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Abstract: The Haar wavelet method applied to different kinds of integral equations (Fredholm integral equation, 

integro-differential equations and system of linear Fredholm integral equations) and boundary value problems (BVP) 

representation of integral equations. Three test problems whose exact solutions are known were considered to measure the 

performance of Haar wavelet. The calculations show that solving the problem as integral equation is more accurate than solving 

it as differential equation. Also the calculations show the efficiency of Haar wavelet in case of F. I. E. S and integro-differential 

equations comparing with other methods, especially when we increase the number of collocation points. All calculations are 

done by the Computer Algebra Facilities included in Mathematica 10.2. 
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1. Introduction 

Many applications in scientific fields such as physical 

and engineering problems can be formulated as integral 

equations or as differential equations. Differential 

equations can be reformulated in the form of integral 

equations while not every integral equations can be 

differentiated to obtain a corresponding differential 

equation, equivalence requires restricted regularity 

conditions on the kernels [1, 2]. The problems which can be 

formulated as integral and differential equations are 

introduced. The analytical solution has its difficulties 

which gives the chance to numerical analysis to appear, 

especially with the huge development in programming and 

computer systems. The last step in the numerical treatment 

is the solution of the algebraic system of the mathematical 

model [3]. Recently a great deal of interest has been 

focused on the solution of integral and differential 

equations by the wavelet methods, the first paper which 

used Haar wavelet method to solve integral equation has 

presented in 1991. The basic idea of Haar wavelet method 

is to convert the differential and integral equations into a 

system of algebraic equations. In this paper we use the Haar 

wavelet method to solve BVP and its integral representation. 

We consider the relation between the numerical treatments 

of the two point BVP, [3, 4] ������ + ����� = 	���;	�� ≤ � ≤ ��,���� = �, ���� = � �        (1) 

And its equivalent second kind Fredholm integral 

representation 

���� = � + ���������� �� − �� + ������ � ���, �������� −�� ������ � ���, ��	������� ;	              (2)

where the kernel ���, �� is defined as 

���, �� = ��� − ���� − ��	; �� ≤ ��,�� − ���� − ��	; �� ≤ ��.                               (3) 
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We consider also the integro-differential equation 

����� + !������� = � ���, ��"#���� + $�����%���� + 	���; 	���� = &                 (4) 

A system of linear Fredholm integral equation which 

appears in many applications in physics and engineering is 

considered. The linear system of Fredholm integral equations 

takes the form, [5, 6] 

	�'��� = 	'��� + ∑ � �')��, ���)������*+),�- = 1,2, … , 1 2      (5) 

Where 		' ∈ 45"0,1%, �') ∈ 45�"0,1% × "0,1%�	 for 	-, 8 =1,2, … , 1	and	�'are unknown functions. The system (5) can be 

written in matrix form as 

9��� = :��� + � ;��, ��9������*          (6) 

Where	9��� = <������5���⋮�+���> , :��� = <	����	5���⋮	+���>, 

;��, �� = <�����, �� ��5��, �� … ��+��, ���5���, �� �55��, �� … �5+��, ��⋮ ⋮ … ⋮�+���, �� �+5��, �� … �++��, ��> 

2. Haar Wavelet Functions and Its 

Integration 

The idea of Wavelet analysis is that it represents a function 

in terms of a set of basic functions, called wavelets, 

constructed from transformation and dilation of mother 

wavelet. The wavelet function takes the form 

?@,A��� = 2@ 5⁄ ?�2@� − ��, C = 0,1, … ; 0 ≤ � < 2@ , 0 ≤ � < 1 (7) 

The wavelet basis satisfy the following properties 

a) The orthogonality property  

E ?F���?@����
* �� = �1	; G = C0	; G ≠ C 

b) Most of the functions have a small interval of support 

[7-11]. 

Definition: Let 	 ∈ 45�I� for 1 ∈ J, K+: 45�I� → 45�I� 

be given by�K+	���� = 	�� − 1� and N: 45�I� → 45�I� be 

given by �N	���� = √2	�2��  operators K+  and N  are 

called translation and dilation operator. 

