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Abstract: In this paper we investigate the invariant and hyperinvariant subspace lattices of some operators. We give a 

lattice-theoretic description of the lattice of hyperinvariant subspaces of an operator in terms of its lattice of invariant 

subspaces. We also study the structure of these lattices for operators in certain equivalence classes of some equivalence 

relations. 
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1. Introduction 

In this paper H  will denote a complex separable Hilbert 

space and ( )B H will denote the Banach algebra of bounded 

linear operators. If ( )T B H∈ , then 
*T denotes the adjoint of 

T , while ( ), ( ),Ker T Ran T M  and M ⊥
 stands for the kernel 

of T , range of , closure of M  and orthogonal complement 

of a closed subspace M  of H , respectively. Recall that an 

operator ( )T B H∈ is normal if 
* *T T TT= , unitary if 

* *= =T T TT I , a projection(or idempotent) if 
2T T= , an 

orthogonal projection if 
2T T= and 

*T T= . An operator 

( )T B H∈ is said to be scalar if it is a scalar multiple of the 

identity operator. That is, if ,T Iα= where ℂα ∈  and I is 

the identity operator on .H  An operator ( )T B H∈ is 

compact if for each bounded set ,M H⊆ then the closure of 

the image ( )T M is compact. This is equivalent to saying that 

( (0,1))T B  is compact, where { }(0,1) : 1 .B x H x= ∈ <  An 

operator ( )T B H∈  is polynomially compact if there exists a 

non-zero polynomial p such that ( )p T  is compact. 

Two operators ( )A B H∈ and ( )B B K∈ are said to be 

similar if there exists an invertible operator ( , )N B H K∈

such that NA BN= or equivalently
1

A N BN
−= , and are 

unitarily equivalent if there exists a unitary operator 

( , )U B H K+∈  (Banach algebra of all invertible operators in

( )B H ) such that UA BU= (i.e.
*

A U BU=  equivalently, 

1
A U BU

−= ). An operator ( , )X B H K∈  is a quasiaffinity or 

a quasi-invertible if it is injective and has dense range. Two 

operators ( )A B H∈ and ( )B B K∈  are said to be quasiaffine 

transforms of each other if there exists a quasiaffinity 

( , )X B H K∈  such that .XA BX=  

Two operators ( )A B H∈ and ( )B B K∈  are quasisimilar if 

there exist quasiaffinities ( , )X B H K∈  and ( , )Y B K H∈
such that XA BX= and .AY YB=  (see [11], [14]). 

For any operators , ( ),A B B H∈ we define 

[ , ] .A B AB BA= −  

The commutant of ( )T B H∈ denoted by { }'
T  is the set of 

all operators that commute with .T  That is, 

{ } { }'
( ) : .T S B H ST TS= ∈ = (see [4]). 

The bicommutant or double commutant of ( )T B H∈

denoted by { }''
T  is defined by  

{ } { }{ }'' '
( ) : , .= ∈ = ∈T A B H AS SA S T  

T
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It is clear that 

{ } { } { } { }'

'' '
( ) : ( ) .

∈
= ∈ = ∩

S T
T p T T B H S  

A subspace M H⊆  is said to be invariant under 

( )T B H∈ if .TM M⊆  In this case, we say that the subspace 

M is T − invariant. 

A subspace M H⊆  is said to be a reducing subspace of 

( )T B H∈ if it is invariant under both T  and 
*T

(equivalently, if both M and M ⊥
 are invariant under ).T  

For more details about invariant subspaces and the Invariant 

Subspace Problem (see [11], [14] and [17]). 

A subspace M H⊆  is said to be a hyperinvariant 

subspace for ( )T B H∈  if SM M⊆ for each { }'
.S T∈  That 

is, it is invariant under every operator commuting with .T  

A lattice is a partially ordered set in which every pair of 

elements has a least upper bound and a greatest lower bound. 

By a subspace lattice on a Hilbert space H we mean a 

family of subspaces of H which is closed under the 

formation of arbitrary intersections and arbitrary linear spans 

and which contains the zero subspace { }0 and H . 

The subspace lattice of all invariant, reducing and 

hyperinvariant subspaces of T is denoted by ( ),Lat T

Re ( )d T and ( ),HyperLat T respectively. Note that these 

lattices are complete, in the sense that intersections and 

closed linear spans of subspaces are also in these lattices. 

Since T commutes with itself, we have that  

( ) ( ).Hyperlat T Lat T⊆  (see [4] and [12]).  

It is also true that 

Re ( ) ( ).⊆d T Lat T  

We sometimes call the lattice of hyperinvariant subspaces 

an hyperlattice. 

Let , ( )∈A B B H . We say that an operator ( )∈T B H  

intertwines the pair ( , )A B if .TA BT=  If T intertwines both 

( , )A B  and ( , ),B A  then we say that T doubly intertwines A  

and .B  

A quasiaffinity X is said to have the hereditary property 

with respect to an operator ( )∈T B H  if { }'
X T∈ and 

( ) =X M M for every ( ).∈M Hyperlat T  If 1T  and 2T  are 

quasisimilar and there exists an implementing pair ( , )X Y  of 

quasiaffinities such that XY has the hereditary property with 

respect to 1T  and YX  has the hereditary property with 

respect to 2 ,T  then we say that 1T  is hyper-quasisimilar to 

2.T  This is denoted by 1 2 .≈
h

T T  The notion of hyper-

quasisimilarity was introduced by C. Foias etal[2]. 

We note that hyper-quasisimilarity is strictly stronger than 

quasisimilarity (see [2], Proposition 2.7). In fact the 

following inclusion of operator equivalences is true. 

