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Abstract: In this paper, the Galerkin method is applied to second order ordinary differential equation with mixed boundary 

after converting the given linear second order ordinary differential equation into equivalent boundary value problem by 

considering a valid assumption for the independent variable and also converting mixed boundary condition in to Neumann type 

by using secant and Runge-Kutta methods. The resulting system of equation is solved by direct method. In order to check to 

what extent the method approximates the exact solution, a test example with known exact solution is solved and compared 

with the exact solution graphically as well as numerically. 
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1. Introduction 

The goal of numerical analysis is to find the approximate 

numerical solution to some real physical problems by using 

different numerical techniques, especially when analytical 

solutions are not available or very difficult to obtain. Since 

most of mathematical models of physical phenomena are 

expressed in terms of ordinary differential equations, and 

these equations due to their nature and further applications to 

use computers, it needs to establish appropriate numerical 

methods corresponding to the type of the differential 

equation and conditions that govern the mathematical model 

of the physical phenomena. The conditions may be specified 

as an initial Value (IVP) or at the boundaries of the system, 

Boundary Value (BVP) [1]. 

Many problems in engineering and science can be 

formulated as two-point BVPs, like mechanical vibration 

analysis, vibration of spring, electric circuit analysis and 

many others. This shows that the numerical methods used to 

approximate the solutions of two-point boundary value 

problems play a vital role in all branches of sciences and 

engineering [2]. 

Among different numerical methods used to approximate 

two-point boundary value problems in terms of differential 

equations are shooting method, finite difference methods, 

finite element methods (FEM), Variational methods 

(Weighted residual methods, Ritz method) and others have 

been used to solve the two-point boundary value problems 

[3]. Both in FEM and Variational methods the main attempts 

were to look an approximation solution in the form of a 

linear combination of suitable approximation function and 

undetermined coefficients [4]. For a vector space of functions

V , if { }
1

( )i i
S xφ ∞

==  be basis of V , a set of linearly 

independent functions, any function ( ) ∈f x V  could be 

uniquely written as a linear combination of the basis as: 
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1

( ) ( )j j

j

f x c xφ
∞

=

=∑                        (1) 

The weighted residual methods use a finite number of 

linearly independent functions { }
1

( )
n

i i
xφ =  as trial function. 

Suppose that the approximation solution of the differential 

equation, ( ) ( ( )) ( ) 0= + =D u L u x f x , on the boundary 

( ) [ , ]B u a b=  is in the form: 

0

1

( ) ( ) ( ) ( )

N

N j j

j

u x U x c x xφ φ
=

≈ = +∑                (2) 

Where ( )NU x  is the approximate solution, ( )u x  is the 

exact solution “ L ” is a differential operator, “ f ” is a given 

function, ( ) 'j x sφ are finite number of basis functions and  

unknown coefficients for 1, 2,...,j N= . 

The residual ( , )jR x c  is defined as: 

( , ) ( ( )) ( ( ( )) ( ))j N NR x c D U x L U x f x= − + . Now determine 

jc by requiring R to vanish in a “weighted-residual” sense: 

( ) ( , ) 0   ( 1, 2,..., )

b

i j

a

w x R x c dx i N= =∫            (3) 

Where ( )iw x  are a set of linearly independent functions, 

called weight functions, which in general can be different 

from the approximation functions ( )j xφ , this method is 

known as the weighted-residual method. 

2. Galerkin Method 

If ( ) ( )j ix w xφ =  in equation (3), then the special name of 

the weighted-residual method is known as the Galerkin 

method. Thus Galerkin method is one of the weighted 

residual methods in which the approximation function is the 

same as the weight function and hence it is also used to find 

the approximate solution of two-point boundary value 

problems [4]. 

The Galerkin method was invented in 1915 by Russian 

mathematician Boris Grigoryevich Galerkin and the origin of 

the method is generally associated with a paper published by 

Galerkin in 1915 on the elastic equilibrium of rods and thin 

plates. He published his finite element method in 1915. The 

Galerkin method can be used to approximate the solution to 

ordinary differential equations, partial differential equations 

and integral equations [5]. 

Many authors have been used the Galerkin method to find 

approximate solution of ordinary differential equations with 

boundary condition. Among this, a spline solution of two 

point boundary value problems introduced in [6], a method 

for solutions of nonlinear second order multi-point boundary 

value problems produced in [7], in [8] linear and non-linear 

differential equations were solved numerically by Galerkin 

method using a Bernstein polynomials basis, in [9] a 

numerical method is established to solved second order 

ordinary differential equation with Neumann and Cauchy 

boundary conditions using Hermite polynomials, in [10] a 

parametric cubic spline solution of two point boundary value 

problems were obtained, a second-order Neumann boundary 

value problem with singular nonlinearity for exact three 

positive solutions were solved [11], a Numerical solution of a 

singular boundary-value problem in non-Newtonian fluid 

mechanics were established [12], a Fourth Order Boundary 

Value Problems by Galerkin Method with Cubic B-splines 

were solved by considering different cases on the boundary 

condition [13] and a special successive approximations 

method for solving boundary value problems including 

ordinary differential equations were proposed.[14] 

In this paper Galerkin method will be applied to the linear 

second order ordinary differential equation of the form 
2

* * * * *

*2 *
( ) ( ) ( ) ( ) ;     

d y dy
x x x y g x a x b

dx dx
α β δ+ + = ≤ ≤  

with boundary condition 
1

2

( )

