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Abstract: Abstract Data Types (ADT) are used when creating software systems, in the systems design. Usually we use 

algebraic specification to specify the operations in a data type. The use of data types is a methodology or style of working 

which yields improved design when followed. In this paper we study the addition of input-output operations to the algebraic 

specification of operations over a data type. The motivation is that input-output operations are used in actual implementations. 

A specification with input-output is more complete than one without it. We need input-output operations in our programs. This 

justifies the addition of such operations to the specification. We consider the definition of input-output operations in functional 

programming in particular in Haskell. Our input-output specifications are not exactly equal to Haskell programs although some 

of them are likely. We specify input-output operations in a form likely to the specification of the other operations. The result is 

the algebraic specification of the input-output operations for many frequently used data types. The language considered is 

sufficiently expressive to model all these operations. The technique is illustrated by means of a variety of examples. We started 

from sequences, continued with sets and finish with dictionaries. The specifications we present in this paper can be used as 

specifications of methods of ADT definitions in object oriented programing. 

Keywords: Abstract Data Types, Algebraic Specification, Input-Output 

 

1. Introduction 

Abstract Data Types (ADT) are used when creating 

software systems, in the systems design. The idea is to 

specify operations in data which are independent of the 

implementation. 

Usually algebraic specification is used to specify the 

operations in a data type. This notation is likely to functional 

programming. 

It is said that is more easy to write correct functional 

programs than imperative programs because the notation is 

more likely to mathematics. The idea is to use algebraic 

specification which is likely to functional languages as a 

specification language. 

The use of data types is a methodology or style of working 

which yields improved design when followed. It is useful to 

consider a collection of operations at design time and then 

specify them in increasingly greater levels of detail until 

achieving an executable implementation [8-10, 15]. 

A possibility is to write first the algebraic specification 

(without worrying about the efficiency), continue with an 

implementation with recursive functions and possibly finish 

the implementation with iterative functions or procedures to 

have a more efficient implementation. 

In this paper we study the addition of input-output 

operations to the algebraic specification of operations over a 

data type. 

The motivation is that input-output operations are used in 

actual implementations. We specify input-output operations 

in a form likely to the specification of the other operations. 

There are two chief concerns in devising a technique for 

specification: to define a notation which allows a rigorous 

definition of operations being representation independent and 

to learn to use such notation [8]. 

A good data type specification should give enough 

information to define the type, but without limiting the 

possible implementations. Algebraic specification is 

appropiate for data types design, since it meets this criteria. 

Algebraic Specification separates the relevant detail of 

what from the irrelevant detail of how. We use the term 
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Abstract Data Type to refer to a class of objects defined by a 

representation independent specification. 

We supply the functionality of the operations giving: name 

of operation, domain and range. But to rely on one's intuition 

about the meaning of names is not enough. There are 

isomorphic functionalities, as by example between Stacks 

and Queues. We need to specify the semantics of the 

operations of the type to distinguish them. 

Then an algebraic specification of an abstract type consists 

of a syntactic specification providing names, domains and 

ranges and a semantic specification consisting on a set of 

equations defining the meaning of the operations by stating 

their relationship to one another. 

Dealing with input and output in TADs as in functional 

languages (by example Haskell [16-17]) has as a problem 

that requires side effects. Mathematical functions always 

have to return the same results for the same arguments. Any 

IO library should provide operations to read and write basic 

types like Integers, Strings, etc. We want this operations to be 

functions but they are not. An operation that reads a String 

from the keyboard cannot be a function since it will not 

return the same String every time. 

We can not think of things like "read a String from the 

keyboard" or "print an Integer" as functions in the pure 

mathematical sense. We give to them other name (used in 

Haskell): Actions. And they have special types (in our case 

the following): 

input_String: input  String 

output_integer: Integer  output 

We put actions together writting them between {, } and 

ending each in a semicolon. Instead of <- used in Haskell we 

use let. 

Our input-output specifications are not exactly equal to 

Haskell programs although some of them are likely. They are 

equations that must be satisfied and are not necessarily 

applied to constructors although sometimes they are. 