.⊂ − ⊂Similar Hyper quasisimilar Quasisimilar   

We call ( )⊆a B H a subalgebra of ( )B H if a is closed 

under scalar multiplication, addition and composition. If a  is 

also closed under taking adjoint, we call it a *-subalgebra of 

( ).B H If the identity operator I belongs to the subalgebra 

a , we say that a  is a unital subalgebra of ( ).B H  

We denote by *( )W T the (unital) weakly closed von 

Neumann algebra generated by .T  We will use this 

subalgebra to investigate the structures of invariant and 

hyperinvariant subspace lattices for some operators.  

Two lattices 1L  and 2L  are said to be isomorphic (denoted 

by 1 2≡L L ) if there exists an isomorphism (bijective map)

1 2: ,→L Lϕ  and if 1 2≤l l if and only if 1 2( ) ( )≤l lϕ ϕ  for 

1 2 1, .∈l l L (see [12]). 

Let ( ).∈T B H  If M reduces every operator in the 

commutant of ,T then we call M hyper-reducing subspace 

for .T  We denote by Re ( )Hyper d T  the collection of all 

subspaces hyper-reducing for ( ).∈T B H  Clearly 

Re ( ) ( ).⊆Hyper d T Lat T  

The concept of hyper-reducibility of a subspace of a 

Hilbert space was introduced by Moore[15]. We will prove in 

Section 5 that 

{ } { } { }'' ' *Re ( ) Re ( ) ( ) ( ).= = ∩Hyper d T d T Lat T Lat T  

An operator ( )T B H∈  is said to be reducible if it has a 

nontrivial reducing subspace (equivalently, if it has a proper 

nonzero direct summand-that is, if there exists a subspace 

M of H such that M and M ⊥
 are nonzero and T −

invariant)(see [14]). This is equivalent to saying that if M is 

nontrivial and invariant under T and 
*.T  A subspace that is 

not reducible is said to be irreducible. This means that an 

operator is irreducible if it has no reducing subspace other 

than { }0 and .H  It has been shown in [8] that an operator 

( )T B H∈  is reducible if and only if there exists a non-scalar 

operator L such that LT TL=  and 
* *.T L LT= That is if and 

only if there exists a non-scalar operator { } { }'' * .∩L T T∈  

Equivalently, T is reducible if and only if both T and 
*T  lie 

in { }'
L for some non-scalar operator .L  

We denote by 
x

y

 
 
 

 the span of vector .
x

y

 
 
 

 

2. Main Results 

Recall that the commutant { }'
a  of a *-subalgebra 

( )a B H⊆  is the set  
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{ } { }'
( ) : , .= ∈ = ∀ ∈a B B H BA AB A a  

Clearly { }'
a is weakly closed. Since the weak operator 

topology is weaker than the strong operator topology, it is 

also clear that { }'
a is always strongly closed. 

Theorem 2.1 If ( )T B H∈ then the following statements 

hold. 

(i). { }'
T is a subalgebra of ( ).B H  

(ii). { }''
T is a commutative subalgebra of ( ).B H  

(iii). { } { }{ }'
'' '

.=T T  

We need the following result which verifies a useful 

property of unital self-adjoint subalgebras of ( ).B H  

Lemma 2.2 Suppose a  is a self-adjoint subalgebra of 

( )B H  and let M be a closed subspace of .H  Then 

following statements are equivalent. 

(i). ( ) .⊆a M M  

(ii). ( ) .⊥ ⊥⊆a M M  

(iii). [ , ] 0,=Ma P  where MP denotes the orthogonal 

projection of H onto .M  

Proof. (i)⇒ (ii): Suppose ( ) .a M M⊆  That is Ay M∈ for 

all ∈A a and .y M∈  Let .⊥∈x M  Then  

*, , 0.= =y Ax A y x  

Since 
* ∈A a  we have that ,Ax M ⊥∈  so ( ) .a M M⊥ ⊥⊆  

(ii) ⇒ (i): ( )a M M⊥ ⊥⊆  implies that ( )a M M⊆ follows 

from the fact that .⊥⊥=M M  

(i) ⇒ (iii): Suppose that ( )a M M⊆ and let ∈A a and 

.∈x H  Then  

( ( )) ( ( ( )))⊥− = − +M M M M M M
A P x P Ax A P x P A P x P x  

( ( ( ))= −M M MA P x P A P x  

0,=  

which shows that [ , ] 0=MA P  for all A a∈ . Thus 

[ , ] 0.=Ma P  

(iii) ⇒ (ii): Suppose that [ , ] 0,=Ma P  and let x M∈ and 

.⊥∈y M  Then  

, , , , 0,= = = =M M MAy x Ay P x P Ay x AP y x  

for all A a∈ and hence ( ) ,⊥ ⊥⊆A M M from where we 

conclude that ( ) .⊥ ⊥⊆a M M  

We note that a subspace M with either of the properties in 

Lemma 2.2 is called reducing (with respect to the subalgebra 

a ). 

We use Lemma 2.2 to state the Bicommutant/Double 

Commutant Theorem. 

Theorem 2.3(von Neumann Double Commutant Theorem) 

Let H be a Hilbert space and ( )a B H⊆ be a unital self-

adjoint *-subalgebra of ( ).B H  Then the following conditions 

are equivalent. 

(i). { }''
.=a a  

(ii). a  is closed with respect to the weak operator 

topology (WOT) on ( ).B H  

(iii). a  is closed with respect to the strong operator 

topology (SOT) on ( ).B H  

If a unital (self-adjoint) *-subalgebra a of ( )B H  satisfies 

either of the three equivalent conditions in Theorem 2.3, we 

say that it is a von Neumann algebra. 

The Double Commutant Theorem simply asserts that the 

double commutant { }''
a of a unital self-adjoint subalgebra a

of ( )B H  is always strongly closed (and hence weakly 

closed). That is, a  is strongly (and hence weakly) dense in

{ }''
.a  Equivalently, it says that the strongly closed unital self-

adjoint subalgebras of ( )B H are always their own double 

commutant. 