'( )

y a

y b

µ
µ

=
=

 and 

2
* * * * *

*2 *
( ) ( ) ( ) ( ) ;     

d y dy
x x x y g x a x b

dx dx
α β δ+ + = ≤ ≤  with 

boundary condition 
0

1

'( )

'( )  

y a

y b

β
β

=
=

 

3. Chebyshev Polynomial 

The polynomials whose properties and applications are 

discussed in this paper were 'discovered' almost a century ago 

by the Russian mathematician Chebyshev. It is a function 

defined using trigonometric functions cosθ  and sinθ for

[ 1,1]x ∈ − . Chebyshev polynomials of first kind with degree 

n for x ∈ [−1, 1] defined as: 

( )   cos  nT x nθ= , such that cos   xθ = , for 1    1x− ≤ ≤
and 0n ≥  

Thus ( ) 1  cos  ( cos ),  nT x n x−=  

⇒
1

0 1( ) cos(0) 1  ( ) cos(cos )   T x and T x x x
−= = = =  

From the trigonometric identity, 

( ) ( )cos cos   

2 cos  cos sin  ( ) sin( ) sin  ( ) sin( )

n l n l

n n n

θ θ
θ θ θ θ θ θ

+ + − =
− +

 

( ) ( )cos cos   2 cos  cosn l n l nθ θ θ θ⇒ + + − =

( ) ( ) ( )1 -1  2 -  .n n nT x xT x T x+⇒ =  Thus using the recursive 

relation above for n=1, 2… there is a series of Chebyshev 

polynomial 

1( )  T x x=  

jc
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2
2 ( ) 2 -1T x x=  

3
3 ( ) 4 - 3T x x x=  

4 2
4 ( ) 8 -8 1T x x x= +  

5 3
5 ( ) 16 20 5T x x x x= − +  etc. 

Here the coefficient of 
nx  in ( )nT x  

1is  2n−
. 

The figure 1 below shows the graph of the first seven 

Chebyshev polynomials for [ 1,1]x ∈ − . 

 

Figure 1. The graph of the first eight Chebyshev polynomials for [ 1,1]x ∈ − . 

4. Runge-Kutta Method for Second 

Order ODE 

Runge-Kutta method is a numerical method used to find 

approximate solution for initial value problems. In order to 

use Runge-Kutta method to find an approximate solution of 

second order ODE, it needs to convert in to a system of two 

first order ODEs. For two evaluation of f  the method is 

given by 

1 1 2

1
( )

2
j j jy y hy K K+ ′= + + +  

1 1 2

1
( 3 )

2
j j jy y hy K K

h
+′ ′= + + +  

Where 

2

1 ( , )
2

j j

h
K f x y=  

2

2 1

2 2 4
( , )

2 3 3 9
j j j

h
K f x h y hy K′= + + +  

5. Secant Method 

This method approximates the graph of the function 

( )y f x=  in the neighborhood of the root by a straight line 

(secant) passing through the points ( )1 1, ( )k kx f x− −  and

( ), ( )k kx f x , where ( )k kf f x=  and take the point of 

intersection of this line with the x-axis as the next iterate. 

Hence 

1
1

1

, k=1,2, ...k k
k k k

k k

x x
x x f

f f

−
+

−

−
= −

−
 

Or 

1 1
1

1

, k=1,2, ...k k k k
k

k k

x f x f
x

f f

− −
+

−

−
=

−
 

Where 1kx −  and kx  are two consecutive iterates. In this 

method there are two initial approximations 0x  and 1x . This 

method is also called Secant method. 

6. Mathematical Formulation of the 

Method 

Consider a general linear second order differential 

equation with two type boundary conditions 

Type I: 
2

* * * * *

*2 *
( ) ( ) ( ) ( ) ;     

d y dy
x x x y g x a x b

dx dx
α β δ+ + = ≤ ≤  

with boundary condition  

1

2

( )

'( )

y a

y b

µ
µ

=
=

 (Mixed type)           (4) 

Type II:
2

* * * * *

*2 *
( ) ( ) ( ) ( ) ;     

d y dy
x x x y g x a x b

dx dx
α β δ+ + = ≤ ≤  

with boundary condition 

0

1

'( )

'( )  

y a

y b

β
β

=
=

 (Neumann type)    (5) 

where * * *
( ), ( ), ( )x x xα β δ , *

( )g x  are given continuous 

functions for 
*a x b≤ ≤  where 0 1 0, ,β β µ and 1µ  are given 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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The Graph of the first eight  Chebyshev Polynomials 
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constants and *
( )y x  is unknown function or exact solution 

of the boundary value problem which is to be determined. 

In a BVP with mixed boundary condition, the solution is 

required to satisfy a Dirichlet or a Neumann boundary 

condition in a mutually exclusive way on disjoint parts of the 

boundary. 

Now Consider the BVP of type II (Neumann type). To use 

an approximating polynomial defined for [ 1,1]x ∈ −  the 

given BVP defined on arbitrary interval [a, b] must be 

converted into an equivalent BVP defined on [-1, 1]. So that 

the approximating polynomial should be defined on [-1, 1]. 

Since Chebyshev polynomial is defined on [-1, 1], it is 

possible to use Chebyshev polynomial after converting the 

BVP defined on arbitrary interval [a, b] into an equivalent 

BVP defined on [-1, 1]. 

