( )

( )2

2

2 22 1 2 1

1

1
r r

rr r
x

r
λ

−

−− −  ≤ ∆  
 

.        (7) 

Since 1T =xx , 2
1 1x ≤ , we get 

( ) ( )
( )2

22 1 2 1 1
r r

r r

r
λ

−

− −  ≤ ∆  
 

.          (8) 

Therefore, 

( )
( )

2

4 1

r r

r
rλ

−
−

−≤ ∆ .               (9) 

☐ 

Let ( )
( )
( )

2

4 1

r r

r
f r r

−
−

−=  be a function on r . When 3r ≥ , 

0
df

dr
< . That is, ( )f r  is a decreasing function with r . 

When r  reaches the maximum value, the corresponding 

hypergraph is only one hyperedge with n  vertexes (see 

Figure 1). Meanwhile, 1 2 nx x x= = =L . If 2r = , then the 

hypergraph H  is a general graph satisfying λ ≤ ∆ . 

 

Figure 1. Hypergraph ��. 

Theorem 2. Let H  be a r -uniform hypergraph with n  

vertices. Then 

Equation Section (Next) 1
2

r

mrλ
−

≤ . 

Proof By Lemma 1, we have 

( ) [ ]1 2, , , , 0,
T

n ix x x x i n= > ∈⋯x . 

According to the characteristic equation, then 

{ } ( )
2 3

2 3
, , , ,

r

i i i i ir

i i i i

v v v v e E H

x x x xλ
∈ ⊆

= ∑
L

L .         (10) 

From Holder inequality, we get 

{ } ( )

( )
{ } ( )

( ) ( )

{ } ( )

2 3

2 3

2 3

2 3

2 3

2 3

, , , ,

1

1

1

, , , ,

1

1
1 2 2 2 2 2 1

, , , ,

1

.

r

i i i i ir

r

i i i i ir

r

i i i i ir

i i i i

v v v v e E H

r

rr

r r
i i i i

v v v v e E H

r

rr

r r
i i i i i i

v v v v e E H

x x x x

d x x x

d x x x x x

λ
∈ ⊆

−

−

∈ ⊆

−

− −

∈ ⊆

= ⋅

 
 ≤  
 
 

 
 ≤  
 
 

∑

∑

∑

L

L

L

L

L

L

 (11) 

Then, 

( ) ( )

{ } ( )
2 3

2 3

1

1

2 2 2 2 2 2 1

, , , ,

r

i i i i ir

r

rr

r r
i i i i i i

v v v v e E H

x d x x x xλ

−

−

∈ ⊆

 
 ≤  
 
 

∑
L

L .  (12) 

As 1T =xx , 
2 2 2
1 2 1nx x x+ + + =L . For any r  elements 

1 2
, , ,

ri i ix x xL , we have 

1 2

2 2 2 2 2 2
1 2 1

ri i i nx x x x x x+ + + ≤ + + + =L L .       (13) 

According to the mean inequality, we obtain 

( )

{ } ( )

2

2 3

1

1
2 12

, , , ,

1

i i i i ir

r

r r

r
r

i i

v v v v e E H

x d
r

λ

−

−

∈ ⊆

 
  ≤   

  
 

∑
L

.   (14) 

Then 

22 1
r

i ix d
r

λ  ≤  
 

.              (15) 
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Summing over i  from 1  to n  for (15), it arrives 

1
2 2

r r

rm r mrλ
− −

≤ × = .          (16) 

☐ 

Theorem 3. Let H be a r -uniform hypergraph with n  

vertices. Then 

{ } ( )
2 3

1 2

1

11 1 1

1 1 1

1
, , ,

1
max

1 r

i i ir

r

r r r
i i i

i n
v v v E H

d d d
r

λ
−

− − −
≤ ≤

∈

  
  ≤ + + +  −   

∑
⋯

⋯
. 

Equality holds if and only if the hypergraph H  is regular. 

Equation Section (Next). 

Proof According to the characteristic equation, we have 

{ } ( )
2 3

2 3
, , , ,

r

i i i i ir

i i i i

v v v v e E H

x x x xλ
∈ ⊆

= ∑
L

L .                                 (17) 

By Holder inequality, we get 

{ } ( )

( )
{ } ( )

2 3

2 3

2 3

2 3

, , , ,

1

1

1

, , , ,

1

.

r

i i i ir

r

i i i ir

i i i i

v v v v E H

r

rr

r r
i i i i

v v v v E H

x x x x

d x x x

λ
∈

−

−

∈

= ⋅

 
 ≤  
 
 

∑

∑

L

L

L

L

                             (18) 

According to the mean inequality, then 

( )
{ } ( )

2 3

2 3

1
1

1

, , , ,

1

1 r

i i i ir

r
r r
r r r rr

i i i i i

v v v v E H

x d x x x
r

λ

−
−

∈

 
   ≤ + + +   −   

 

∑
L

L .                        (19) 

If both sides are 
1

r

r −
 power, then 

( ) ( )
{ } ( )

2 3

2 3

1

11

, , , ,

1

1 r

i i i ir

r
r r rrri i i i i

v v v v E H

x d x x x
r

λ −−

∈

≤ + + +
− ∑

L

L .                         (20) 

