

Mathematics and Computer Science
2021; 6(2): 30-37

http://www.sciencepublishinggroup.com/j/mcs

doi: 10.11648/j.mcs.20210602.11

ISSN: 2575-6036 (Print); ISSN: 2575-6028 (Online)

Algebraic Specification for Input-Output in Abstract Data
Types

Patricia Peratto

Normal Institute of Technical Teaching, National Administration of Public Education, Montevideo, Uruguay

Email address:

To cite this article:
Patricia Peratto. Algebraic Specification for Input-Output in Abstract Data Types. Mathematics and Computer Science.

Vol. 6, No. 2, 2021, pp. 30-37. doi: 10.11648/j.mcs.20210602.11

Received: March 23, 2021; Accepted: April 21, 2021; Published: April 29, 2021

Abstract: Abstract Data Types (ADT) are used when creating software systems, in the systems design. Usually we use

algebraic specification to specify the operations in a data type. The use of data types is a methodology or style of working

which yields improved design when followed. In this paper we study the addition of input-output operations to the algebraic

specification of operations over a data type. The motivation is that input-output operations are used in actual implementations.

A specification with input-output is more complete than one without it. We need input-output operations in our programs. This

justifies the addition of such operations to the specification. We consider the definition of input-output operations in functional

programming in particular in Haskell. Our input-output specifications are not exactly equal to Haskell programs although some

of them are likely. We specify input-output operations in a form likely to the specification of the other operations. The result is

the algebraic specification of the input-output operations for many frequently used data types. The language considered is

sufficiently expressive to model all these operations. The technique is illustrated by means of a variety of examples. We started

from sequences, continued with sets and finish with dictionaries. The specifications we present in this paper can be used as

specifications of methods of ADT definitions in object oriented programing.

Keywords: Abstract Data Types, Algebraic Specification, Input-Output

1. Introduction

Abstract Data Types (ADT) are used when creating

software systems, in the systems design. The idea is to

specify operations in data which are independent of the

implementation.

Usually algebraic specification is used to specify the

operations in a data type. This notation is likely to functional

programming.

It is said that is more easy to write correct functional

programs than imperative programs because the notation is

more likely to mathematics. The idea is to use algebraic

specification which is likely to functional languages as a

specification language.

The use of data types is a methodology or style of working

which yields improved design when followed. It is useful to

consider a collection of operations at design time and then

specify them in increasingly greater levels of detail until

achieving an executable implementation [8-10, 15].

A possibility is to write first the algebraic specification

(without worrying about the efficiency), continue with an

implementation with recursive functions and possibly finish

the implementation with iterative functions or procedures to

have a more efficient implementation.

In this paper we study the addition of input-output

operations to the algebraic specification of operations over a

data type.

The motivation is that input-output operations are used in

actual implementations. We specify input-output operations

in a form likely to the specification of the other operations.

There are two chief concerns in devising a technique for

specification: to define a notation which allows a rigorous

definition of operations being representation independent and

to learn to use such notation [8].

A good data type specification should give enough

information to define the type, but without limiting the

possible implementations. Algebraic specification is

appropiate for data types design, since it meets this criteria.

Algebraic Specification separates the relevant detail of

what from the irrelevant detail of how. We use the term

31 Patricia Peratto: Algebraic Specification for Input-Output in Abstract Data Types

Abstract Data Type to refer to a class of objects defined by a

representation independent specification.

We supply the functionality of the operations giving: name

of operation, domain and range. But to rely on one's intuition

about the meaning of names is not enough. There are

isomorphic functionalities, as by example between Stacks

and Queues. We need to specify the semantics of the

operations of the type to distinguish them.

Then an algebraic specification of an abstract type consists

of a syntactic specification providing names, domains and

ranges and a semantic specification consisting on a set of

equations defining the meaning of the operations by stating

their relationship to one another.

Dealing with input and output in TADs as in functional

languages (by example Haskell [16-17]) has as a problem

that requires side effects. Mathematical functions always

have to return the same results for the same arguments. Any

IO library should provide operations to read and write basic

types like Integers, Strings, etc. We want this operations to be

functions but they are not. An operation that reads a String

from the keyboard cannot be a function since it will not

return the same String every time.

We can not think of things like "read a String from the

keyboard" or "print an Integer" as functions in the pure

mathematical sense. We give to them other name (used in

Haskell): Actions. And they have special types (in our case

the following):

input_String: input  String

output_integer: Integer  output

We put actions together writting them between {, } and

ending each in a semicolon. Instead of <- used in Haskell we

use let.