6.1. Conversion of the Domain of the BVP 

The differential equation in (5) together with the Neumann 

boundary condition can be converted to an equivalent 

problem on [-1, 1] by letting 

* *
,  1 1  

2 2

b a b a
x x for x and a x b

− += + − ≤ ≤ ≤ ≤  

Then equation (4) with boundary condition is equivalent to 

the BVP given by 
2

2
( ) ( ) ( ) ( );   -1 1 

d y dy
x x x y g x x

dxdx
α β δ+ + = ≤ ≤ɶ ɶɶ ɶ  Subject to 

the boundary condition,

 

0

1

'( 1)

'(1)        

y d

y d

− =
=

                            (6) 

*

2

where 

4
( )  since for , 

2 2 2 2( )

b a b a b a b a
x x x x

b a
α α − + − + = + = + −  
ɶ

 

This implies that  

2 2

* *2 2 2

2 4
   

( ) ( )

dy dy d y d y
and

b a dxdx dx b a dx
= =

− −
         (7) 

Now equating the D. E in (4) with (6), 

2
* * * *

*2 *

2

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d y dy
x x x y g x

dx dx

d y dy
x x x y g x

dxdx

α β δ

α β δ

+ + − =

+ + −ɶ ɶɶ ɶ

 

2 2
*

2 *2

* *

*

( ) ( ) ,

( ) = ( ) , ( ) ( ) 

d y d y
x x

dx dx

dy dy
x x x x

dx dx

α α

β β δ δ

⇒ =

=

ɶ

ɶ ɶ

*
and ( ) ( ) g x g x=ɶ      (8) 

Therefore, the DE in (5) with Neumann boundary 

condition is an equivalent BVP with the BVP in (6). 

Up on substitution of (7) into (4), equation (4) yields 

2 2
*

2 2 2

*

4
( ) ( ) ,  

( )

2
    ( ) = ( ) , 

( )

d y d y
x x

b a dx dx

dy dy
x x

b a dx dx

α α

β β

=
−

−

ɶ

ɶ

 

* *
( ) ( )   and ( ) ( )x y x y g x g xδ δ= =ɶ ɶ  

2

4
( ) ( ) , 

2 2( )

2
  ( ) ( ) ,

( ) 2 2

b a b a
x x

b a

b a b a
x x

b a

α α

β β

− +
⇒ = +

−
− += +

−

ɶ

ɶ

 

( )= ( ) and
2 2

 ( )=g( )
2 2

b a b a
x x

b a b a
g x x

δ δ − ++

− ++

ɶ

ɶ

 

6.2. Applying Galerkin Method 

To apply the technique of Galerkin method to find an 

approximate solution of (4), say ( )y x , written as a linear 

combination of base functions and unknown constants. That 

is; 

0

( ) ( )         
n

i i

i

y x c T x
=

=∑           (9) 

where ( )iT x  are piecewise polynomial, namely Chebyshev 

polynomials of degree i and are unknown parameters, 

to be determined.

 Now applying Galerkin method with the basis function 

( )iT x  gives, 

1 12

2

1 1

[ ( ) ( ) ( ) ] ( ) ( ) ( )  j j

d y dy
x x x y T x dx g x T x dx

dxdx
α β δ

− −

+ + =∫ ∫ɶ ɶɶ ɶ  (10) 

Integrating the first term by parts on the left hand side of 

(10), that is 

1 2 2

2 2

1

1 2

2

1

( ) ( ) ,   ( ) ( ) and 

( ) ( )  and 

( )

j j

j

d y d y
T x x dx u T x x dv dx

dx dx

d dy
du T x x dx v

dx dx

d y
x dx uv vdu

dx

α α

α

α

−

−

= =

 ⇒ = = 

⇒ = −

∫

∫ ∫

ɶ ɶ

ɶ

ɶ

 

1

1
1

1

  = ( ) ( ) | ( ) ( )   j j

dy dy d
T x x T x x dx

dx dx dx
α α−

−

 −  ∫ɶ ɶ      (11) 

Upon substitution of (11) into (10), yields 

ic ' s
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( )
1

-1

1

-1

[- ( ) ( ) ( ) ( )

( ) ( ) ( )]

     ( ) ( ) (-1) '(-1) (-1)

- (1) '(1) (1)      

j j

j

j j

j

dy d dy
x T x x T x

dx dx dx

x y x T x dx

g x T x dx y T

y T

α β

δ

α

α

+

+

= +

∫

∫

ɶɶ

ɶ

ɶɶ

ɶ

       (12) 

But from equation (9) the approximate solution is given by 

0

( ) ( )

n

i i

i

y x c T x

=

=∑

 Substituting this into equation (12) yields, 

( )
1

0-1

0 0

[- ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )]

n

i i j

i

n n

i i j i i j

i i

d
c T x x T x

dx

x c T x T x x c T x T x dx

α

β δ

=

= =

′

′+ +

∑∫

∑ ∑

ɶ

ɶ ɶ

 

1

-1

( ) ( ) (-1) (-1) (-1)

- (1) (1) (1)

j j

j

g x T x dx u T

u T

α

α

′= +

′

∫ ɶɶ ɶ

ɶ ɶ

 

( )
1

0 -1

[- ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )]

n

i i j i j

i

i j

d
c T x x T x x T x T x

dx

x T x T x dx

α β

δ
=

′ ′⇒ +

+

∑ ∫ ɶɶ

ɶ

 

1

-1

( ) ( ) (-1) '(-1) (-1)

- (1) '(1) (1)

j j

j

g x T x dx y T

y T

α

α

= +∫ ɶɶ

ɶ

        (13) 

In the left hand side of equation (13) above it needs to 

know the values of (-1) y′  and (1)y′ which approximately 

equal to (-1)y′  and (1)y′ respectively, where y is the exact 

solution of the BVP in equation (6). 