In [18] is summarized what abstraction means. Some of the 

names used for this concept are: Abstraction, Modularity, 

Encapsulation, Information Hiding, Separation of Concerns. 

As they say in the early days of computing, a programming 

language came with built-in types (as integers, booleans, 

strings, etc.), built in procedures for input-output and users 

could define their own procedures. A major advance in 

software development was the idea of abstract types: that one 

could design a programming language to allow user-defined 

types too. This idea came out of the work of many 

researchers, notably Dahl, Dijkstra, Hoare, Parnas, Liskov 

and Guttag [1-10, 14-15]. The key idea of data abstraction is 

that a type is characterized by the operations you can perform 

on it. What made abstract types new and different was the 

focus on operations, the user of the type would not need to 

worry about how its values were actually stored, all that 

matters are the operations. Critically, a good abstract data 

type should be representation independent. Changes in 

representation have no effect on code outside the abstract 

type itself. For example, the operations offered by Stack are 

independent of whether it is represented as a linked list or as 

an array. 

The rest of the paper is organized as follows: in section 2 

we present the constructions we use in the specifications. In 

section 3 the specification of sequences, in section 4 the 

specification of sets and in section 5 the specification of 

dictionaries. Section 6 present the Conclusion and we finish 

in section 7 suggesting further work.. 

2. Algebraic Specification and  

Input-Output 

The constructions we allow to use in our algebraic 

specification are the following: 

1. parameters 

2. if-then-else 

3. let in expressions 

4. boolean expressions 

5. recursion 

6. sequencing of instructions inside {} 

7. return 

The constructions 1, 2, 4 and 5 were used in [8]. Besides 

if-then-else we use if-then. We add to them a let operation 

whose use is like in functional programs and sequencing that 

is used in some input and in the output specifications. Finally 

we have a return operation that finishes a function. 

We consider the specification of two kinds of input 

operations: 

1) we read a specific number of elements 

2) we read until the sentinel EOF is at the input 

For the output, we traverse the ADT printing the elements 

until reaching an empty data-type. 

We will specify three kinds of Collections: Sequences, Sets 

and Dictionaries. Inside Sequences we consider Stacks and 

Queues. As Dictionaries we consider Binary Search Trees 

and Closed Hash tables. 

Sequencing of operations is used like in Haskell [16-17] 

where input-output operations are defined by sequences of 

actions. In Haskell there are sequences of statements 

introduced by the do notation. We skip the do keyword. 

Besides input-output operations we make use of other 

operations proper of the ADT we are considering. We define 

sequencing putting the operations inside brackets and 

finishing by;. 

We classify the operations we specify in: 

1) constructors 

2) observers 

3) selectors 

4) extenders 

Constructors are used to define elements in the ADT, 

observers return a boolean, selectors return parts of the 

objects we are considering, extenders are the other operations. 

In what follows we can see the operations input_item and 

output_item as polymorphic functions where item is a type 

variable or as a monomorphic function where item is a 

concrete type. More about polymorphism and 

monomorphism in [13].  



 Mathematics and Computer Science 2021; 6(2): 30-37 32 

 

3. Specification of Sequences 

A sequence is an ordered collection of elements. There is a 

first element, a second, etc. and each of them occupies a 

definit position in the sequence. Inside this family there are 

different ADT's. We will study the specification of input-

output for the following sequences: Stacks and Queues. 

3.1. Specification of Stacks 

A stack is a special kind of sequence in which all 

insertions and deletions take place at one end, called the top. 

Other name for a stack is LIFO or last-in-first-out. 

Let us begin with the algebraic specification of Stacks 

without input-output. From now on, we use sometimes 

pattern matching when specifying the semantics of 

operations. 

ADT Stack(item) 

Syntax: 

constructors: 

NewStack:  Stack  

Push: (Stack  item)  Stack  

observers 

IsNewStack: Stack  Boolean  

selectors: 

Pop: Stack  Stack  

Top: Stack  item  

Semantics: 

IsNewStack(NewStack)=true 

IsNewStack(Push(s,i))=false 

Pop(t) precondition not(IsNewStack(t)) 

Pop(Push(s,i))=s 

Top(t) precondition not(IsNewStack(t)) 

Top(Push(s,i))=i 

We indicate preconditions that must hold before applying an 

operation. We specify the operations only when holds the 

precondition. An alternative followed in [8] is to have a value 

undefined that is returned when an operation is applied to a value 

that does not fit the precondition, by example Top(NewStack). 