Our input-output specifications are not exactly equal to

Haskell programs although some of them are likely. They are

equations that must be satisfied and are not necessarily

applied to constructors although sometimes they are.

In [18] is summarized what abstraction means. Some of the

names used for this concept are: Abstraction, Modularity,

Encapsulation, Information Hiding, Separation of Concerns.

As they say in the early days of computing, a programming

language came with built-in types (as integers, booleans,

strings, etc.), built in procedures for input-output and users

could define their own procedures. A major advance in

software development was the idea of abstract types: that one

could design a programming language to allow user-defined

types too. This idea came out of the work of many

researchers, notably Dahl, Dijkstra, Hoare, Parnas, Liskov

and Guttag [1-10, 14-15]. The key idea of data abstraction is

that a type is characterized by the operations you can perform

on it. What made abstract types new and different was the

focus on operations, the user of the type would not need to

worry about how its values were actually stored, all that

matters are the operations. Critically, a good abstract data

type should be representation independent. Changes in

representation have no effect on code outside the abstract

type itself. For example, the operations offered by Stack are

independent of whether it is represented as a linked list or as

an array.

The rest of the paper is organized as follows: in section 2

we present the constructions we use in the specifications. In

section 3 the specification of sequences, in section 4 the

specification of sets and in section 5 the specification of

dictionaries. Section 6 present the Conclusion and we finish

in section 7 suggesting further work..

2. Algebraic Specification and

Input-Output

The constructions we allow to use in our algebraic

specification are the following:

1. parameters

2. if-then-else

3. let in expressions

4. boolean expressions

5. recursion

6. sequencing of instructions inside {}

7. return

The constructions 1, 2, 4 and 5 were used in [8]. Besides

if-then-else we use if-then. We add to them a let operation

whose use is like in functional programs and sequencing that

is used in some input and in the output specifications. Finally

we have a return operation that finishes a function.

We consider the specification of two kinds of input

operations:

1) we read a specific number of elements

2) we read until the sentinel EOF is at the input

For the output, we traverse the ADT printing the elements

until reaching an empty data-type.

We will specify three kinds of Collections: Sequences, Sets

and Dictionaries. Inside Sequences we consider Stacks and

Queues. As Dictionaries we consider Binary Search Trees

and Closed Hash tables.

Sequencing of operations is used like in Haskell [16-17]

where input-output operations are defined by sequences of

actions. In Haskell there are sequences of statements

introduced by the do notation. We skip the do keyword.

Besides input-output operations we make use of other

operations proper of the ADT we are considering. We define

sequencing putting the operations inside brackets and

finishing by;.

We classify the operations we specify in:

1) constructors

2) observers

3) selectors

4) extenders

Constructors are used to define elements in the ADT,

observers return a boolean, selectors return parts of the

objects we are considering, extenders are the other operations.

In what follows we can see the operations input_item and

output_item as polymorphic functions where item is a type

variable or as a monomorphic function where item is a

concrete type. More about polymorphism and

monomorphism in [13].

 Mathematics and Computer Science 2021; 6(2): 30-37 32

3. Specification of Sequences

A sequence is an ordered collection of elements. There is a

first element, a second, etc. and each of them occupies a

definit position in the sequence. Inside this family there are

different ADT's. We will study the specification of input-

output for the following sequences: Stacks and Queues.

3.1. Specification of Stacks

A stack is a special kind of sequence in which all

insertions and deletions take place at one end, called the top.

Other name for a stack is LIFO or last-in-first-out.

Let us begin with the algebraic specification of Stacks

without input-output. From now on, we use sometimes

pattern matching when specifying the semantics of

operations.

ADT Stack(item)

Syntax:

constructors:

NewStack: Stack

Push: (Stack  item) Stack

observers

IsNewStack: Stack Boolean

selectors:

Pop: Stack Stack

Top: Stack item

Semantics:

IsNewStack(NewStack)=true

IsNewStack(Push(s,i))=false

Pop(t) precondition not(IsNewStack(t))

Pop(Push(s,i))=s

Top(t) precondition not(IsNewStack(t))

Top(Push(s,i))=i

We indicate preconditions that must hold before applying an

operation. We specify the operations only when holds the

precondition. An alternative followed in [8] is to have a value

undefined that is returned when an operation is applied to a value

that does not fit the precondition, by example Top(NewStack).