6.3. The Resulting System of Equation 

Since the values of ( 1)y′ −  and (1)y′  are known from the 

boundary condition, substituting these values into (13), and 

equation (13) gives a system of n n×  equations to solve the 

parameters  thus equation (13) in matrix form becomes: 

1

   

n

i ij i

i

c K F

=

=∑                           (14) 

Where 
(1) (2) (3) (1) (2) and ij ij ij ij i i iK k k k F f f= + + = +  such that 

( )
1

(1)

1

[- ( ) ( ) ( )ij i j

d
k T x x T x dx

dx
α

−

′= ∫ ɶ

1

(2)

1

( ) ( ) ( )ij i jk x T x T x dxβ
−

′= ∫ ɶ  

1

(3)

1

( ) ( ) ( )ij i jk x T x T x dxδ
−

= ∫ ɶ
1

(1)

-1

( ) ( )i jf g x T x dx= ∫ ɶ  

(2) (-1) (-1) (-1) - (1) (1) (1)i j jf y T y Tα α′ ′= ɶ ɶ  

Now, the unknown parameters  are determined by 

solving the system of equation in (14) by direct method and 

substituting these values into (9) yields the approximate 

solution ( )y x  of the DE in (4) satisfying the given boundary 

conditions in (6). 

Consider a BVP of type I. In this case it is impossible to 

use the above method directly; since ( )y a′  is not given and 

hence instead it needs to convert the BVP in to type II. The 

conversion is made by using different numerical methods. 

Consider to solve the following boundary-value problem: 

2

2
( ) ( ) ( ) ( ) ;     

d y dy
x x x y g x a x b

dxdx
α β δ+ + = ≤ ≤     (15) 

With boundary condition 
1

2

( )

'( )

y a

y b

µ
µ

=
=

 

The idea of shooting method for (15) is to solve for ( )y a′
hoping that 2( )y b µ′ = . In order to find ( )y a′  such that 

2( )y b µ′ = , guess ( )y a z′ =  and solve for ( )y b′  using 

Runge-Kutta method for second order ODE, after having a 

value using the guess, denote this approximate solution zy  

and hope 2( )zy b µ′ = . If not, use another guess for ( )y a′ , 

and try to solve using the Runge-Kutta method. This process 

is repeated and can be done systematically until this choice 

satisfy ( )y b′ . 

To do this, follow the steps below. 

Step1:- select 0z  so that 2( )zy b µ′ = , let 2( ) ( )zz y bψ µ′= − . 

The guess for 0z  

Step 2:- Now the objective is simply to solve for ( ) 0zψ = , 

hence secant method can be used. 

Step 3:- How to compute z 

Suppose that the solutions 
0
( )zy b′  and 

1
( )zy b′  obtained 

from guesses 0z  and 1z  respectively. 

Step 4:- Now using secant method to find 2z  given by; 

1

1
1 , k=1,2, ...

k

k k

k k
k k z

z z

z z
z z y

y y
−

−
+

−
= −

−  

Following this sequence of iteration there exists z such that 

( ) ( )zy b y b′ ′=  

Thus, the Neumann boundary condition for the DE in (15) 

ic 's

ic 's



 Mathematics and Computer Science 2017; 2(5): 66-78 71 

 

is given by 

2

( )

( )

y a z

y b µ
′ =
′ =

                               (16) 

Now to solve the DE with boundary condition in (16) it is 

convenient to use equation (13). 

Example: - Consider the linear boundary value problem 
2

2

2
;   0 10 xd y

y x e x
dx

−+ = ≤ ≤ , subject to the boundary 

condition (0) 0.2678y = − , (10) 0y′ =  

Whose exact solution is:-
(10)

(10)

2 ( )

11/ 5000 ( )(349 (10)

22500) / (10) /

3839 / 5000 ( ) 1/ 2( 1) x

y sin x sin e

cos e

cos x x e −

= −

−

− + +

 

Solution: -The above problem is a mixed boundary 

condition or (type II); to apply the above method it needs to 

convert the given boundary condition in to Neumann 

boundary condition. Now assume a guess depending on the 

value of (10) 0y′ = , let (0) 1 y′ = −  be the first guess and 

hoping that (10) 0y′ = . The next step is using Ruge-Kutta 

method for second order differential equation, where

( ) ( , , )y x f x y y′′ ′= . But for this problem, ( ) ( , )y x f x y′′ =
since f  is independent of y′  

0 0x = , and 10endx =  and take step size h=0.5, 

0( ) -0.2678  0 0.2678y y x for x y= = = ⇒ = −  

0( ) 1  0 1y x for x y′ ′= − = ⇒ = −  

1 1 2

1
( )

2
j j jy y hy K K+ ′= + + +  

1 1 2

1
( 3 )

2
j j jy y hy K K

h
+′ ′= + + +  

2

1 ( , )
2

j j

h
K f x y=  

2

2 1

2 2 4
( , )   0,1, 2...20

2 3 3 9
j j j

h
K f x h y hy K for j′= + + + =  

This gives the result in table 1 for the first iteration, where 

in the 
thi  step ix x= , ( )iy y x=  and ( )iy y x′ ′=

 

Referring to table 1, take 0.5818zy′ = . But,

(10) (10)zy y′ ′≠ , thus it needs to guess another value for

(0)y′ . Let (0)y′ =1 hoping that (10) 0y′ = . Using Runge-

Kutta method for 0x =  to 10x =  and taking 0.5h = , 

( ) -0.2678  0y y x for x= = =  and ( ) 1  0y y x for x′ ′= = = , this 

yields the following result, where in the 
thi  step ix x= , 

( )iy y x=  and ( )iy y x′ ′=
 

 

Table 1. Shows the result of y  and ′y  on the first iteration. 