We consider the following kind of operations: constructors, 

whose semantics is primitive and is not given explicitly but 

by the application of other operations to elements constructed 

by their application. Observers that give boolean values when 

applied to elements constructed by application of 

constructors and selectors that return the parts from which 

are constructed the elements. 

3.1.1. Specification of Input in Stacks 

Input operations are applied to (). Usually input operations 

read a specific number of values or until a sentinel is at the 

input. We assume the input-output operations of primitive 

types like Integers, Char, Bool, Strings are given. 

Consider first the case in which we read a predefined 

number of elements. We use functions input_int and 

input_item to read an integer and an item respectively. We 

specify the input by 

Read_Stack: input  Stack  

Read_Stack() = let i=input_int() in Read_Stack_Value(i) 

input_item: input  item  

Read_Stack_Value: int  Stack  

Read_Stack_Value(0)=NewStack 

Read_Stack_Value(x+1)= let s=Read_Stack_Value(x) in 

let i=input_item() in Push(s,i) 

Another possibility is to read values until a sentinel is read. 

The specification in this case is 

Read_Stack: input  Stack  

Read_Stack() = Read_Stack_Value(NewStack) 

Read_Stack_Value: Stack   Stack 

Read_Stack_Value(s) = let i=input_item() in 

if (i==EOF) then s 

else Read_Stack_Value(Push(s,i)) 

3.1.2. Specification of Output in Stacks 

The case of the output uses sequencing. We print the 

elements of the stack from top to bottom. 

output_item: item  output  

Print_Stack: Stack  output  

Print_Stack(s) = if (not(IsNewStack(s))) 

then {output_item(Top(s)); 

Print_Stack(Pop(s))} 

Print_Stack can be specified also by pattern matching in the 

constructors. In the empty case we use the return operation. 

Print_Stack: Stack  output  

Print_Stack NewStack = return 

Print_Stack (push s i) = {output_item(i); Print_Stack(s)} 

3.2. Specification of Queues 

A queue is another special kind of sequence, where items 

are inserted at one end (the rear) and deleted at the other end 

(the front). Another name for a queue is FIFO or first-in-first-

out. 

Let us begin with the algebraic specification of Queues 

without input-output. 

ADT Queue(item) 

Syntax: 

constructors: 

NewQueue:  Queue  

Add_at_back: (Queue  item)  Queue   

observers: 

IsNewQueue: Queue  Boolean  

selectors: 

Front: Queue  item  

Delete: Queue  Queue  

extender: 

Append: (Queue  Queue)  Queue   

Semantics: 

IsNewQueue(NewQueue)=true 

IsNewQueue(Add_at_back(s,i))=false 

Front(t) precondition not(IsNewQueue(t)) 

Front(Add_at_back(s,i)) = if IsNewQueue(s) then i 

else Front(s) 

Delete(t) precondition not(IsNewQueue(t)) 

Delete(Add_at_back(s,i)) = if IsNewQueue(s) then 

NewQueue 

else Add_at_back(Delete(s),i) 
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Append(q,NewQueue)=q 

Append(q,Add_at_back(s,i))=Add_at_back(Append(q,s),i) 

We have added a new kind of operation: an extender. In 

this example we define Append which returns a Queue 

compossed from another two. 

3.2.1. Specification of Input in Queues 

We consider the same two cases that in the case of Stacks, 

i.e. to read an specified number of elements and to read until 

is input a sentinel. 

