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Abstract: Controllability problems of differential equations appear in many situations or phenomena for which one is
interested in finding a mechanism for bringing a given state into a desired one. Their resolutions often involve constrained
minimization problems governed by differential equations systems. This paper is particularly interested in a null controllability
problem for backward differential equations systems. One develop a numerical scheme by first approximating the control space
by a space of piecewise continuous functions and by transforming the controllability problem into a classical minimization
problem with constraints in finite dimension space. Next, one proceed to an adapted implementation of the numerical scheme in
Matlab using some of its built-in functions. One then construct a sequence of codes written in Matlab allowing to robustly
compute an approximation of the null control at a lower cost. To validate the numerical approach adopted in this paper, two
numerical examples are presented. The first ones concerns the controllability of a backward ordinary differential quations
system and the second, the controllability of a partial differential heat equation. In both cases, the numerical results obtained are
very satisfactory and show that the numerical approach with Matlab developed in this paper leads to new insights for a large
class of PDE control problems.
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1. Introduction

With the increasing complexity of engineering applications
in recent decades, the subject of the controllability of systems
governed by partial differential equations has moved from
theory to calculation. The numerical computation of the
optimal control of PDEs has become a science in itself,
which has given rise to a variety of numerical methods and
theirs implementatiosn by scientific softwares [5, 6, 7, 9]. In
numerical practices, the spatial semi-discretization of systems
of partial differential equations often gives rise to systems
of ordinary differential equations. Instead of discretizing
the differential system obtained, certain particularly suitable
codes, in the Matlab environment, can be used. The aim of

this article is then to use Matlab capabilities to numerically
determine null-controls of large scale differential systems
resulting from the semi-discretisaton of the problems governed
by PDEs [1, 10, 12].

This paper is mainly concerned with the above
controllability problem. Consider non-null integers n and
r, for given positive real T, find v ∈ L2(0, T ;Rr) such that
the corresponding solution of the following system

d

dt
u(t) = G(u(t)) + Bv(t), t ∈]0, T [ (1)

u(T ) = u0 (2)

satisfies
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u(0) = 0Rn (3)

Where 0Rn is the null vector of Rn and u0 ∈ Rn is a given
terminal solution. Here, B is a r × n matrix, and G is a given
function from Rn to Rn.

There exists a variety of papers in the literature dedicated
to null controllability study of problems of type (1)-(3). One
can refer to [2, 3, 8, 11]. Recently, it has been established the
necessary and sufficient condition to guarantee that systems of
type (1)-(2) is completely null controllable [13]. However, the
numerical approximation of null controls for such a problem is
a difficult issue. To this end, this paper develops programs in
Matlab, a widely used scientific computing [10].

The remainder of this paper is organized as follows. Section
2 describes an approximation process for computing null

controls and stablishes its convergence properties. Section
3 presents a numerical scheme for solving approximated
null controls as well as theirs implementation in Matlab
Environment. Section 4 is devoted to some numerical
examples and, section 5 gives some remarks.

2. Approximation of Null Controls
This section starts by giving a result concerning the

existence and a property of continuity with respect to the
terminal condition and to the control of the system (1)-(2):

Proposition 2.1 Assume that G is α - Lipstchiz. Then for
given u0 ∈ Rn and for v ∈ L2 (0, T ;Rr) there exists a
unique u ∈ C1 (0, T ;Rn) which satisfies the system (1)-(2).
In addition,

‖u(0)‖Rn ≤

(
‖u0‖Rn + ‖B‖

∫ T

0

‖v(T − s)‖Rrds

)
eαT . (4)

Proof. Existence and uniqueness property follow from the Cauchy- Picard-Lipschitz theorem[14]. To establish the estimate
(4) one can first rewrite (1) as follows.

d

dt
u(T − t) = −G(u(T − t))− Bv(T − t), t ∈ (0, T ) (5)