1st iteration  

x  y  ′y  

0.00 0.2670−  1.0000−  

0.50 0.6741−  0.7212−  

1.00 0.8563−  0.1822−  

1.50 0.7336−  0.4641  

2.00 0.3198−  1.0127  

2.50 0.2808  1.2968  

3.00 0.9088  1.2345  

3.50 1.3967  0.8435  

4.00 1.6149  0.2289  

4.50 1.5043  0.4500−  

5.00 1.0893  1.0227−  

5.50 0.4691  1.3505−  

6.00 0.2095−  1.3596−  

6.50 0.7891−  1.0566−  

7.00 1.1407−  0.5233−  

7.50 1.1939−  0.1056  

8.00 0.9514−  0.6776  

8.50 0.4858−  1.0594  

9.00 0.0803  1.1685  

9.50 0.6059 0.9909 

10.00 0.9659 0.5818 

Table 2. Shows the result of y  and ′y on second iteration. 

2nd iteration 

x  y  ′y  

0.00 -0.2678 1.0000 

0.50 0.2445 1.0344 

1.00 0.7231 0.9181 

1.50 1.1004 0.6723 

2.00 1.3183 0.3161 

2.50 1.3383  -0.1000  

3.00 1.1561  -0.4984  

3.50 0.8081  -0.7958  

4.00 0.3664  -0.9276  

4.50 -0.0772  -0.8663  

5.00 -0.4321  -0.6297  

5.50 -0.6297  -0.2761  

6.00 -0.6397  0.1101  

6.50 -0.4754  0.4395  

7.00 -0.1892  0.6393  

7.50 0.1407  0.6697  

8.00 0.4302  0.5327  

8.50 0.6095  0.2697  

9.00 0.6385  -0.0497  

9.50 0.5154  -0.3458  

10.00 0.2754  -0.5480  

Now 
1 1(10) 0.5480  1zy where z′ = − =  and since 0z  and 1z  

given then find 2z  

1

1 0

1 0
2 1

1 ( 1)
1 ( 0.5480) 0.0299

0.5480 0.5818
z

z z

z z
z z y

y y

− − −= − = − − =
− − −  

Using 2 0.0299z =  applying Runge-Kutta method where 

h=0.5, ( ) -0.2678  0y y x for x= = = and ( ) 0.0299  0y y x for x′ ′= = =



72 Akalu Abriham Anulo et al.:  Numerical Solution of Linear Second Order Ordinary Differential Equations with   

Mixed Boundary Conditions by Galerkin Method 

gives the following result for the 3
rd

 iteration. 

Table 3. Shows the result of y  and ′y  on the third iteration. 

3rd iteration 

x  y  ′y  

0.00 -0.2678  0.0299  

0.50 -0.2014  0.1830  

1.00 -0.0432  0.3847  

1.50 0.2108  0.5717  

2.00 0.5239  0.6543  

2.50 0.8256  0.5778  

3.00 1.0365  0.3422  

3.50 1.0939  -0.0008  

4.00 0.9722  -0.3669  

4.50 0.6899  -0.6647  

5.00 0.3058  -0.8206  

5.50 -0.0970  -0.7975  

6.00 -0.4313  -0.6029  

6.50 -0.6278  -0.2861  

7.00 -0.6510  0.0755  

7.50 -0.5068  0.3963  

8.00 -0.2399  0.6032  

8.50 0.0784  0.6530  

9.00 0.3680  0.5413  

9.50 0.5596  0.3025  

10.00 0.6105  -0.0002  

Now calculate the next guess 

2

2 1

2 1
3 2

0.0299 1
0.0299 (0.0299) 0.031

0.0002 0.5480
z

z z

z z
z z y

y y

− −= − = − =
− − +  

Runge-Kutta method for 0.031y =  yields the following 

result for the 4
th

 iteration.

 Table 4. Shows the result of y  and y′  on the fourth iteration.

 

4th iteration 

x  y  ′y  

0.00 -0.2670  0.0301  

0.50 -0.2006  0.1828  

1.00 -0.0427  0.3842  

1.50 0.2110  0.5710  

2.00 0.5237  0.6536  

2.50 0.8252  0.5772  

3.00 1.0358   0.3419  

3.50 1.0933  -0.0007  

4.0 0.9716  -0.3665  

4.50 0.6897  -0.6642  

5.00 0.3058  -0.8200  

5.50 -0.0967  -0.7969  

6.00 -0.4308  -0.6026  

6.50 -0.6272  -0.2861  

7.00 -0.6504  0.0753  

7.50 -0.5064  0.3959  

8.00 -0.2398  0.6027  

8.50 0.0782  0.6524  

9.00 0.3676  0.5409  

9.50 0.5591  0.3024  

10 0.6101  0.0000  

As table 4 shows the guess for (0) 0.030y′ ≈ . Thus, the 

Neumann boundary value problem given by 

2
2

2
;   0 10 −+ = ≤ ≤xd y

y x e x
dx

 

(0) 0.030′ =y , and (10) 0y′ =
 The next step is converting the BVP into equivalent BVP 

defined for 1 1x− ≤ ≤  by letting 

( ) ( )
5 5

2 2

b a b a
x x x

− += + = + , since 0a =  and 10b = . 