Consider first the case in which we read a predefined 

number of elements. We use functions input_int and 

input_item as before. We specify the input by 

Read_Queue: input  Queue  

Read_Queue() = let i=input_int() in 

Read_Queue_Value(NewQueue,i) 

input_item: input  item  

Read_Queue_Value: (Queue  int)  Queue   

Read_Queue_Value(s,0) = s 

Read_Queue_Value(s,x+1) = let i=input_item() in 

let z = Add_at_back(s,i) in Read_Queue_Value(z,x); 

The specification of the case in which we read values until 

a lookout is: 

Read_Queue: input  Queue  

Read_Queue() = Read_Queue_Value(NewQueue) 

Read_Queue_Value: Queue  Queue  

Read_Queue_Value(s) = let i=input_item() in 

if (i==EOF) then s 

else Read_Queue_Value(Add_at_back(s,i)) 

3.2.2. Specification of Output in Queues 

In the case of the output of a queue we print the elements 

from left to right using sequencing. 

output_item: item  output  

Print_Queue: Queue  output  

Print_Queue(s) = if (not(IsNewQueue(s))) 

let i=Front(s) in {output_item(i); 

Print_Queue(Delete(s));} 

4. Specification of Sets 

This collection represent the mathematical notion of Set. 

There are no repeated elements and there is no an order 

relation between the elements. The primitive operations of 

this ADT are: 

ADT Set(item) 

Syntax: 

constructors: 

NewSet:  Set  

Add: (Set  item)  Set   

observers: 

IsNewSet: Set  Boolean  

Belongs: (Set  item)  Boolean   

extenders: 

Delete: (Set  item)  Set   

Union: (Set  Set)  Set   

Intersection: (Set  Set)  Set   

Difference: (Set  Set)  Set   

Semantics: 

IsNewSet(NewSet)=true 

IsNewSet(Add(s,i))=false 

Belongs(NewSet,i)=false 

Belongs(Add(s,i),j) = if (i==j) then true 

else Belongs(s,j) 

Delete(NewSet,i)=NewSet 

Delete(Add(s,i),k) = if (i==k) then s 

else Add(Delete(s,k),i) 

Union(NewSet,s)=s 

Union(Add(s,i),t)=Add(Union(s,t),i) 

Intersection(NewSet,s)=NewSet 

Intersection(Add(s,i),t) = if Belongs(t,i) then 

Add(Intersection(s,t),i) 

else Intersection(s,t) 

Difference(NewSet,s)=NewSet 

Difference(Add(s,i),t) = if Belongs(t,i) then 

Difference(s,Delete(t,i)) 

else Add(Difference(s,t),i) 

4.1. Specification of Input in Sets 

Consider first the case in which we read a predefined 

number of elements. We use functions input_int and 

input_item as before. We specify the input by 

Read_Set: input  Set  

Read_Set() = let i=input_int() in 

Read_Set_Value(NewSet,i) 

input_item: input  item  

Read_Set_Value: (Set  int)  Set   

Read_Set_Value(s,0)=s 

Read_Set_Value(s,x+1) = let j=input_item() in 

if Belongs(s,j) then Read_Set_Value(s,x+1); 

else Read_Set_Value(Add(s,j),x) 

We consider when is input an element that already belongs 

to the set. In this case the element is not added again and we 

don't decrease the number of elements to be read. 

The specification of the case in which we read values until 

a lookout is: 

Read_Set: input  Set  

Read_Set() = Read_Set_Value(NewSet) 

Read_Set_Value: Set  Set  

Read_Set_Value(s) = let i=input_item() in 

if (i==EOF) then s 

else if Belongs(s,i) then Read_Set_Value(s) 

else Read_Set_Value(Add(s,i)) 

4.2. Specification of Output in Sets 

output_item: item  output  

Print_Set: Set  output  

Print_Set(s) = if (not(IsNewSet(s))) then 

let s=Add(t,i) in {output_item(i); 

Print_Set(t);} 

5. Specification of Dictionaries 

This family defines collections whose elements have an 



 Mathematics and Computer Science 2021; 6(2): 30-37 34 

 

attribute that is a key that identify them. We will study the 

specification of input-output for the following dictionaries: 

Binary Search Trees (BST) and Closed Hash tables. 

5.1. Specification of Binary Search Trees 

A binary search tree is a dictionary whose elements are 

ordered by some linear order. Is a binary tree in which all the 

elements in the left subtree of a node are smaller that the 

element at the node and all the elements in the right subtree 

of a node are greater that the element at the node. We call this 

the search property. 