Integrating this equation over (0, t), one obtains

u(T − t) = u0 −
∫ t

0

G(u(T − s))ds−
∫ t

0

Bv(T − s)ds. (6)

Since G is α Lipschitz, one can deduce

‖u(T − t)‖Rn ≤ ‖u0‖Rn +

∫ t

0

‖G(u)(T − s)‖Rnds+

∫ t

0

‖Bv(T − s)‖Rrds

≤ ‖u0‖Rn + ‖B‖
∫ T

0

‖v(T − s)‖Rrds+ α

∫ t

0

‖u(T − s)‖Rnds

Thus from Gronwal’s lemma it follows

‖u(T − t)‖Rn ≤

(
‖u0‖Rn + ‖B‖

∫ T

0

‖u(T − s)‖Rrds

)
eαt (7)

Therefore, the estimate (4) is achieved if t is replaced by T. �
In the following, the operator G will be assumed α-lipschitz.

Similar to the approximation of null controllability of some PDEs, to approach null controls of (1) - (2) one consider, for given
non negative β, the problem

min
v∈L2(0,T ;Rr)

Jβ(v) :=
1

2

∫ T

0

v(t)TCv(t)dt+
1

2β
‖u(0)‖2Rn (8)

Subject to the equations system (1) - (2) where C is an r
order defined symmetric matrix[4, 15]. One can then formulate
the following result.

Proposition 2.2 For given u0 ∈ Rn, there exists a unique
vβ ∈ L2 (0, T ;Rr) solution of the minimisation problem (8).
Thurtheremore vβ converges weakly to v in L2 (0, T ;Rr) as
β → 0, and the corresponding u solution of the system (1)-(2)

for the control v satisfies u(0) = 0Rn .
Proof. First, to prove the existence and uniqueness of

the minimization problem (8), one needs to establish that
Jβ is strictly convex, lower semi-continuous and coercive in
L2 (0, T ;Rr) .

(i) The strict convexity of Jβ . Since, by hypothesis, C is a
symmetric positive definite matrix, it is obvious to see that the
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application v 7−→ 1

2

∫ T

0

v(t)TCv(t)dt is strictly convex in

L2 (0, T ;Rr) . Thus, to establish(i) it suffices to show that the
application v 7−→ ‖u(0)‖ is strictly convex in L2 (0, T ;Rr) .
This is a consequence of the continuity of the solution of the
system (1) relative to the initial state.

(ii) The lower semi-continuity of Jβ . Consider the sequence
(vk) in L2 (0, T ;Rr) which weakly converges toward v̂, and
let uk and û be solutions of the system (1)-(2) respectively
to controls vk and v̂. Thanks to Proposition 2.1, following
estimates hold

‖uk(0)‖Rn ≤

(
‖u0‖Rn + ‖B‖

∫ T

0

‖vk(T − s)‖Rrds

)
eαT . (9)

and

‖û(0)‖Rn ≤

(
‖u0‖Rn + ‖B‖

∫ T

0

‖v̂(T − s)‖Rrds

)
eαT . (10)

As vk weakly converges to v̂, then from (9) and (10) one can deduce

lim inf
k→+∞

‖uk(0)‖ ≥

(
‖u0‖Rn + ‖B‖

∫ T

0

‖v̂(T − s)‖Rrds

)
eαT

≥ ‖û(0)‖Rn .

(11)

Then it follows

lim inf
k→+∞

Jβ(vk) = lim inf
k→+∞

(
1

2

∫ T

0

vk(t)TCvk(t)dt+
1

2β
‖uk(0)‖2Rn

)
≥ 1

2

∫ T

0

v̂(t)TCv̂(t)dt+
1

2β
‖û(0)‖2Rn

≥ Jβ(v̂)

(12)

Which establishes the lower semi-continuity of Jβ .
(iii) The coercivity of Jβ . Since C is a symmetric positive definite matrix, then there exists a strictly positive constant µ such

that

Jβ(v) =
1

2

∫ T

0

v(t)TCv(t)dt+
1

2β
‖u(0)‖2Rn

≥ 1

2

∫ T

0

v(t)TCv(t)dt

≥ µ

2
‖v‖2L2(0,T ;Rr).