For convenience, we take a von Neumann algebra as a *-

subalgebra a  of ( )B H satisfying { }''
.a a=  A von Neumann 

algebra is a unital, weakly closed and contains an abundance 

of projections. If a  is a von Neumann algebra, then a  is 

generated by the projections in .a  

Theorem 2.4 [12, Corollary 3.2.1] Let , ( ).∈T S B H  If 

( ) ( ),=Lat T Lat S then ( ) ( ).=Hyperlat T Hyperlat S  

Proof. This follows easily from the definition. 

Question 1. Does the condition that ( ) ( )=Lat T Lat S imply 

that { } { }' '
?T S=  

Question 2. Does the condition that { } { }' '
T S= imply that  

( ) ( ) ?=Hyperlat T Hyperlat S  

We note that the converse of Theorem 2.4 need not hold in 

general. To see this, let 
0 1

0 0
T

 
=  
 

and 
0 0

0 1
S

 
=  
 

on the 

Hilbert space 
2.ℝH =  A simple computation shows that 

{ }

{ }

2

2

1
( ) 0 , ,

0

1 0
0 , , , ( ).

0 1

   =   
   

     ≠ =    
     

ℝ

ℝ

Lat T

Lat S

 

Another computation shows that 

{ }' 11 12
11 12

11

: ,
0

ℝ
a a

T a a
a

   = ∈  
   
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and  

{ }' 11
11 22

22

0
: , .

0

   = ∈  
   

ℝ
b

S b b
b

 

We note that { } { }' ' 11
11

11

0
: ,

0

   = ∈  
   

∩ ℝ
a

T S a
a

 

which is the set of scalar operators. Clearly the commutant of 

T consists of operators similar to scalar operators. This result 

is true for isometries and co-isometries. Another computation 

shows that  

{ }

{ }

2

2

1
( ) 0 , ,

0

1 0
0 , , , ( ).

0 1

   =   
   

     ≠ =    
     

ℝ

ℝ

Hyperlat T

Hyperlat S

 

However, it is clear that the subspace 

0
( )

1
M Hyperlat T

 
= ∈ 

 
if 12 0.a =  

This happens if and only if { } { }'
: .ℂT Iα α= ∈ This extra 

condition then implies that  

( ) ( ).=Hyperlat T Hyperlat S  

Theorem 2.4 can be relaxed as follows. 

Corollary 2.5 [12, Corollary 3.2.2] Let , ( ).T S B H∈  If 

( ) ( ),Lat T Lat S≡ then ( ) ( ).Hyperlat T Hyperlat S≡  

Question 3. When is the converse of Corollary 2.5 true? 

Let ( ).T B H∈  We define * ( )W T  to be the von Neumann 

algebra generated by { }, .I T Note that 

{ } { }''*( ) : .∪ ℂW T T Iα α= ∈  

From the Double Commutant Theorem, if *,T T= then 

{ }'' *( )T W T= and { }'
T is a von Neumann algebra and is 

therefore generated by its projections. Since the projections 

in { }'
T  are also in { }'

* ,T it follows that the Double 

Commutant Theorem has the following reformulation. 

{*
( ) : ,= =W T T PT TP for every projection { } }' .P T∈  

Corollary 2.6 Let ( ).∈T B H  Then *( ) ( ( )).=Lat T Lat W T  

Proof. Since *( ),∈T W T  trivially *( ( )) ( ).⊆Lat W T Lat T

On the other hand, *( )W T  consists of polynomials in I and 

,T and hence *( ) ( ( )).⊆Lat T Lat W T  Combining these two 

inclusions, equality follows. This proves the claim. 

Corollary 2.7 Let ( ).∈T B H  Then

{ }'
( ) ( ).Hyperlat T Lat T=  

Theorem 2.8 Let ( )∈T B H and ( ).∈M Hyperlat T  Then 

the orthogonal projection MP of H onto M belongs to 

*( ).W T   

Proof. By Theorem 2.3(Double Commutant Theorem), it 

suffices to show that if  

{ } { } { }' ''2 * * *( )= = ∈ = ∩Q Q Q W T T T  

{ } { }* *( ) : ( ) := ∈ = ∈ =∩L B H LT TL L B H T L LT  

{ ( ) := ∈ =L B H LT TL and }* * ,=T L LT  

then [ , ] 0,=MP Q  which says that .⊆QM M  Since 

{ }'
Q T∈ and ( ),∈M Hyperlat T we have that *( ).∈MP W T  

Remark. Let ( )T B H∈ . We call the set { }'
*( )W T the *-

commutant of T and the set { } { }
'

'' '
* *( ) ( )W T W T

 =  
 

the *-

bicommutant of .T  

Theorem 2.8 helps us prove the following result. 

Theorem 2.9 Let , ( ).A B B H∈  If *( ),A W B∈ then 

( ) ( ).Lat B Lat A⊆  

Proof. We know that ( ) ( )Hyperlat T Lat T⊆  for any 

( )T B H∈  since T commutes with itself (see [4]), that is,

{ }'
T T∈ . Since *( ),A W B∈  we have that ,M MQP P Q=

where { } { } { }' ''* *( ) ∩Q W B B B∈ = is an orthogonal 

projection in { }'
B and ( ),M Hyperlat B∈  and hence 

,M M MP AP P A=  where *( )MP W A∈  is an orthogonal 

projection of H onto .M This means that 

( ) ( ) ( ).∈ ⊆ ⇒ ∈M Hyperlat B Lat B M Lat A  

Thus, ( ) ( ).M Lat B M Lat A∈ ⇒ ∈  This proves the claim. 

The converse of Theorem 2.9 is not true in general. 

However, if in addition ,AB BA=  then the converse is true. 