Let us begin with the algebraic specification of Binary 

Search Trees without input-output. We have an extender 

AddElem that adds an element to a binary search tree if the 

element does not belong to the tree in which case 

the element is not added. The addition of the elements 

satisfies the search property. BST's are constructed applying 

NewBST that gives an empty BST and Add that given two 

BST and an element returns a BST. 

ADT BST(item) 

Syntax: 

constructors: 

NewBST:  BST  

Add: (BST  BST  item)    BST 

observers: 

IsNewBST: BST  Boolean  

Member: (BST  key)  Boolean   

selectors: 

Key: item  key  

Root: BST  item  

Left: BST  BST  

Right: BST  BST  

Min: BST  item  

Max: BST  item  

Find: (BST  key)  item   

extenders: 

Modify: (BST  item)  BST   

AddElem: (BST  item)  BST   

Delete: (BST  key)  BST   

Semantics: 

IsNewBST(NewBST)=true 

IsNewBST(Add(l,r,i))=false 

Member(NewBST,i)=false 

Member(Add(l,r,i),j)) = if (Key i==j) then true 

else if (Key i<j) then Member(r,j) 

else Member(l,j) 

Root(t) precondition not(IsNewBST(t)) 

Root(Add(l,r,i))=i 

Left(t) precondition not(IsNewBST(t)) 

Left(Add(l,r,i))=l 

Right(t) precondition not(IsNewBST(t)) 

Right(Add(l,r,i))=r 

Min(t) precondition not(IsNewBST(t)) 

Min(Add(l,r,i)) = if(IsNewBST(l)) then i 

else Min(l) 

Max(t) precondition not(IsNewBST(t)) 

Max(Add(l,r,i)) = if(IsNewBST(r)) then i 

else Max(r) 

Find(t,j) precondition Member(t,j) 

Find(Add(l,r,i),j) = if (Key i==j) then i 

else if (Key i<j) then Find(r,j) 

else Find(l,j) 

Modify(t,j) precondition Member(t,Key j) 

Modify(Add(l,r,i),j)) = if (Key i==Key j) then Add(l,r,j) 

else if (Key i<Key j) then Add(l,Modify(r,j),i) 

else Add(Modify(l,j),r,i) 

AddElem(NewBST,i)=Add(NewBST,NewBST,i) 

AddElem(Add(NewBST,NewBST,i),j) = if (i<j) then 

Add(NewBST,Add(NewBST,NewBST,j),i) 

else if (i>j) then Add(Add(NewBST,NewBST,j),NewBST,i) 

else Add(NewBST,NewBST,i) 

AddElem(Add(NewBST,r,i),j) = if (i<j) then 

Add(NewBST,AddElem(r,j),i) 

else if (i>j) then Add(AddElem(NewBST,j),r,i) 

else Add(NewBST,r,i) 

AddElem(Add(l,NewBST,i),j) = if (i<j) then 

Add(l,AddElem(NewBST,j),i) 

else if (i>j) then Add(AddElem(l,j),NewBST,i) 

else Add(l,NewBST,i) 

AddElem(Add(l,r,i),j) = if (i<j) then Add(l,AddElem(r,j),i) 

else if (i>j) then Add(AddElem(l,j),r,i) 

else Add(l,r,i) 

Delete(t,j) precondition Member(t,j) 

Delete(Add(NewBST,NewBST,i),j) = if (i==j) then 

NewBST 

else Add(NewBST,NewBST,i) 

Delete(Add(NewBST,r,i),j) = if (i>j) then Add(NewBST,r,i) 

else if (i<j) then Add(NewBST,Delete(r,j),i) 

else r 

Delete(Add(l,NewBST,i),j) = if (i<j) then Add(l,NewBST,i) 

else if (i>j) then Add(Delete(l,j),NewBST,i) 

else l 

Delete(Add(l,r,i),j) = if (i<j) then Add(l,Delete(r,j),i) 

else if (i>j) then Add(Delete(l,j),r,i) 

else let d=Min(r) in Add(l,Delete(r,d),d) 

The Key function depends on the representation and is not 

defined. 