We consider the following kind of operations: constructors,

whose semantics is primitive and is not given explicitly but

by the application of other operations to elements constructed

by their application. Observers that give boolean values when

applied to elements constructed by application of

constructors and selectors that return the parts from which

are constructed the elements.

3.1.1. Specification of Input in Stacks

Input operations are applied to (). Usually input operations

read a specific number of values or until a sentinel is at the

input. We assume the input-output operations of primitive

types like Integers, Char, Bool, Strings are given.

Consider first the case in which we read a predefined

number of elements. We use functions input_int and

input_item to read an integer and an item respectively. We

specify the input by

Read_Stack: input Stack

Read_Stack() = let i=input_int() in Read_Stack_Value(i)

input_item: input item

Read_Stack_Value: int Stack

Read_Stack_Value(0)=NewStack

Read_Stack_Value(x+1)= let s=Read_Stack_Value(x) in

let i=input_item() in Push(s,i)

Another possibility is to read values until a sentinel is read.

The specification in this case is

Read_Stack: input Stack

Read_Stack() = Read_Stack_Value(NewStack)

Read_Stack_Value: Stack  Stack

Read_Stack_Value(s) = let i=input_item() in

if (i==EOF) then s

else Read_Stack_Value(Push(s,i))

3.1.2. Specification of Output in Stacks

The case of the output uses sequencing. We print the

elements of the stack from top to bottom.

output_item: item output

Print_Stack: Stack output

Print_Stack(s) = if (not(IsNewStack(s)))

then {output_item(Top(s));

Print_Stack(Pop(s))}

Print_Stack can be specified also by pattern matching in the

constructors. In the empty case we use the return operation.

Print_Stack: Stack output

Print_Stack NewStack = return

Print_Stack (push s i) = {output_item(i); Print_Stack(s)}

3.2. Specification of Queues

A queue is another special kind of sequence, where items

are inserted at one end (the rear) and deleted at the other end

(the front). Another name for a queue is FIFO or first-in-first-

out.

Let us begin with the algebraic specification of Queues

without input-output.

ADT Queue(item)

Syntax:

constructors:

NewQueue: Queue

Add_at_back: (Queue item) Queue 

observers:

IsNewQueue: Queue Boolean

selectors:

Front: Queue item

Delete: Queue Queue

extender:

Append: (Queue Queue) Queue 

Semantics:

IsNewQueue(NewQueue)=true

IsNewQueue(Add_at_back(s,i))=false

Front(t) precondition not(IsNewQueue(t))

Front(Add_at_back(s,i)) = if IsNewQueue(s) then i

else Front(s)

Delete(t) precondition not(IsNewQueue(t))

Delete(Add_at_back(s,i)) = if IsNewQueue(s) then

NewQueue

else Add_at_back(Delete(s),i)

33 Patricia Peratto: Algebraic Specification for Input-Output in Abstract Data Types

Append(q,NewQueue)=q

Append(q,Add_at_back(s,i))=Add_at_back(Append(q,s),i)

We have added a new kind of operation: an extender. In

this example we define Append which returns a Queue

compossed from another two.

3.2.1. Specification of Input in Queues

We consider the same two cases that in the case of Stacks,

i.e. to read an specified number of elements and to read until

is input a sentinel.

Consider first the case in which we read a predefined

number of elements. We use functions input_int and

input_item as before. We specify the input by

Read_Queue: input Queue

Read_Queue() = let i=input_int() in

Read_Queue_Value(NewQueue,i)

input_item: input item

Read_Queue_Value: (Queue int) Queue 

Read_Queue_Value(s,0) = s

Read_Queue_Value(s,x+1) = let i=input_item() in

let z = Add_at_back(s,i) in Read_Queue_Value(z,x);

The specification of the case in which we read values until

a lookout is:

Read_Queue: input Queue

Read_Queue() = Read_Queue_Value(NewQueue)

Read_Queue_Value: Queue Queue

Read_Queue_Value(s) = let i=input_item() in

if (i==EOF) then s

else Read_Queue_Value(Add_at_back(s,i))

3.2.2. Specification of Output in Queues

In the case of the output of a queue we print the elements

from left to right using sequencing.

output_item: item output

Print_Queue: Queue output

Print_Queue(s) = if (not(IsNewQueue(s)))

let i=Front(s) in {output_item(i);

Print_Queue(Delete(s));}

4. Specification of Sets

This collection represent the mathematical notion of Set.