Corollary 2.10 Let , ( ).∈A B B H  If *( ),∈A W B then 

( ) ( ).⊆Hyperlat B Hyperlat A  

Proof. This follows from the proof of Theorem 2.9 and the 

fact that ( ) ( )⊆Hyperlat T Lat T  for any ( ).∈T B H  

Note that if { }'
,A T∈ then ( )Ran A , ( ) ( ).∈Ker A Lat T  

In addition, if { }''
,B T∈ then ( )Ran A , 

( ) ( ).∈Ker A Hyperlat T  

A lattice L of subspaces of a Hilbert space H is said to be 

trivial if { }{ }0 , .L H=  

Proposition 2.11[12] Let , , ( ).A B T B H∈ If T doubly 

intertwines A and B and ( ) ( )∩Lat A Lat B is trivial, then 

either 0T =  or T is a quasiaffinity.  

Proof. Suppose T doubly intertwines the pair ( , ).A B  Then 
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TA BT= and .TB AT=  Since TA BT= , we have 

( ) ( )Ran T Lat B∈  and ( ) ( ).Ker T Lat A∈  Since ,TB AT= we 

deduce that 

( ) ( ) ( )∈ ∩Ran T Lat A Lat B  

and  

( ) ( ) ( ).∈ ∩Ker T Lat A Lat B  

If { }( ) 0 ,Ran T =  then 0.T =  If ( ) ,Ran T H=  then 

{ }( ) 0Ker T =  and hence T is injective with dense range, and 

therefore a quasiaffinity. 

Proposition 2.11 can be strengthened into the following 

results. 

Corollary 2.12 Let , , ( ).A B T B H∈  If T  commutes with 

A and B and ( ) ( )∩Lat A Lat B  is trivial, then either 0T =  

or T is a quasiaffinity. 

Proof. If T  commutes with A and ,B then TA AT= and 

.TB BT=  Using Proposition 2.8, we have 

( ) ( ) ( )∩Ran T Lat A Lat B∈  

and  

( ) ( ) ( ).∈ ∩Ker T Lat A Lat B  

By the same argument then either 0T =  or T is a 

quasiaffinity.  

Corollary 2.13 Let , ( ).A T B H∈  If T  commutes with A

and ( )Lat A is trivial, then either 0T =  or T is a 

quasiaffinity. 

Proof. If T  commutes with A  then .TA AT=  Using 

Corollary 2.9, we have ( ) ( )Ran T Lat A∈  and 

( ) ( ).Ker T Lat A∈  Triviality of ( )Lat A  then implies that 

{ }( ) 0 ,Ran T =  and thus 0T = . If ( ) ,Ran T H= then 

{ }( ) 0Ker T = , which proves that T  is a quasiaffnity. 

3. Invariant Subspace Lattice Operations 

Theorem 3.1 Let ( ).∈T B H  Then ( )∈M Lat T if and only 

if *( ).⊥ ∈M Lat T  

Clearly the map : ⊥→M Mϕ of ( )Lat T into *( )Lat T  is a 

(lattice) isomorphism. This map “inverts” the lattice 

operations: 

⊥∨ ∧֏M Mα αα α
 

and  

.⊥∧ ∨֏M Mα αα α  

4. Operator Equivalences and Lattices 

Recall that if 1L and 2L are lattices of subspaces of a 

Hilbert space ,H  an isomorphism 1 2: L Lϕ →  is a one-to-

one and onto map with the property that if 1 2 1,M M L∈  then 

1 2M M⊆  if and only if 1 2( ) ( ).M Mϕ ϕ⊆  

In this paper, lattice refers to either ( ), ( ),Lat T Hyperlat T

or Re ( ).d T  

In this section we investigate lattices of operators in some 

equivalence classes emanating from certain operator 

equivalence relations. 

Theorem 4.1 Similarity of operators preserves non-trivial 

invariant and non-trivial hyperinvariant subspaces. 

Proof. We prove the case for invariance. The proof for 

hyperinvariance can be proved similarly. Suppose 

, ( )A B B H∈ are such that 
1 .A X BX−= That is, .XA BX=

Suppose M is a non-trivial A − invariant subspace. Then 

.BXM XAM XM= ⊆  

Since M is non-trivial and X is invertible, we conclude 

that XM  is a non-trivial invariant subspace for .B  Thus M

is A − invariant if and only if M is B − invariant. 

It has been proved (see [5], [6]) that if A and B are 

quasisimilar and one has a nontrivial hyperinvariant 

subspace, then so does the other. However, similar 

(quasisimilar) operators need not have isomorphic invariant 

(hyperinvariant) lattices. An example is given in Herrero[5] 

of two quasisimilar nilpotent operators of the same order but 

with non-isomorphic hyperlattices. This shows that structure 

of the hyperlattice of an operator is not preserved under 

quasisimilarity. 

Example 1. Let 
0 1

0 1
A

 
=  
 

 and 
0 0

.
0 1

B
 

=  
 

 A simple 

computation shows that A and B are similar. However, 

another computation shows that { } 21
( ) 0 , ,

0
ℝLat A

   =   
   

 

and  

{ } 21 0
( ) 0 , , , .

0 1

     =     
     

ℝLat B  

Clearly ( )Lat A  and ( )Lat B  are not isomorphic. 

Theorem 4.2 If 1 2, ( )∈T T B H are quasisimilar with 

quasiaffinities X and ,Y then { }'

1XY T∈ and { }'

2 .YX T∈  

Proof. Suppose 1 2=T X XT  and 2 1,=T Y YT where X and 

Y are quasiaffinities. Post-multiplying the first equation by 

Y and using the second equation, we have  

1 2 1,= =T XY XT Y XYT  

which proves that { }'

1XY T∈ . Post-multiplying the second 

equation by X and using the first equation we have  
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2 1 2 ,= =T YX YT X YXT  

which proves that { }'

2 .∈YX T  

Theorem 4.3 Hyper-quasi-similarity is an equivalence 

relation. 