5.1.1. Specification of Input in BST 

Consider first the case in which we read a predefined 

number of elements. We specify the input by 

Read_BST: input  BST  

Read_BST() = let i=input_int() in 

Read_BST_Value(NewBST,i,0) 

input_item: input  item  

Read_BST_Value: (BST  int    int)  BST  

Read_BST_Value(s,0,0) = s 

Read_BST_Value(s,0,k) = Read_BST_Value(s,k,0) 

Read_BST_Value(s,x+1,k) = let i=input_item() in 

{if Member(s,Key i)) then Read_BST_Value(s,x+1,k+1); 

else Read_BST_Value(AddElem(s,i),x,k);} 

We sum in parameter k the number of repetitions in the 

input to read after again this number of elements. We repeat 

this process until there are not more repeated elements at the 
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input. We use sequencing to read x elements as part of the 

input of the x+1 elements. 

The specification of the case in which we read values until 

a lookout is: 

Read_BST: input  BST  

Read_BST() = Read_BST_Value(NewBST) 

Read_BST_Value: BST  BST  

Read_BST_Value(s) = let i=input_item() in 

if (Key i==EOF) then s 

else if (Member(s,Key i)) then Read_BST_Value(s) 

else Read_BST_Value(AddElem(s,i)) 

in this case, if we read an element that is already in the tree 

it is not added again. 

5.1.2. Specification of Output in BST 

In the case of the output of a BST we print the elements in 

inorder. 

output_item: item  output  

Inorder_BST: BST  output  

Inorder_BST(s) = if (not(IsNewBST(s))) then 

{Inorder_BST(Left(s)); 

output_item(Root(s)); 

Inorder_BST(Right(s));} 

A definition for Inorder_BST by pattern matching is: 

Inorder_BST: BST  output  

Inorder_BST(NewBST) = return 

Inorder_BST(Add(l, r, i)) = {Inorder_BST(l); 

output_item(i); 

Inorder_BST(r);} 

5.2. Specification of Closed Hash Tables 

When an application needs to store information we convert 

the key in an index that indicates the position at which is 

stored the information. If we want to add an element and the 

position is occupied we search sequentially the first position 

free. In the same way we search an element when we want to 

know if is in the table, to delete it or to modify it. 

Let us begin with the algebraic specification of Closed 

Hash. 

The operations Select, FHash, SetFree and Key depend on 

the representation and we don't give definitions for they. 

ADT Hash(key, item) 

Syntax: 

constructors: 

Empty: item 

NewHash:  Hash  

Insert: (Hash  key  item)  Hash    

observers: 

IsFull: Hash  Boolean  

IsFree: item  Boolean  

Member: (Hash  key)  Boolean   

selectors: 

Key: item  key  

FHash: item  key  

Select: (Hash  key)  item   

Element: (Hash  key)  item   

extensors: 

Add: (Hash  item)  Hash   

SetFree: (Hash  key)  Hash   

Delete: (Hash  key)  Hash   

Modify: (Hash  key  item)  Hash    

semantics: 

IsFree(Empty) = true 

IsFree(o) = false 

Mem(h,i,k,m) = let j=Select(h,i) in if (not(IsFree(j)) and 

Key(j)==k) 

then true 

else if (not(m-1==i)) then Mem(h,(i+1)%N,k,m) 

else false 

Member(NewHash,k) = false 

Member(h,k) = if (k==0) Mem(h,k,k,N) 

else Mem(h,k,k,k) 

Element(h,k) precondition Member(h,k) 

Elem(h,i,k) = let j=Select(h,i) in if (not(IsFree(j)) and 

Key(j)==k) then j 

else Elem(h,(i+1)%N,k) 

Element(h,k) = Elem(h,k,k) 

IsF(h,i,k) = let s=Element(h,i) in if (i<k) then not(IsFree(s)) 

and isF(h,i+1,k) 

else true 

IsFull(h) = IsF(h,0,N) 

Add(h,k) precondition not(Member(h,Key(k))) 

Add'(h,i,k) = let j=Select(h,i) in if (IsFree(j)) then 

Insert(h,i,k) 

else Add'(h,(i+1)%N,k) 