There are no repeated elements and there is no an order

relation between the elements. The primitive operations of

this ADT are:

ADT Set(item)

Syntax:

constructors:

NewSet: Set

Add: (Set item) Set 

observers:

IsNewSet: Set Boolean

Belongs: (Set item) Boolean 

extenders:

Delete: (Set item) Set 

Union: (Set Set) Set 

Intersection: (Set Set) Set 

Difference: (Set Set) Set 

Semantics:

IsNewSet(NewSet)=true

IsNewSet(Add(s,i))=false

Belongs(NewSet,i)=false

Belongs(Add(s,i),j) = if (i==j) then true

else Belongs(s,j)

Delete(NewSet,i)=NewSet

Delete(Add(s,i),k) = if (i==k) then s

else Add(Delete(s,k),i)

Union(NewSet,s)=s

Union(Add(s,i),t)=Add(Union(s,t),i)

Intersection(NewSet,s)=NewSet

Intersection(Add(s,i),t) = if Belongs(t,i) then

Add(Intersection(s,t),i)

else Intersection(s,t)

Difference(NewSet,s)=NewSet

Difference(Add(s,i),t) = if Belongs(t,i) then

Difference(s,Delete(t,i))

else Add(Difference(s,t),i)

4.1. Specification of Input in Sets

Consider first the case in which we read a predefined

number of elements. We use functions input_int and

input_item as before. We specify the input by

Read_Set: input Set

Read_Set() = let i=input_int() in

Read_Set_Value(NewSet,i)

input_item: input item

Read_Set_Value: (Set int) Set 

Read_Set_Value(s,0)=s

Read_Set_Value(s,x+1) = let j=input_item() in

if Belongs(s,j) then Read_Set_Value(s,x+1);

else Read_Set_Value(Add(s,j),x)

We consider when is input an element that already belongs

to the set. In this case the element is not added again and we

don't decrease the number of elements to be read.

The specification of the case in which we read values until

a lookout is:

Read_Set: input Set

Read_Set() = Read_Set_Value(NewSet)

Read_Set_Value: Set Set

Read_Set_Value(s) = let i=input_item() in

if (i==EOF) then s

else if Belongs(s,i) then Read_Set_Value(s)

else Read_Set_Value(Add(s,i))

4.2. Specification of Output in Sets

output_item: item output

Print_Set: Set output

Print_Set(s) = if (not(IsNewSet(s))) then

let s=Add(t,i) in {output_item(i);

Print_Set(t);}

5. Specification of Dictionaries

This family defines collections whose elements have an

 Mathematics and Computer Science 2021; 6(2): 30-37 34

attribute that is a key that identify them. We will study the

specification of input-output for the following dictionaries:

Binary Search Trees (BST) and Closed Hash tables.

5.1. Specification of Binary Search Trees

A binary search tree is a dictionary whose elements are

ordered by some linear order. Is a binary tree in which all the

elements in the left subtree of a node are smaller that the

element at the node and all the elements in the right subtree

of a node are greater that the element at the node. We call this

the search property.

Let us begin with the algebraic specification of Binary

Search Trees without input-output. We have an extender

AddElem that adds an element to a binary search tree if the

element does not belong to the tree in which case

the element is not added. The addition of the elements

satisfies the search property. BST's are constructed applying

NewBST that gives an empty BST and Add that given two

BST and an element returns a BST.

ADT BST(item)

Syntax:

constructors:

NewBST: BST

Add: (BST BST item)    BST

observers:

IsNewBST: BST Boolean

Member: (BST key) Boolean 

selectors:

Key: item key

Root: BST item

Left: BST BST

Right: BST BST

Min: BST item

Max: BST item

Find: (BST key) item 

extenders:

Modify: (BST item) BST 

AddElem: (BST item) BST 

Delete: (BST key) BST 

Semantics:

IsNewBST(NewBST)=true

IsNewBST(Add(l,r,i))=false

Member(NewBST,i)=false

Member(Add(l,r,i),j)) = if (Key i==j) then true

else if (Key i<j) then Member(r,j)

else Member(l,j)

Root(t) precondition not(IsNewBST(t))

Root(Add(l,r,i))=i

Left(t) precondition not(IsNewBST(t))

Left(Add(l,r,i))=l

Right(t) precondition not(IsNewBST(t))