Then 

( )
{ } ( )

2 3

2 3

1 1

1 1

, , , ,

1

1 r

i i i ir

r r

r r rr r r
i i i i i

v v v v E H

d x x x x
r

λ
−

− −

∈

≤ + + +
− ∑

L

L .                          (21) 

Since 1T =xx , 
2
1 1x ≤  and 

1

2

r

r
i ix x

−
−≤ , 

( )
{ } ( )

2 3

2 3

1

21 1

, , , ,

1

1 r

i i i ir

r

r r rr r
i i i i i

v v v v E H

x d x x x
r

λ − −

∈

≤ + + +
− ∑

L

L .                         (22) 

Due to 1T =xx , we have 
2 2 2
1 2 1nx x x+ + + =L . 

Summing over i  from 1  to n  for (22), we obtain 

( )
{ } ( )

{ } ( )

2 3

2 3

2 3

2 3

2 3

2

1

1 1

1 , , , ,

1 1 11

1 1 11

1 , , , ,

1 1 1

1 1 1

1
, ,

1

1

1

1

1
max

1

r

i i i ir

r

i i i ir

r

i i

r n
r r rr r

i i i i

i v v v v E G

n

r r rr
i i i i

i v v v v E G

r r r
i i i

i n
v v v

d x x x
r

x d d d
r

d d d
r

λ − −

= ∈

− − −−

= ∈

− − −
≤ ≤

 
 ≤ + + + −  
 

  
  = + + +  −    

 
 ≤ + + +
 −
 

∑ ∑

∑ ∑

L

L

L

L

L

{ } ( )
3
, ,

.

i ir
v E G∈

 
 
 
 
 

∑
L

                         (23) 
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Then 

{ } ( )
2 3

1 2

1

11 1 1

1 1 1

1
, , ,

1
max

1 r

i i ir

r

r r r
i i i

i n
v v v E H

d d d
r

λ
−

− − −
≤ ≤

∈

  
  ≤ + + +  −   

∑
L

L .                        (24) 

For the above results, equality holds if and only if 

1 2 nx x x= = =L . 

Obviously, equality holds if and only if the hypergraph H  is regular. ☐ 

A regular hypergraph �� is shown in Figure 2. 

 

Figure 2. Hypergraph ��. 

From theorem 3 and using the maximum and minimum degree of a hypergraph, the following corollary can be obtained. 

Corollary 3.1 Let H  be a r -uniform hypergraph with n  vertices. Then 

( ) ( ) ( )
2 1 1 11
1 1 1 11 1 1

1

r

r r r rrrm n r n

r

δ δ

λ

−
− − − −−

  
  + − ∆ − ∆ − −

  
  ≤

− 
 
 
 

. 

Proof According to the Power mean inequality, we have 

( )
1

1 2 211
1 1 11

1 1

r rn n r
r r rri i

i i

d n d rm n

− −−
− − −−

= =

 
≤  

 
 

∑ ∑ .                              (25) 

According to Theorem 3, then 

( )
{ } ( )

2 3

1 2

1 1 1

1 1 11

1
, , ,

1 max
r

i i ir

r

r r rr
i i i

i n
v v v E H

r d d dλ − − −−
≤ ≤

∈

  
  − ≤ + + +     

∑
L

L .                      (26) 

Substitute (25) into (26), then 

( ) ( ) ( )( )
12 11

11 1 11
1

1 max 1 1

r r

rr r rr i i
i n

r rm n d n r dλ δ
−

−− − −−
≤ ≤

 
 − ≤ − − − − −
 
 

.                   (27) 

So, 
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( ) ( ) ( ) ( )
2 1 1 11

1 1 1 1 11
1

1 max 1 1

r r

r r r r rr i i
i n

r rm n r d d nλ δ δ
−

− − − − −−
≤ ≤

  
  − ≤ + − − − −

  
  

.               (28) 

Let ( ) ( )
1 1

1 11 r rf x r x xδ − −= − −  be a function of x . When 1 xδ≤ ≤ ≤ ∆ , 0
df

dx
< . That is, ( )f x  a decreasing function on 

x  as 1 xδ≤ ≤ ≤ ∆ . When x = ∆ , ( ) ( )
1 1

1 11 r rf x r δ − −= − ∆ − ∆ . Therefore, 

( ) ( ) ( )
2 1 1 11
1 1 1 11 1 1

1

r

r r r rrrm n r n

r

δ δ

λ

−
− − − −−

  
  + − ∆ − ∆ − −

  
  ≤

− 
 
 
 

.                   (29) 

☐ 

3. Conclusion 

In this work, using Perron-Frobenius theorem and Holder 

inequality, some upper bounds of the maximum E

-eigenvalue of hypergraphs are obtained. In fact, spectral 

radius can effectively characterize the structure of a 

hypergraph. For example, spectral radius can be used to study 

the connectivity, diameter and matching number of 

hypergraphs. Therefore, in the future research, we consider 

more properties of hypergraph radius, and establish the 

relationship between the invariant of a hypergraph such as its 

girth, diameter, matching number, domination number and 

hypergraph radius. 
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