The equivalent BVP for the above problem on 1 1x− ≤ ≤  

becomes, 

( ) ( )
2

2 5 5

2

1
5 5

25

xd y
y x e

dx

− ++ = + , for 1 1x− ≤ ≤  

with boundary condition (17) 

'( 1) 0.030

'(1) 0

y

y

− =
=

                           (17) 

Now, suppose that y  be the approximate solution of (17), 

given by a linear combination of constants 'ic s  and an 

approximating polynomial, called Chebyshev polynomial, 

thus 

1

( )

n

i i

i

y c T x

=

=∑                        (18) 

Upon substitution of y , the approximate solution, into the 

differential equation in (17) gives an equation called residue 

given by: 

( ) ( )
2

2 5 5

2

1
( , ) 5 5 0

25

x
i

d y
R x c y x e

dx

− += + − + ≈ , for 1 1x− ≤ ≤   (19) 

Applying Galerkin method; 

1

1

( , ) ( ) 0i jR c x T x dx

−

=∫  

( ) ( )
1 2

2 5 5

2

1

1
[ 5 5 ] ( ) 0
25

x
j

d y
y x e T x dx

dx

− +

−

⇒ + − + ≈∫  

( ) ( )
1 1

2 5 5

1 1

1
[ '' ( ) ( )] 5 5 ( )
25

x
j j jy T x yT x dx x e T x dx

− +

− −

⇒ + = +∫ ∫   (20) 

Using integration by parts to simplify the first term in the 

right hand side, let ( )  ( )  j ju T x du T x dx′= ⇒ =  and

( )     ( )dv y x dx v y x′′ ′= ⇒ = , hence it gives 

1 1

1
1

1 1

1 1
( ) ( ) ( ) | ( )

25 25
j j jy T x dx y x T x y T x dx−

− −

 
′ ′′ ′ ′= −

 
 

∫ ∫  

Therefore equation (20) becomes 
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( ) ( )
1 1 1

2 5 51
1

1 1 1

1 1
( ) ' '( ) '( ) ( ) | 5 5 ( )

25 25

x
j j j jyT x dx y T x dx y x T x x e T x dx

− +
−

− − −

− = − + +∫ ∫ ∫                               (21) 

Substituting the approximate solution 

1

( )

n

i i

i

y c T x

=

=∑  into (21) yields, 

( ) ( )
1 1 1

2 5 51
1

1 1 1 1

1 1
( ) ( ) '( ) '( ) '( ) ( ) | 5 5 ( )

25 25

n
x

i i j i j j j

i

c T x T x dx T x T x dx y x T x x e T x dx
− +

−
= − − −

 
 − = − + +
 
 

∑ ∫ ∫ ∫  

( ) ( )

1 1

1 1 1

1
2 5 5

1

1 1 1
( ) ( ) ( ) ( ) ( 1) ( 1) (1) (1)

25 25 25

5 5 ( )

n

i i j i j j j

i

x
j

c T x T x dx T x T x dx y T y T

x e T x dx

= − −

− +

−

 
′ ′  ′ ′− = − − −

 
 

+ +

∑ ∫ ∫

∫

                (22) 

Now, using the given boundary condition in to (22), equation (22) becomes 

( ) ( )
1 1 1

2 5 5

1 1 1 1

1 1
( ) ( ) ( ) ( ) 5 5 ( ) (0.030) ( 1)

25 25

n
x

i i j i j j j

i

c T x T x dx T x T x dx x e T x dx T
− +

= − − −

 
′ ′ − = + + −

 
 

∑ ∫ ∫ ∫           (23) 

For equation (23) there is a system of equation given by: 

1

   
n

i ij i

i

c K F
=

=∑                                                                        (24) 

(1) (2) (1) (2)where     and ij ij ij i i iK k k F f f= + = +
 

1

(1)

1

1

(2)

1

such that   ( ) ( )

1
                  ( ) ( )

25

ij i j

ij i j

k T x T x dx

k T x T x dx

−

−

=

′ ′= −

∫

∫
 

(1) 1
(0.030) ( 1)

25
i jf T= −  

( ) ( )
1

2 5 5(2)

1

 5 5 ( )
x

i jf x e T x dx
− +

−

= +∫  

In order to find the value of 'ic s  take n  trial functions defined for [ ]1,1x ∈ − , using Chebyshev polynomials as trial 

function. For 6n = : 

2

3

4 2

5 3

6 4 2

2 1

4 3
'

8 8 1

16 20 5

32 48 18 1

x

x

x x
T

x x

x x x

x x x

 
 

− 
 − =
 − +
 
 − +
 

− + −  

, where 1 2 3 4 5 6[          ]T T T T T T T=  and 'T  is the transpose of T. 
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1

(1)

1

2/3 0 2 / 5 0 2 / 21 0

0 14 /15 0 38 /105 0 26 / 315

2 / 5 0 34 / 35 0 22 / 63 0
( ) ( )