Proof. Suppose 1 2, ( )T T B H∈ are quasisimilar and there 

exists an implementing pair ( , )X Y  of quasiaffinities such 

that XY has the hereditary property with respect to 1T  and 

YX has the hereditary property with respect to 2.T  Let 

1 1( )M Hyperlat T∈  and 2 2( ).M Hyperlat T∈ Then  

1 2 1 2,XT T X T Y YT= =  and 1 1YXM M=  and 2 2 .XYM M=  

Without loss of generality, if we let 1 2 ,T T=  then we have 

1 1 1 1,XT T X T Y YT= =  and 1 1YXM M=  and 2 2 .XYM M=  

From Theorem 4.2, we know that both XY and YX are 

quasiaffinities and { }'

1, .XY YX T∈  Thus, 1 1YXM M=  and 

2 2 ,XYM M= where 1 2 1, ( ).M M Hyperlat T∈  This proves 

reflexivity of 
h

≈ . 

Now suppose 1 2 .
h

T T≈  Then by re-writing the definition 

above, we have 2 1 2 1,YT T Y T X XT= =  and 2 2XYM M=  and 

1 1,YXM M=  where 1 1( )M Hyperlat T∈  and 

2 2( ).M Hyperlat T∈  Thus 2 1.
h

T T≈  This proves the symmetry 

property of .
h

≈  

Now suppose 1 2

h

T T≈ (with implementations as above) and 

suppose also that 2 3 ,
h

T T≈  for some 3 ( ).T B H∈  Then there 

exists an implementing pair of quasiaffinities ( , )Z S such that 

2 3 2 3,ZT T Z T S ST= =  and 2 2SZM M= and 3 3 ,ZSM M=
where 2 2( )M Hyperlat T∈  and 3 3( ).M Hyperlat T∈  A 

simple computation shows that 

{ } { }
{ } { }

1 3 1 3

1 3 1 3

' '

2 1

' '

2 3

, ,

, ,

, ,

, .

= =
= =

∈ ∈

∈ ∈

ZXT T ZX SYT T SY

T XZ XZT T YS YST

ZSXY T YSZX T

XYSZ T ZXYS T

 

This is equivalent to  

1 1=YSZXM M  

And 

3 3,=ZXYSM M 1 2( )∈M Hyperlat T  

and 3 3( ).M Hyperlat T∈  This proves that 1 3,≈
h

T T and hence 

≈
h

 is transitive. 

Theorem 4.4 ([8], Corollary 4.8) Hyper-quasi-similarity 

preserves nontrivial hyperinvariant invariant subspaces. 

Proof. This follows easily from the fact that hyper-

similarity is stronger than quasisimilarity and the fact that 

quasisimilarity preserves non-trivial hyperinvariant 

subspaces. 

Kubrusly in [8] has shown that non-scalar normal 

operators have non-trivial hyperinvariant subspaces. Thus 

Theorem 4.4 ensures that an operator quasisimilar to a non-

scalar normal operator has a non-trivial hyperinvariant 

subspace. 

The following result is a strengthening of ([8], Lemma 4.7) 

and lends credence to Theorem 4.4. 

Theorem 4.5 Let ( )T B H∈ be quasisimilar to a unitary 

operator ( )U B K∈  and let M K⊆ . If ( )M Hyperlat T∈ then 

( ).M Hyperlat U∈  

Proof. Suppose TX XU= and ,UY YT= where 

( , ), ( , )X B K H Y B H K∈ ∈ are quasiaffinities. If { }'
,A T∈

then 

( ) ( )( ) ( )( )= =U YAX UY AX YT AX  

( )= Y TA X  

( )( )= YA TX  

( )( )= YA XU  

( ) .= YAX U  

This proves that { }'∈YAX U for every { }'
.∈A T  

Using the computation, we conclude that M is invariant 

for ,YAX and hence for any operator that commutes with .U

This proves the claim. 

Corollary 4.6 If ( )T B H∈ is quasisimilar to a unitary 

operator ( )U B K∈  then ( ) Re ( ).Hyperlat T d U⊆  

Proof. Follows from the fact that for a unitary operator ,U  

( ) Re ( ).Hyperlat U d U=  

Theorem 4.7 Let , ( )T A B H∈ such that .TA AT=  If 

( )M Hyperlat T∈  then Re ( ).M d T∈  

Proof. From the hypothesis and definition, it follows that 

( ) ( ),M Hperlat A Lat A∈ ⊆  and hence M reduces { }'
.A  In 

particular M reduces .T  

Theorem 4.8 Let ( )A B H∈ and ( )B B K∈  be self-adjoint 

operators. If there exists a quasiaffinity ( , )X B H K∈  such 

that ,XA BX= then A and B are unitarily equivalent. 

Theorem 4.8 has been extended to the class of normal 

operators as a consequence of ([9], Corollary 6.50). 

The following result gives a condition when some 

subspace lattices for two operators are isomorphic. 

Theorem 4.9 Suppose that ( )T B H∈ , where H is a finite 
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dimensional Hilbert space and : ( ) ( )B H B Hϕ →  defined by 

( )T Tϕ→ is a linear map. Then the following statements are 

equivalent. 

(i). ( ) ( ( ))Lat T Lat Tϕ≡ . 

(ii). ( ) ( ( )).Hyperlat T Hyperlat Tϕ≡  

(iii). Re ( ) Re ( ( )).d T d Tϕ≡  

From Theorem 4.9, we can conclude that  

( ) ( ),≡Lat T Lat cT ( ) ( )≡Hyperlat T Hyperlat cT  

and  

Re ( ) Re ( ),≡d T d cT  

where 0 .≠ ∈ℂc  

5. Reducibility and Subspace Lattices 

It is clear that reducing subspaces are generally easier to 

treat that arbitrary invariant subspaces. 