(13)

This establishes the coercivity of Jβ in L2 (0, T ;Rr) .
Finally (i), (ii) and (iii) clearly show the existence and the uniqueness of the solution of the minimization problem (8).
It remains to show that vβ converges weakly to v in L2 (0, T ;Rr) as β → 0, and the corresponding u solution of the system

(1)-(2) for the control v satisfies u(0) = 0Rn . It is not difficult to show that the set

U =

{
v ∈ L2 (0, T ;Rr) ,

du

dt
= G(u) + Bv, u(T ) = u0 and u(0) = 0Rn

}
(14)

is not empty. Consider now v the solution of the following problem

1

2

∫ T

0

v(t)TCv(t)dt = min
v∈U

1

2

∫ T

0

v(t)TCv(t)dt (15)

By the optimal argument one can then write

1

2

∫ T

0

vβ(t)TCvβ(t)dt+
1

2β
‖uβ(0)‖2Rn ≤

1

2

∫ T

0

v(t)TCv(t)dt (16)

Where uβ is the corresponding solution of the system (1) - (2) for the control uβ . This implies

‖vβ‖L2(0,T ;Rr) ≤ µ

∫ T

0

vβ(t)TCvβ(t)dt

≤ µ

∫ T

0

v(t)TCv(t)dt

(17)
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The sequence (vβ) is then bounded and Thus, one can find a subsequence (vβk) which weakly converges to ṽ. So it follows

∫ T
0
ṽ(t)TCṽ(t)dt ≤ lim inf

βk→0

∫ T

0

vβ(t)TCvβ(t)dt

≤
∫ T

0

v(t)TCv(t)dt

(18)

Also, from (16) one has

‖uβ(0)‖2Rn ≤
β

2

∫ T

0

v(t)TCv(t)dt

and by passing to the limit as β tends to 0, thanks to
the property of continuity, it follows that ṽ ∈ U . Since
v is the solution of the minimisation problem (15), then∫ T

0

ṽ(t)TCṽ(t)dt =

∫ T

0

v(t)TCv(t)dt. Thus, one deduces

ṽ = v. This completes the proof of the weak convergence of(
vβ
)
. �

Proposition 2.1 clearly shows that the null control of the
problem (1)- (2) can be approximated by the solution of the
minimisation problem (8) by taking β small enough.

Let fix m a non null integer. To approach any control
function in L2 (0, T ;Rr) let introduce the following space of
functions

Em =
{
v : [0, T ]→ Rr tel que v|[tk, tk+1[

is constant for k = 0, ...,m− 1
}
. (19)

One now consider the minimization problem of Jβ overEm

under the same constraints. The following proposition can be
easily proved.

Proposition 2.3 For each m, there exists a unique vβ,m ∈
Em solution of the minimisation of Jβ in Em subject to
constrain (1) - (2). Moreover∣∣∣∣vβ − vβ,m

∣∣∣∣
L2(0,T ;Rr)

−→ 0, as m→ +∞. (20)

One shall need the the above result to construct numrical
scheme for solution of the null control problem (3) by taking
β small enough and the parameter m great anough.