Right(Add(l,r,i))=r

Min(t) precondition not(IsNewBST(t))

Min(Add(l,r,i)) = if(IsNewBST(l)) then i

else Min(l)

Max(t) precondition not(IsNewBST(t))

Max(Add(l,r,i)) = if(IsNewBST(r)) then i

else Max(r)

Find(t,j) precondition Member(t,j)

Find(Add(l,r,i),j) = if (Key i==j) then i

else if (Key i<j) then Find(r,j)

else Find(l,j)

Modify(t,j) precondition Member(t,Key j)

Modify(Add(l,r,i),j)) = if (Key i==Key j) then Add(l,r,j)

else if (Key i<Key j) then Add(l,Modify(r,j),i)

else Add(Modify(l,j),r,i)

AddElem(NewBST,i)=Add(NewBST,NewBST,i)

AddElem(Add(NewBST,NewBST,i),j) = if (i<j) then

Add(NewBST,Add(NewBST,NewBST,j),i)

else if (i>j) then Add(Add(NewBST,NewBST,j),NewBST,i)

else Add(NewBST,NewBST,i)

AddElem(Add(NewBST,r,i),j) = if (i<j) then

Add(NewBST,AddElem(r,j),i)

else if (i>j) then Add(AddElem(NewBST,j),r,i)

else Add(NewBST,r,i)

AddElem(Add(l,NewBST,i),j) = if (i<j) then

Add(l,AddElem(NewBST,j),i)

else if (i>j) then Add(AddElem(l,j),NewBST,i)

else Add(l,NewBST,i)

AddElem(Add(l,r,i),j) = if (i<j) then Add(l,AddElem(r,j),i)

else if (i>j) then Add(AddElem(l,j),r,i)

else Add(l,r,i)

Delete(t,j) precondition Member(t,j)

Delete(Add(NewBST,NewBST,i),j) = if (i==j) then

NewBST

else Add(NewBST,NewBST,i)

Delete(Add(NewBST,r,i),j) = if (i>j) then Add(NewBST,r,i)

else if (i<j) then Add(NewBST,Delete(r,j),i)

else r

Delete(Add(l,NewBST,i),j) = if (i<j) then Add(l,NewBST,i)

else if (i>j) then Add(Delete(l,j),NewBST,i)

else l

Delete(Add(l,r,i),j) = if (i<j) then Add(l,Delete(r,j),i)

else if (i>j) then Add(Delete(l,j),r,i)

else let d=Min(r) in Add(l,Delete(r,d),d)

The Key function depends on the representation and is not

defined.

5.1.1. Specification of Input in BST

Consider first the case in which we read a predefined

number of elements. We specify the input by

Read_BST: input BST

Read_BST() = let i=input_int() in

Read_BST_Value(NewBST,i,0)

input_item: input item

Read_BST_Value: (BST int   int) BST

Read_BST_Value(s,0,0) = s

Read_BST_Value(s,0,k) = Read_BST_Value(s,k,0)

Read_BST_Value(s,x+1,k) = let i=input_item() in

{if Member(s,Key i)) then Read_BST_Value(s,x+1,k+1);

else Read_BST_Value(AddElem(s,i),x,k);}

We sum in parameter k the number of repetitions in the

input to read after again this number of elements. We repeat

this process until there are not more repeated elements at the

35 Patricia Peratto: Algebraic Specification for Input-Output in Abstract Data Types

input. We use sequencing to read x elements as part of the

input of the x+1 elements.

The specification of the case in which we read values until

a lookout is:

Read_BST: input BST

Read_BST() = Read_BST_Value(NewBST)

Read_BST_Value: BST BST

Read_BST_Value(s) = let i=input_item() in

if (Key i==EOF) then s

else if (Member(s,Key i)) then Read_BST_Value(s)

else Read_BST_Value(AddElem(s,i))

in this case, if we read an element that is already in the tree

it is not added again.

5.1.2. Specification of Output in BST

In the case of the output of a BST we print the elements in

inorder.

output_item: item output

Inorder_BST: BST output

Inorder_BST(s) = if (not(IsNewBST(s))) then

{Inorder_BST(Left(s));

output_item(Root(s));

Inorder_BST(Right(s));}

A definition for Inorder_BST by pattern matching is:

Inorder_BST: BST output

Inorder_BST(NewBST) = return

Inorder_BST(Add(l, r, i)) = {Inorder_BST(l);

output_item(i);

Inorder_BST(r);}

5.2. Specification of Closed Hash Tables

When an application needs to store information we convert

the key in an index that indicates the position at which is

stored the information. If we want to add an element and the

position is occupied we search sequentially the first position

free. In the same way we search an element when we want to

know if is in the table, to delete it or to modify it.