0 38 /105 0 62 / 63 0 34 / 99

2 / 21 0 22 / 63 0 98 / 99 0

0 26 / 315 0 34 / 99 0 142 /143

ij i jk T x T x dx

−

− − 
 − − 
 − −

= =  − − 
 − −
 

− −  

∫  

1

(2)

1

   2/25        0     2/25         0       2/25          0

     0      32/75     0       128/375     0       288/875

  2/25         0    138/125    0    142/175       01
= ( ) ( )  

    25
ij i jk T x T x dx

−

′ ′− =∫   0    128/375   0   5632/2625    0    3968/2625

  2/25         0    142/175    0   1126/315      0

     0    288/875    0  3968/2625   0    52064/9625

 
 
 
 
 
 
 
 
  

 

To find the value of the coefficient matrix in equation (24) use 

(1) (2)
ij ij ijK k k= +  

So, by expressing the coefficient matrix ,i jK  and the unknown coefficient 'ic s  in a system of equation in matrix form: 

(1) (2)

44/75 0 12 / 25 0 92 / 525 0

0 38 / 75 0 1846 / 2625 0 3242 / 7875

12 / 25 0 116 / 875 0 1828 /1575 0
 

0 1846 / 2625 0 9146 / 7875 0 160694 / 86625

92 / 525 0 1828 /1575 0 8956 / 3465 0

0 3242 / 7875 0 160694 / 86625 0 552582 /125125

ij ij ijK k k

− −
− −

− − −
= +

− − −
− − −

− − −

1

2

3

4

5

6

[ ]i

c

c

c
f

c

c

c

  
  
  
  

=  
  
  
  
    

   (25) 

Where if  is 6 1× a column vector given by:- 

(-10)

(-10)

(-10)

(-10)

(-10)

(-10)

             - 4 / 25 - 756 / 25

          - 22 /125 - 6658 /125

          28 /125 -14708 /125
    

        - 38 / 625 -189682 / 625

      28 / 3125 - 2774708 / 3125

 2818 /15625 - 45459898 /15625

i

e

e

e
f

e

e

e



=




 
 
 
 
 
 
 
 
 

 

Now a 6 6×  coefficient matrix which is symmetric, 6 1×  

unknown column vector that represent 'ic s  and 6 1×  

column vector that represents if . So there are six equations 

with six unknowns. Using ( ) 1

,i i j ic K f
−

=  to solve (25), the 

values of the six unknowns are: 

1  = 0.361550c  

2 = -0.002596c  

3 0.939452c =  

4 0.360917c =  

5 0.449830c = −  

6 0.192200c = −  

Now it is possible to express the approximate solution as a 

linear combination of constants 'ic s  and an approximating 

polynomial. So substituting 'ic s  and Chebyshev 

polynomials for n=6 the approximate solution is: 

2 3 4 2

5 3 6 4 2

0.002596(2 1) 0.939452(4 3 ) 0.360917(8 8 1)

      0.449830(16 20 5 ) 0.192200(32 48

0.3615

18 1

50

)

x x x x x x

x

y

x x x x x

− − + − + − +

− − + − − + −

=
 

The graph of the exact and approximate solution, to look the 

convergence of the approximate solution to the graph of the 

exact solution, looks like figure 2 below. 
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Figure 2. The graph of the exact and approximate solution for n=4 and n=6. 

The above graph shows that the graph of the approximate solution approaches the graph of the exact solution for the 

differential equation with boundary condition in problem 1. 

Considering n=8, then the approximate solution and the Chebyshev polynomials are given by: 

8

1

( )i i

i

y c T x

=

=∑                                                                                (26) 

2

3

4 2

5

7 5 3

2 4 6 8

3

6 4 2

2 1

4 3

8 8 1
'   

16 20 5

32 48

64 112 56 7

1 32 160 256 8

1

1

18

2

x x

x

x

x x

x x x x

x x

x x
T

x x x

x x x

 
 

− 
 − 
 − +
 =
 − +
 

− + −

− + −

− + −

 
 
 

 + 

, where 1 2 3 4 5 6 7 8[            ]T T T T T T T T T=  and 'T  is the transpose of T. 

Using MATLAB code; 

(1)

        2/3         0      -2/5         0     -2/21         0             -2/45          0

         0     14/15         0   -38/105         0   -26/315           0     -134/3465

      -2/5    

K  =  ij

     0     34/35         0    -22/63     0          -38/495            0]

         0   -38/105         0     62/63         0    -34/99         0     -158/2145

     -2/21         0    -22/63         0     98/99         0     -146/429           0

         0   -26/315         0    -34/99         0   142/143         0          -22/65

     -2/45         0   -38/495       0    -146/429       0        194/195         0

         0 -134/3465       0   -158/2145         0    -22/65        0     254/255

 
 
 
 
 
 
 
 
 
 
 
  

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

X-axis

-1<x<1

Y
-a

x
is

The Graph of Exact and Approximate Solutions for n=4 and n=6

 

 

The exact solution

Approx. solution for n=4

Approx. solution for n=6
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(2)

              2/25             0                2/25                 0                2/25                0             2/25                      0

                0            32/75       

  K  =  ij

         0          128/375                   0          288/875                0            512/1575

             2/25                0          138/125                0          142/175                0          286/375                     0

                0          128/375                0        5632/2625                0        3968/2625                0        120832/86625

             2/25                0          142/175                0         1126/315                0        6086/2475                   0