3. Numerical Scheme and
Implementation in MATLAB

Note that, looking for v(t) = (vi(t)) in Em amounts to
finding the matrix W (t) = (Wij) of order r × m which
satisfies

Wij = vi(tj) for all t ∈ [tj , tj+1[ (21)

Conversely, for given matrix W, the corresponding function
v(t) can be obtained by using the following Matlab script

function v=controlfun(w,m,T,t)

dt=T/m;
for k=1:m-1

if t>=(k-1)*dt && t<k*dt
v=w(:,k);

end
end
if t>=(m-1)*dt && t<=m*dt

v=w(:,m);
end

The minimisation problem (8) comes down to determining
the matrix W that minimizes the functional

Ĵβ(W ) :=
1

2

m∑
k=1

W (:, k)TCW (:, k) +
1

2β
‖u(0)‖2Rn (22)

To calculate the solution of the system (1)-(2), the MATLAB
function ode45 which solves differential systems of medium
size is used.. Firstly, one will need to write the following code

function Z=secondmember(t,u,A,B,w,m,T)
v=controlfun(w,m,T,T-t);
Z=-A*u-B*v;

Then the solution can be obtained using the following code
line:

[t,Z]=ode45(@(t,y)secondmember(t,y,A,...B,w,m,T),[0 T],u0)

Below is given a MATLAB code written in this paper to implement the objective function (22).

function J=objective(v,A,B,C,UT,T,...beta,m)
w=reshape(v,length(v)/m,m);
[t,Z]=ode45(@(t,y)secondmember(t,y,...A,B,w,m,T),[0 T],UT);
U0=Z(end,:)’;
J=U0’*U0/(2*beta);
for k=1:m

J=J+w(:,k)’*C*w(:,k)/2;
end
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Finally, thanks to the MATLAB built-in function fminunc which solves minimization problems, we propose the following
main code to calculate an approximate solution of the minimisation problem (8).

function [t,Z,v]=optimalcontrol(A,...B,C,u0,T,beta,m)
t=linspace(0,T,m+1);
ns=(length(t)-1)*size(B,2);
OPTION = optimset(’LargeScale’,’off’);
problem = createOptimProblem(...’fminunc’,’objective’,...@(v)objective(v,A,B,

C,u0,T,...beta,m),’x0’,ones(ns,1),...’options’,OPTION);
ms = MultiStart;
[v,J] = run(ms,problem,4);
w=reshape(v,length(v)/m,m);
[t,Z]=ode45(@(t,y)secondmember(t,y,...A,B,w,m,T),[0 T],u0);
Z=Z(end:-1:1,:);
v=[ ];
for k=1:length(t)

v=[v controlfun(w,m,T,t(k))];
end
v=v’;

Figure 1. The controlled solution (u1(t), u2(t)) (left) and the approximated optimal control (right) for β = 0.5.

Figure 2. The controlled solution (u1(t), u2(t)) (left) and the approximated optimal control (right) for β = 0.75.
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4. Numerical Experiments

4.1. Example 1

As a first example, consider the following system

du1
dt

= u1 − u2 + v1, t ∈ [0, T ]

du2
dt

= 2u2 + v2, t ∈ [0, T ]

u1(T ) = 1
u2(T ) = 2

(23)

And, determine an approximation of the control v = (v1, v2) such that the corresponding solution vanishes at time t = 0. As
develpped in section 2, the objective function is defined by

Jβ(v1, v2) =
1

2

∫ T

0

(
v21(t) + v22(t)

)
dt+

1

2β

(
u21(0) + u22(0)

)
(24)

The system (23) can be written in the form (1) by setting

G =

(
1 −1
0 2

)
and B =

(
1 0
0 1

)
The numerical experiment is conducted by taking T = 5

and m = 10. The approximate null controls for various values
of β as well as theirs corresponding solutions are represented
in Figures 1 and 2.

4.2. Example 2: Null Controllability of the 1d Heat
Equation

Let set Ω =]0, 1[ and ω ⊂⊂ Ω. Consider the problem:
given any data uT ∈ L2(Ω), find a control v ∈ L2((0, T )×ω)
such that the unique solution of the system

−ut − uxx = vχω, (t, x) ∈ (0, T )× Ω (25)

u(t, 0) = u(t, 1) = 0, t ∈ (0, T ) (26)

u(T, x) = uT (x), x ∈ Ω (27)

satisfies
u(0, x) = 0, x ∈ Ω. (28)