Theorem 5.1 A subspace M reduces an operator T if and 

only if *( ) ( ).∩M Lat T Lat T∈  

Proof. Follows easily from the definition. 

Corollary 5.2 Let ( )T B H∈ and M be a subspace of .H  

The following statements are equivalent. 

(i). M reduces .T  

(ii). *( ) ( ).∩M Lat T Lat T∈  

(iii). { }'
,MP T∈  where MP  is the orthogonal projection of  

H onto .M  

Theorem 5.3 If 1 1( )T B H∈  and 2 2( )T B H∈  are 

irreducible, then every operator 1 2( , )A B H H∈  that 

intertwines them is either zero or identity. 

Theorem 5.4 If an operator A commutes with an 

irreducible operator ,T  then A is similar to a scalar operator. 

Theorem 5.5 If ( )T B H∈  is nilpotent of nil-index ,n then 

{ }{ }Re ( ) 0 , .d T H=  

Corollary 5.6 Let ( )T B H∈ . If { }{ }Re ( ) 0 , ,d T H= then 

,T I Sα= +  where S is a nilpotent operator. 

Bercovici etal[1] have proved that for a nilpotent operator

( )T B H∈  such that 0,nT = for some integer 1,n ≥  

( )Hyperlat T  is generated by the spaces ( )mKer T and 

( ), 0,1, 2,3, , .⋯
mRan T m n=  They have also shown that 

1( )nRan T −  is the smallest non-trivial hyperinvariant 

subspace and that 1( )nKer T −  is the largest non-trivial 

hyperinvariant subspace. 

We show the relationship between ( )Hyperlat T and

Re ( )d T , where T is a unitary operator. 

Theorem 5.7 Let ( )T B H∈ be a unitary operator. A 

subspace M H⊆ is hyperinvariant for T if and only if M

reduces .T  

Proof. Suppose that ( )M Hyperlat T∈  and let MP be the 

orthogonal projection of H onto .M Then M M MAP P AP=  

for every { }'
.A T∈ Since T is unitary and hence normal, by 

Fuglede’s theorem, { }'* .A T∈  Thus * *
M MA P P A=  and 

hence .M M M MAP P AP P A= =  By Corollary 5.2, we have 

that M reduces .T  Conversely, suppose M reduces .T  

Without loss of generality, suppose .M MAP P A=  Then 

.= = ⊆ =M M MAM AP H P AH P H M  

This shows that M is invariant under .A  

So, if M MAP P A=  for all { }'
,A T∈ then M is 

hyperinvariant for .T  

Remark. Theorem 5.7 says that for a unitary operator ,T  

( ) Re ( ).Hyperlat T d T=  

Theorem 5.7 can be relaxed as follows. 

Theorem 5.8 Let ( )T B H∈ be an isometry. If M H⊆ is 

such that TM M= then M reduces .T  

Proof. If TM M= then 
* * .T M T TM M= =  This proves 

the claim. 

Corollary 5.9 Let ( )T B H∈ be an isometry. If M H⊆ is 

such that TM M=  then Re ( ) ( ).d T Lat T=  

Proof. This follows from Theorem 5.8 and the fact that 

Re ( ) ( ),d T Lat T⊆ for any operator .T  

Let ( ).T B H∈  If a subspace M H⊆  reduces every 

operator in the commutant of ,T  then we say that M is a 

hyper-reducing subspace for .T  

Example 2. A unilateral shift 2 2: ( ) ( )ℓ ℕ ℓ ℕS →  of 

multiplicity one is irreducible and so is its two-dimensional 

analogue. The operator  

0 0

1 0

 
=  
 

A  

 is the two-dimensional analogue of the unilateral shift 

operator of multiplicity one. We note that 

{ } 20
( ) 0 , , .

1

   =   
   

ℝLat S  A simple computation  

shows that 
0

( )
1

 
= ∈ 

 
M Hyperlat S  and that  

Re ( ).M d S∉  So S has no non-trivial reducing subspace 

and hence it is irreducible. Note also, that *( ) ( )Lat S Lat S≠

but *( ) ( ).Lat S Lat S≡  

The operator  

1 0 0
0 1

0 0 1 1
1 1

0 1 1

 
  = = ⊕    −  − 

T  
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is reducible in 
3.= ℝH  

Clearly, ( )T B H∈  is irreducible if its commutant 

{ } { }'
( ) :T A B H TA AT= ∈ = contains no projections other 0

and the identity I on .H  That is, if there is no non-trivial 

orthogonal projection commuting with .T  This is equivalent 

to saying that { }{ }Re ( ) 0 , .d T H=  The class of irreducible 

operators is huge. In fact the class of irreducible operators is 

dense in ( )B H in the norm topology. 

An operator ( )T B H∈  is reductive if all its invariant 

subspaces reduce it. 

There are several equivalent ways to characterize a 

reductive operator. 

Note that *Re ( ) Re ( ),d T d T=  for any operator 

( ).T B H∈  

Corollary 5.10 Let ( ).T B H∈  If *( ) ( ),Lat T Lat T⊆ then 

T  is reductive. 

Corollary 5.11 An operator ( )T B H∈ is reductive if and 

only if *( ) Re ( ).Lat T d T=  

Proof. By definition, if T is reductive, then  
*( ) Re ( ) Re ( ).Lat T d T d T⊆ =  But the inclusion 

Re ( ) ( )d T Lat T⊆  is obvious. Combining these statements, 

we have equality. Conversely, suppose that  

*( ) Re ( ).=Lat T d T   

Then 

*( ) Re ( )=Lat T d T  

*( ) ( )= ∩Lat T Lat T  

*( ).⊆ Lat T  

Thus *( ) ( ).⊆Lat T Lat T  

The class of reducible operators contains the class of 

reductive operators. However, an operator may be reducible 

but fail to be reductive. Thus, 

Re Re .ductive ducible⊂  

Note that every self-adjoint (and by extension, normal 

operator on a finite dimensional Hilbert space) is reductive. It 

is also known that every compact normal operator is 

reductive. It is a known fact that every operator that 

commutes with a non-scalar normal operator is reducible. 