Let us begin with the algebraic specification of Closed

Hash.

The operations Select, FHash, SetFree and Key depend on

the representation and we don't give definitions for they.

ADT Hash(key, item)

Syntax:

constructors:

Empty: item

NewHash: Hash

Insert: (Hash key item) Hash  

observers:

IsFull: Hash Boolean

IsFree: item Boolean

Member: (Hash key) Boolean 

selectors:

Key: item key

FHash: item key

Select: (Hash key) item 

Element: (Hash key) item 

extensors:

Add: (Hash item) Hash 

SetFree: (Hash key) Hash 

Delete: (Hash key) Hash 

Modify: (Hash key item) Hash  

semantics:

IsFree(Empty) = true

IsFree(o) = false

Mem(h,i,k,m) = let j=Select(h,i) in if (not(IsFree(j)) and

Key(j)==k)

then true

else if (not(m-1==i)) then Mem(h,(i+1)%N,k,m)

else false

Member(NewHash,k) = false

Member(h,k) = if (k==0) Mem(h,k,k,N)

else Mem(h,k,k,k)

Element(h,k) precondition Member(h,k)

Elem(h,i,k) = let j=Select(h,i) in if (not(IsFree(j)) and

Key(j)==k) then j

else Elem(h,(i+1)%N,k)

Element(h,k) = Elem(h,k,k)

IsF(h,i,k) = let s=Element(h,i) in if (i<k) then not(IsFree(s))

and isF(h,i+1,k)

else true

IsFull(h) = IsF(h,0,N)

Add(h,k) precondition not(Member(h,Key(k)))

Add'(h,i,k) = let j=Select(h,i) in if (IsFree(j)) then

Insert(h,i,k)

else Add'(h,(i+1)%N,k)

Add(h,k) = if (not(IsFull(h))

then let i=FHash(k) in Add'(h,i,k)

Delete(h,k) precondition Member(h,k)

Del(h,i,k) = let j=Select(h,i) in if (not(IsFree(j)) and

Key(j)==k)

then SetFree(h,i)

else Del(h,(i+1)%N,k)

Delete(h,k) = Del(h,k,k)

Modify(h,k,s) precondition Member(h,k)

Mod(h,i,k,s) = let j=Select(h,i) in if (not(IsFree(j)) and

Key(j)==k)

then Add(Delete(h,k),s)

else Mod(h,(i+1)%N,k,s)

Modify(h,k,s) = Mod(h,k,k,s)

Add adds an element that does not belong to the hash table

while Insert is a constructor. An element is added in case it

does not belong to the table and the table is not full. The

definitions of the functions are not given depending on the

constructors as in the cases before. They are recursive

functions given by pattern matching and we know some of

they finish (Element, Delete, Modify) by the precondition in

terms of Member.

5.2.1. Specification of Input in Closed Hash Tables

Consider first the case in which we read a predefined

number of elements. We use functions input_int and

input_item as before. We will specify three ways of adding

elements: as in the case of Sets, as in the case of BST and

until a lookout.

 Mathematics and Computer Science 2021; 6(2): 30-37 36

Like Sets:

Read_Hash: input Hash

Read_Set() = let i=input_int() in

Read_Hash_Value(NewHash,i)

input_item: input item

Read_Hash_Value: (Hash x int) Hash

Read_Hash_Value(s,0) = s

Read_Hash_Value(s,x+1) = let j=input_item() in

if Member(s,j) then Read_Hash_Value(s,x+1)

else Read_Hash_Value(Add(s,j),x)

Like BST:

Read_Hash: input Hash

Read_Hash() = let i=input_int() in

Read_Hash_Value(NewHash,i,0)

input_item: input  item

Read_Hash_Value: (Hash int int) Hash  

Read_Hash_Value(h,0,0) = h

Read_Hash_Value(h,0,k) = Read_Hash_Value(h,k,0)

Read_Hash_Value(h,x+1,k) = let i=input_item() in

if Member(h,i) then Read_Hash_Value(h,x+1,k+1)

else Read_Hash_Value(Add(h,i),x,k)

Until a lookout:

Read_Hash: input Hash

Read_Hash() = Read_Hash_Value(NewHash)

Read_Hash_Value: Hash Hash

Read_Hash_Value(s) = let i=input_item() in

if (i==EOF) then s

else if (Member(s,Key(i))) then Read_Hash_Value(s)

else Read_Hash_Value(Add(s,i))

5.2.2. Specification of Output in Hash Tables

The operation Set_of_keys below constructs from a Hash

Table the Set of their keys.