Add(h,k) = if (not(IsFull(h)) 

then let i=FHash(k) in Add'(h,i,k) 

Delete(h,k) precondition Member(h,k) 

Del(h,i,k) = let j=Select(h,i) in if (not(IsFree(j)) and 

Key(j)==k) 

then SetFree(h,i) 

else Del(h,(i+1)%N,k) 

Delete(h,k) = Del(h,k,k) 

Modify(h,k,s) precondition Member(h,k) 

Mod(h,i,k,s) = let j=Select(h,i) in if (not(IsFree(j)) and 

Key(j)==k) 

then Add(Delete(h,k),s) 

else Mod(h,(i+1)%N,k,s) 

Modify(h,k,s) = Mod(h,k,k,s) 

Add adds an element that does not belong to the hash table 

while Insert is a constructor. An element is added in case it 

does not belong to the table and the table is not full. The 

definitions of the functions are not given depending on the 

constructors as in the cases before. They are recursive 

functions given by pattern matching and we know some of 

they finish (Element, Delete, Modify) by the precondition in 

terms of Member. 

5.2.1. Specification of Input in Closed Hash Tables 

Consider first the case in which we read a predefined 

number of elements. We use functions input_int and 

input_item as before. We will specify three ways of adding 

elements: as in the case of Sets, as in the case of BST and 

until a lookout. 
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Like Sets: 

Read_Hash: input  Hash  

Read_Set() = let i=input_int() in 

Read_Hash_Value(NewHash,i) 

input_item: input  item  

Read_Hash_Value: (Hash x int)  Hash  

Read_Hash_Value(s,0) = s 

Read_Hash_Value(s,x+1) = let j=input_item() in 

if Member(s,j) then Read_Hash_Value(s,x+1) 

else Read_Hash_Value(Add(s,j),x) 

Like BST: 

Read_Hash: input  Hash  

Read_Hash() = let i=input_int() in 

Read_Hash_Value(NewHash,i,0) 

input_item: input   item 

Read_Hash_Value: (Hash  int  int)  Hash    

Read_Hash_Value(h,0,0) = h 

Read_Hash_Value(h,0,k) = Read_Hash_Value(h,k,0) 

Read_Hash_Value(h,x+1,k) = let i=input_item() in 

if Member(h,i) then Read_Hash_Value(h,x+1,k+1) 

else Read_Hash_Value(Add(h,i),x,k) 

Until a lookout: 

Read_Hash: input  Hash  

Read_Hash() = Read_Hash_Value(NewHash) 

Read_Hash_Value: Hash  Hash  

Read_Hash_Value(s) = let i=input_item() in 

if (i==EOF) then s 

else if (Member(s,Key(i))) then Read_Hash_Value(s) 

else Read_Hash_Value(Add(s,i)) 

5.2.2. Specification of Output in Hash Tables 

The operation Set_of_keys below constructs from a Hash 

Table the Set of their keys. 

Set_of_keys: Hash  Set  

Set_of_keys(NewHash) = NewSet 

Set_of_keys(Add(s,i)) = Add(Set_of_keys(s),Key(i)) 

output_item: item  output  

Output_Hash: Hash  output  

Output_Hash(h) = let s=Set_of_keys(h) in 

Output_using_key(s,h) 

Output_using_key: Set  Hash  output   

Output_using_key(s,h) = if (not(IsNewSet(s))) then 

let s=Add(s',k) in {output_item(Element(h,k)); 

Output_using_key(s',h);} 

Output_using_key print the elements whose key is in the 

set. 

6. Conclusions 

Algebraic specification supports input-output operations in 

a functional framework. We model input-output as well as 

the other operations usually considered in algebraic 

specification of ADTs. The language considered is 

sufficiently expressive to model all these operations. The 

technique is illustrated by means of a variety of examples. 

We started from sequences and continued with sets and 

dictionaries. The specifications we present in this paper can 

be used as specifications of methods of ADT definitions in 

object oriented programming. 

Further Work 

Remains to study if holds the completeness of the 

Algebraic Specification of input-output [11-12]. 
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