In fact for a normal operator ( ),∈T B H  we have that 

*( ) ( ).Lat T Lat T≡
 

Example 3. Let 

0 1 0

0 0 0 .

0 0 1

 
 =  
  

T  

Then 
0 1

1
0 0

T
 

= ⊕ 
 

 

and hence T is reducible. A simple computation shows that  

{ } 3

1 0 1 0

( ) 0 , 0 , 0 , 0 , 0 ,

0 1 0 1

        
        =         
        

        

ℝLat T  

while 

{ }* 3

1 0

( ) 0 , 0 , 0 , .

0 1

    
    =     
    

    

ℝLat T  

Thus *( ) ( ).Lat T Lat T≠ Therefore T  is not reductive. 

A simple calculation shows that T  is not a normal 

operator. 

Clearly,  

Re Re .⊂ ⊂Normal ductive ducible  

The above inclusion is strict. For instance it has been 

shown in [12] that not every reductive operator in normal. 

Moore[16] went further and gave some conditions under 

which a reductive operator is normal: that such a reductive 

operator T must commute with an injective compact operator 

or T  is polynomially compact or T is expressible as a sum 

of a normal operator and a commuting compact operator (see 

[16], Theorem 1 and Corollary 2). 

Example 4. The bilateral shift B on 2 ( )ℓ ℤ defined by 

2 1 0 1 2 2 1 0 1 2( , , ,[ ], , , ) ( , , , , , , ),⋯ ⋯ ⋯ ⋯B x x x x x x x x x x− − − −=

where 2
2 1 0 1 2( , , ,[ ], , , ) ( )⋯ ⋯ ℓ ℤx x x x x x− −= ∈  and 0[ ]x  

denotes the 0-th coordinate of ,x  is not reductive.  

Indeed, 

{ 2 ( ) : 0,= ∈ =ℓ ℤ nM x x if }0 ( )if n Lat B< ∈ but  

*( ).∉M Lat B  

Theorem 5.12 A reductive operator is normal if and only if 

it has a non-trivial invariant subspace. 

Theorem 5.13 Let ( ).T B H∈  If a subspace M H⊆ is 

hyper-reducing then { } { }'' *( ) ( ).∩M Lat T Lat T∈  

Example 5. Let 
1 0

0 1
A

 
=  
 

 and 
1 1

.
0 1

B
 

=  
 

 

Clearly these two operators are not similar. A simple 

computation shows  

that { } 21 0
( ) 0 , , , Re ( ),

0 1
ℝLat A d A

     = =    
     

 

and  
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{ } { }{ }2 21
( ) 0 , , 0 , Re ( ).

0

   = ≠ =  
   

ℝ ℝLat B d A  

Thus A is reductive while B is not since not every 

invariant subspace of B reduces .B  Another computation 

shows that  

{ }'
: , ,

0

   = = ∈  
   

ℝB X X
α β

α β
α

  

and  

{ }'
: , , , , ,

   = = ∈  
   

ℝA Y Y
α β

α β γ λ
γ λ

 

hence  

{ }{ }2( ) 0 ,= ℝHyperlat A   

and 

( ) ( ).=Hyperlat B Lat B  

Theorem 5.14 ([13], Theorem H) If A is a reductive 

operator then A  can be written as a direct sum 1 2A A A= ⊕

where 1A  is normal, 2A is reductive, { } { } { }' ' '

1 2 ,A A A= ⊕  

and all the invariant subspaces of 2A  are hyperinvariant. 

Corollary 5.15 [6] Suppose A is a reductive operator such 

that 1 2A A A= ⊕ . Then 

1 2( ) ( ) ( )= ⊕Hyperlat A Hyperlat A Hyperlat A  

and  

( ) ( ).=Lat A Hyperlat A  

From Theorem 5.14 and Corollary 5.15 we conclude that if 

A is reductive and completely non-normal (that is, A  has no 

normal direct summand) then { }'
( ) ( ).Lat A Lat A=  

Theorem 5.16 ([13], Corollary 1) If A is a reductive 

operator, then every hyperinvariant subspace of A  is hyper-

reducing. 

Corollary 5.17 If A is a reductive operator, then 

( ) Re ( ).Hyperlat A Hyper d A⊆  

Corollary 5.17 says that if A  is reductive then 

{ } { }'' *( ) ( ).Lat A Lat A=  

Theorem 5.18 Let ( ).T B H∈ Then 

{ } { }'' *Re ( ) ( ) ( ).= ∩Hyper d T Lat T Lat T  

Proof.  

{ }{ }'
Re ( ) : Re ( )= ⊆ ∈Hyper d T M H M d T  

{ }{ }'*: , ,= ⊆ ⊆ ⊆ ∈M H SM M S M M S T  

{ }{ }'*: ( ) ( ),= ⊆ ∈ ∈∩M H M Lat S Lat S S T  

{ } { }{ }'' *: ( ) ( )= ⊆ ∈ ∩M H M Lat T Lat T  

= { } { }'' *( ) ( ).∩Lat T Lat T  

Theorem 5.19 Let ( ).∈T B H Then 

*Re ( ) ( ) ( ).= ∩Hyper d T Hyperlat T Hyperlat T  

Proof. The proof follows from Theorem 5.18 and the fact 

that { }'
( ) ( )Lat T Hyperlat T=  and 

{ }'
* *( ) ( ),Lat T Hyperlat T= for any ( ).T B H∈   

Corollary 5.20 Let ( )T B H∈  be self-adjoint. Then 

Re ( ) ( ).=Hyper d T Hyperlat T  

Proof. The proof follows easily from Theorem 5.19 and the 

fact that self-adjointness of .T The proof also follows from 

Theorem 5.18, the self-adjointness of T  and the fact that 

{ }'
( ) ( ).Lat T Hyperlat T=  

Proposition 5.21([1], Proposition 2.2) Let ( )T B H∈ be 

normal. Then { }*( ) : ( ) .MHyperlat T M H P W T= ⊆ ∈  

Corollary 5.22 Let ( )T B H∈ be normal. Then every 

hyperinvariant subspace of T  is hyperinvariant for 
*.T  

Corollary 5.22 says *( ) ( ),Hyperlat T Hyperlat T⊆  for any 

normal operator ( ).T B H∈   

The converse of Corollary 5.22 is also true. This leads to 

the following result.  