This problem is transformed using spatial semi

discretization. Let fix N > 0 and pose xk =
k

N + 1
,

k = 0, ..., N + 1. Discrete approximation via finite differences

can be stated as follows.

d

dt
(uk) =

−uk−1 + uk − uk+1

h2
− vkχω(xk), k = 1, ..., N

(29)

u0(t) = uN+1(t) = 0, t ∈ (0, T ) (30)

uk(T ) = uT (xk), k = 1, ..., N (31)

Setting u(t) = (u1(t), u2(t), ..., uN (t))
T and v(t) the

vector whose components are approximations of the control
v at points (t, xk) for xk ∈ ω, one can write the above discrete
system in the form (1) where G is the N by N order matrix
given by

G =


1 −1
−1 1 −1

. . . . . . . . .
−1 1 −1

−1 1


and B theN by r matrix, r being the number of discrete points
in ω whose (i, j)th components are defined by

Bij =

{
1 if xi is the jth discrete point of ω
0 otherwise

The MATLBAB code for dysplaying optimal control and the
corresponding solution of this problem is presented below

function testotpimcontrole2(u0,a,b,...beta,N,m)
x=linspace(0,1,N+2)’; h=1/(N+1);
A=toeplitz([2 -1 zeros(1,N-2)])/(hˆ2);
UT=u0(x(2:end-1)); I=find(x>=a & x<=b);
B=zeros(N,length(I));C=eye(size(B,2));
for j=1:length(I), B(I(j),j)=1;end
[t,Z,v]=optimalcontrol(A,B,C,UT,...1.2,beta,m);
nt=length(t);nv=size(v,2);
Z=[zeros(1,nt);Z’;zeros(1,nt)];
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[tt,xx]=meshgrid(t’,x); mesh(xx,tt,Z)
xlabel(’x’,’fontsize’,14)
ylabel(’t’,’fontsize’,14)
zlabel(’u(t,x)’,’fontsize’,14)
figure (2)
[ttt,xxx]=meshgrid(t’,[0 a-.1 ...a-.02 linspace(a,b,nv)...b+.02 b+.1 1] );
v=[zeros(nt,3) v zeros(nt,3)]’;
[tttt,xxxx]=meshgrid(linspace(0,...t(end),20),linspace(0,1,20));
vv=griddata(xxx,ttt,v,xxxx,tttt,...’cubic’); mesh(xxxx,tttt,vv)

This is illustrated in figures 3 and 4 via following commands

>> beta=0.002;N=10;m=18;
>> testotpimcontrole2(@(x)(sin(pi*x)),...

.2,.5,beta,N,m);

and

>> beta=0.002;N=10;m=18;
>> testotpimcontrole2(@(x)(exp(-300*...

(x-3/4).ˆ2)),.2,.4,beta,N,m);

witch calculate null controls for problems with respectively the final states u0(x) = sin(πx) and u0(x) = e−300(x−3/4)
2

.

Figure 3. β = 0.005 - N = 10 - m = 12 Solution for optimal control of minimum norm with initial state u0(x) = sin(πx)). Control vχω with ω =]0.2, 0.5[ (lower) and
corresponding controlled solution (upper).

Figure 4. β = 0.005 -N = 10 -m = 12 Solution for optimal control of minimum norm with initial state u0(x) = e−300(x−3/4)2 . Control vχω with ω =]0.2, 0.5[ (lower)
and corresponding controlled solution (upper).
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5. Concluding Remarks
In this paper, a new approach is developed for zero

controllability problems for a more general Cauchy retrograde
differential system and a suitable numerical scheme is
proposed. It is shown how to implement this scheme
in Matlab using some of its built-in functions. The
proposed numerical experiment shows that the numerical
approach developed using Matlab in this paper produces
very satisfactory results. In particular, example 2 of the
considered numerical experiment shows that this approach can
be efficiently generalized to the computation of null control for
more general PDE’s systems.
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