Set_of_keys: Hash Set

Set_of_keys(NewHash) = NewSet

Set_of_keys(Add(s,i)) = Add(Set_of_keys(s),Key(i))

output_item: item output

Output_Hash: Hash output

Output_Hash(h) = let s=Set_of_keys(h) in

Output_using_key(s,h)

Output_using_key: Set Hash output 

Output_using_key(s,h) = if (not(IsNewSet(s))) then

let s=Add(s',k) in {output_item(Element(h,k));

Output_using_key(s',h);}

Output_using_key print the elements whose key is in the

set.

6. Conclusions

Algebraic specification supports input-output operations in

a functional framework. We model input-output as well as

the other operations usually considered in algebraic

specification of ADTs. The language considered is

sufficiently expressive to model all these operations. The

technique is illustrated by means of a variety of examples.

We started from sequences and continued with sets and

dictionaries. The specifications we present in this paper can

be used as specifications of methods of ADT definitions in

object oriented programming.

Further Work

Remains to study if holds the completeness of the

Algebraic Specification of input-output [11-12].

References

[1] Dahl, O.-J., SIMULA an Algol-Based Simulation Language.
Communications of the ACM, Vol 9, Number 9, September
1966.

[2] Dijkstra, E. W.. Notes on structured programming. In
Structured Programming, Academic Press, New York, 1972.

[3] Hoare, C. A. R., Proof of correctness of data representations.
Acta Informatica 1 (1972), 271-281.

[4] Parnas D. L., A Technique for Software Module Specification
with Examples. Communications of the ACM, Vol 15, Number
5, May 1972.

[5] Hoare, C. A. R., and Wirth, N. An Axiomatic definition of the
programming language Pascal, Acta Informatica 2 (1973)
335-355.

[6] Liskov B., Zilles S., Programming with Abstract Data Types,
Proceedings of the ACM Sigplan Symopsium on very high
level languages, pag 50-59, 1974.

[7] Parnas D. L. A., The influence of Software Structure on
Reliability, ACM Sigplan Notices, Vol 10, Issue 6, April 1975.

[8] J. V. Guttag, E. Horowitz, D. R. Musser, The Design of Data
Type Specifications, Proceedings of the 2nd International
Conference on Software Engineering, pp 414-420, San
Francisco, California, USA, 1976.

[9] J. V. Guttag, E. Horowitz, D. R. Musser, Abstract Data Types
and Software Validation, Information Sciences Institute,
University of Southern California, August 1976, ARPA
ORDER No 2223.

[10] J. Guttag, Abstract Data Types and the Development of Data
Structures, Communications of the ACM, June 1977, Vol. 20,
Number 6.

[11] J. A. Goguen, J. W. Thatcher, E. G. Wagner, J. B. Wright,
Initial Algebra Semantics and Continuous Algebras, ACM,
1977.

[12] J. A. Bergstra and J. V. Tucker, The Completeness of the
Algebraic Specification Methods for Computable Data Types,
Information and Control 54, 186-200 (1982).

[13] Cardelli, L., Wegner, P., On Understanding Types, Data
Abstraction, and Polymorphism, Computing Surveys, Vol. 17,
No 4, December 1985.

[14] Dahl, O.-J., The Birth of Object Orientation, The Simula
Languages, Software Pioneers, Springer 2002.

[15] J. Guttag, Abstract Data Types, Then and Now, M Broy, E.
Denert (Eds): Software Pionners, Springer-Verlag Berlin
Heidelberg, 2002.

37 Patricia Peratto: Algebraic Specification for Input-Output in Abstract Data Types

[16] Hal Daume III, Yet Another Haskell Tutorial, Copyright (c)
Hal Daume III, 2002-2006.

[17] Haskell/Print version from Wikibooks, the open-content
textbooks collection. June 2018.

[18] Reading 10: Abstract Data Types, course 6.031 Software
Construction, MIT, Spring 2018,
http://web.mit.edu/6.031/www/sp18/classes/10-abstract-data-
types/