Corollary 5.23 Let ( )T B H∈ be normal. Then

*( ) ( ).Hyperlat T Hyperlat T=  

Proof. Since T  is normal if and only if 
*T  is normal, the 

result follows from the fact that { }'*T T∈ if and only if 

{ }'
* .T T∈  

Theorem 5.24 If ( )T B H∈  is an invertible reductive 

operator, then 
1T −
 is also reducible. 

Proof. Since ( )T B H∈ is reducible, by Theorem 5.14 it 

can be expressed as 

1
1 2

2

0
,

0

 
= = ⊕ 
 

T
T T T

T
 

with respect to the direct sum decomposition ,H M M ⊥= ⊕
where M is a subspace that reduces .T  Invertibility of T
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implies that of 1T  and 2.T  Thus 

1
11 1 1

1 21
2

0
,

0

−
− − −

−

 
= = ⊕ 
  

T
T T T

T
 

with respect to the direct sum decomposition 

.H M M ⊥= ⊕  

Corollary 5.25 Let ( )T B H∈  be invertible. If a subspace 

M H⊆ reduces ,T then M reduces 
1.T −

 

Proof. Let MP be the orthogonal projection of H onto .M

Since M reduces ,T  we have .M MTP P T=  By the proof of 

Theorem 5.24, 1 1.M MT P P T− −=  This proves the claim. 

Remark. From Theorem 5.24 and Corollary 5.25, we 

conclude that if ( )T B H∈  is invertible, then 

1Re ( ) Re ( ).d T d T −=  

We also note that Corollary 5.25 is not true if we replace 

reducibility with invariance. This is because in infinite 

dimensional Hilbert spaces, the invariance of a subspace M

for an invertible operator ( )T B H∈  does not imply 

invariance under 
1.T −

 

Example 6. Consider the bilateral weighted shift Tω on 

2 ( )ℓ ℤ defined by 1,n n nT e eω ω +=  where ℤn ∈  and { }ne the 

canonical orthonormal basis for 2 ( ).ℓ ℤ  A simple calculation 

shows that 
1 1

,n n
n

T e eω ω
− =  where .ℤn ∈  If  

{ }1 2, , ,⋯M span e e= then M is invariant for Tω but is not 

invariant for 1.Tω
−  

The following result shows that taking powers of an 

operator ( )T B H∈ preserves invariance and reduction. 

Theorem 5.26. Let ( )T B H∈  and .M H⊆  The following 

statements are true for any integer 1.n >  

(i). If ( )M Lat T∈ then ( ).nM Lat T∈  

(ii). If Re ( )M d T∈ then Re ( ).nM d T∈  

Proof. The proofs of (i) and (ii) follow easily by 

mathematical induction on .ℕn ∈  In the proof of (ii), we use 

the fact that Re ( )M d T∈ implies that TM M⊆ and 

* .T M M⊆  

Theorem 5.27. Let ( )T B H∈  and .M H⊆  If 

( )M Hyperlat T∈ then ( ),nM Hyperlat T∈  for any integer 

1.n >  

Proof. We need to prove that ( ),M Lat S∈  where { }'
S T∈

implies that ( ),M Lat X∈  where { }'

.nX T∈  

By Theorem 5.26(i), if ( )M Lat S∈ then ( ),nM Lat S∈  

where { }'
.S T∈  

By mathematical induction on ,ℕn ∈ if { }'
S T∈ then

{ }'nS T∈ , { }'nT S∈ and { }.n nS T∈   

By letting ,nX S= and using Theorem 5.26(i) once more, 

the result follows. 

6. Discussion  

The invariant subspaces of an operator, their classification 

and description play an explicitly central role in operator 

theory. They are a direct analogue of the eigenvectors of a 

linear operator. Reducing subspaces are special invariant 

subspaces which are useful in the direct sum decomposition 

of an operator. They can also be used to classify an operator. 

The basic motivations for the study of invariant subspaces 

come from the interest in the structure of operators and from 

approximation theory to a wide variety of problems in 

physics (quantum theory), computer science (data mining), 

and chemistry (lattice theory of crystal analysis). 

In particular, reducing subspaces find applications in 

wavelet expansion, multiresolution analysis (MRA) in image 

processing and automorphic graph theory. 

If ( )A B H∈  and ,x H∈  then { }
0

n

n
A x

∞

=∨ is an invariant 

subspace of .A Therefore knowledge of ( )Lat A gives 

information about the vectors which can be approximated by 

linear combinations of { }.nA x  

Knowledge of ( )Hyperlat A can give information about the 

structure of the commutant { }'
A of .A  Commutators of the 

form AB BA−  appear in a mathematical formulation of the 

Heisenberg’s Uncertainty Principle. 

7. Conclusion 

In this paper, several concepts about subspace lattices have 

been introduced. It has been shown a unitary operator ,T  

( ) Re ( ).Hyperlat T d T= It has also been proved that for a 

normal operator ,T  *( ) ( ),Hyperlat T Hyperlat T⊆ and that 

the following inclusions hold: 

Re Re .⊂ ⊂Normal ductive ducible  
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