                0          288/875                0        3968/2625                0       52064/9625                0      1376768/375375

             2/25                0          286/375                0        6086/2475                0   1232966/160875                0

                0         512/1575                0     120832/86625             0   1376768/375375         0        11657216/1126125

 
 
 
 
 
 
 
 
 
 
 
  

 

(-10)

(-10)

(-10)

(-10)

(-10)

            - 4 / 25 - 756 / 25

              - 22 /125 - 6658 /125

              28 /125 -14708 /125

            - 38 / 625 -189682 / 625
 =  

          28 / 3125 - 2774708 / 3125

     2818 /15625 - 4545

i

e

e

e

e
f

e

(-10)

(-10)

(-10)

9898 /15625

   35404 / 78125 -827348644 / 78125

 151442 / 78125 -3321109962 / 78125

e

e

e

 
 
 
 
 
 
 
 
 
 
 
 
 
    

Thus the unknown parameters 'ic s  are 

1 0.375249c =  

2 0.069868c = −  

3  =0.959056c  

4 = 0.286293c  

5 0.454061c = −  

6 = 0.117209c  

7 0.005079c = −  

8 0.299613c = −  

Now substituting the unknown parameters and eight Chebyshev polynomials in to (26), the approximate solution is: 

2 3 4 2

5 3 6 4 2

7 5 3 2 4 6 8

0.375249 0.069868(2 1) 0.959056(4 3 ) 0.286293(8 8 1)

0.454061(16 20 5 ) 0.117209(32 48 18 1)

0.005079(64 112 56 7 ) 0.299613(1 32 160 256 128 )

y x x x x x x

x x x x x x

x x x x x x x x

= − − + − + − +
− − + + − + −

− − + − − − + − +

 

The graph of the exact and approximate solution, to look the convergence of the approximate solution to the graph of the 

exact solution, looks like figure 3 below. 
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Figure 3. The graph of the exact solution and approximate solution for n=6 and n=8. 

From the graph above the approximate solution 

approaches the graph of the exact solution when the number 

of the trial functions increases from 6 to 8. 

Now compare the absolute error which is given by 

exact approxerror y y= −  

Table 5. Shows the computed the absolute error for problem 1 when n=6 and n=8. 

x  Exact solution Approximate solution for n=6 Approximate solution for n=8 Absolute error for n=6 Absolute error for n=8 

-1.0 -0.2670 -0.8745 -0.4640 0.6074 0.1969 

-0.9 -0.2305 -0.9073 -0.4970 0.6768 0.2664 

-0.8 -0.0994 -0.6369 -0.4619 0.5375 0.3625 

-0.7 0.1443 -0.1813 -0.2646 0.3256 0.2089 

-0.6 0.4736 0.3385 0.0794 0.1350 0.0942 

-0.5 0.8180 0.8124 0.4890 0.3057 0.0291 

-0.4 1.0871 1.1515 0.8573 0.0644 0.0298 

-0.3 1.1994 1.2961 1.0859 0.0967 0.0136 

-0.2 1.1087 1.2205 1.1089 0.1118 0.0001 

-0.1 0.8185 0.9337 0.9077 0.1153 0.0892 

0.0 0.3832 0.4786 0.5149 0.0954 0.0317 

0.1 -0.1045 -0.0735 0.0075 0.0310 0.0120 

0.2 -0.5361 -0.6303 -0.5083 0.0942 0.0277 

0.3 -0.8144 -1.0896 -0.9190 0.2752 0.1046 

0.4 -0.8776 -1.3536 -1.1289 0.4760 0.2513 

0.5 -0.7149 -1.3457 -1.0847 0.6308 0.3698 

0.6 -0.3695 -1.0312 -0.7942 0.6617 0.4247 

0.7 0.0717 -0.4403 -0.3329 0.5120 0.4046 

0.8 0.4990 0.3050 0.1671 0.4194 0.3319 

0.9 0.8066 0.9616 0.5557 0.3155 0.2509 

1.0 0.9184 1.1323 0.7374 0.2139 0.1810 

As observed from table 5 the approximate solution is approaching to the exact value as the value of n increases. Take n=10, 

the graph of the corresponding approximate solution together with the graph of the approximate solution for n=6 and n=8 in 

the same plane with the exact solution is shown below. 
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Figure 4. The graph of the exact solution and approximate solution for n=6, n=8 and n=10. 

As the number of Chebyshev polynomial increases the 

corresponding approximate solution of the differential 

equation with mixed boundary condition in problem 1 

approaches the graph of the exact solution. 

7. Conclusion 

This study introduces that, by applying Galerkin method to 

linear second order ordinary differential equations with mixed 

and Neumann boundary conditions, it is possible to find their 

approximate solutions. The numerical results that are obtained 

using this method converges to the exact solution as the 

number of Chebyshev polynomial increases, that will be used 

as a trial function; and also using small step size h , while 

converting the given linear second order ordinary differential 

equation from mixed type to Neumann boundary condition, 

increases the accuracy of the approximate solution. So that 

using this method better results will be obtained as the number 

of Chebyshev polynomial increases and using small step size 

while using Rung-Kutta method. 

8. Future Scope 

This study has led to an attentiveness of several topics that 

require further investigation, for instance linear ordinary 

differential equations with different order, non-linear ordinary 

differential equations. In order to fill the gap in terms of 

accuracy it is important to analyze the error of the method. Thus 

analyzing the error and increasing the accuracy of this method is 

left for future investigation. 
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