There are many types of wavelet functions; one of them is 

the Haar functions, which are mathematically the simplest 

wavelets. The orthogonal set of Haar functions is defined as a 

group of square waves with magnitude of ±1  in some 

intervals and zero elsewhere. They are step functions 

(piecewise constant functions). Haar transform or Haar 

wavelet transform has been used as an earliest example for 

orthonormal wavelet transform with compact support 

The Haar wavelet family are given as, [6-9] 

ℎF��� = R 1		S-	� ∈ "�, �%−1		S-	� ∈ "�, T%0	UV8UWℎU-U               (8) 

The notations � = AX , � = AY*.ZX 	T = AY�X  are introduced. 

The integer [ = 2@ , C = 0,1,2, … , \  indicates the level of 

wavelet (dilation parameter); � = 0,1,2, … , [ − 1  is the 

translation parameter. The integer \ determines the maximal 

level of resolution, the index G  obtained from the relation G = [ + � + 1  which has minimum value 	G = 2	�[ =1, � = 0�, which called the mother function, and maximum 

value G = 2]	where ] = 2^ . the index G = 1 corresponds 

to the scaling function 

ℎ���� = _1		S-	0 ≤ � < 10					UV8UWℎU-U  

The following notations are introduced, [9, 10] 

F̀��� = � ℎF�����a* 	 ; 	bF��� = � F̀�����a*      (9) 

For the scaling function we have 

�̀��� = ��; 		S-	0 ≤ � < 10; 	UV8UWℎU-U 	; b���� = R�52 ; 	S-	0 ≤ � < 10	; 	UV8UWℎU-U  

Else 

F̀��� = R� − �		S-	� ∈ "�, �%T − �		S-	� ∈ "�, T%0	UV8UWℎU-U  

bF��� =
cde
df �a���g5 		S-	� ∈ "�, �%	�����gY���h�g��h�a�g5 		S-	� ∈ "�, �%�����gY���h�g5 		S-	� ∈ "�, �%0	UV8UWℎU-U

     (10) 

To discretize the functions ℎF���	 we divide the interval � ∈ "0,1%  into 2]  parts of equal length 	∆� = �5j . Let us 

introduce the collocation points 

�k = �k�*.Z�5j ,V = 1,2, … ,2]2                 (11) 

Any function	����, � ∈ "0,1% can be written as ���� = ∑ �FℎF���5jF,� = ��ℎ� + �5ℎ5 + �lℎl + ⋯  (12) 
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Where �F  are the Haar coefficients which can be 

determined by multiplying (12) by ℎX���  and integrating 

from 0 → 1 we get 

E ����ℎX������
* = �F n E ℎX���ℎF������

*
5j
F,�  

from the orthogonality condition 

� ℎX���ℎF������* = �2�@; G		G = [0; 	G		G ≠ [⇒ �F = 2@ � ����ℎX������*
p       (13) 

The discrete form of eq. (12) at collocation points is ���k� = ∑ �FℎF��k�5jF,� = ∑ �FqFk5jF,�         (14) 

The matrix form of (14) is 9 = �q where, 9 and � are 2] row vectors and q = qFk = ℎF��k� is the coeffeficients 

matrix with dimension (2] × 2]� [12-15]. 

3. Method of Solution 

In this section we introduce how the Haar wavelet 

transform method can solve the BVP and its Fredholm integral 

form and the system of Fredholm integral equations. 

3.1. Haar Solution of Second Order Two-Point BVP 

The main advantage of the Haar wavelet method is its 

efficiency and simple applicability for a variety of boundary 

conditions [10,11,13]. Since the Haar wavelet is defined for 

the interval [0,1], then we transform the variable � ∈ "�, �% in 

equation (1) into the variable � ∈ "0,1% using 

� = � − �� − � → if	� = �, � = 0	and	if	� = �, � = 1 

So equation (1) becomes ������ + ����� = 	���; 	�0 ≤ � ≤ 1�,	��0� = �, ��1� = �. �        （15） 

In equation (15) let 

������ = n �FℎF���5j
F,�  

Integrating twice from 	0 → �,  using the boundary 

conditions we get 

���� = � + ����0� + n �FbF���5j
F,�  

And 

���0� = � − � − n �FwF
5j
F,�  

Where wF = � F̀������*  

then ���� can be written as ���� = � + �� − ��� + ∑ �F�bF��� − �wF�5jF,�      (16) 

Using (16) in (15) we get 

n �F"ℎF��� + ��bF��� − �wF�%5j
F,� = 	��� + ��� − ��� − �� 

Satisfying the previous equation at the collocation points 

(11) we obtain 

∑ �F"ℎF��k� + �"bF��k�5jF,� − �kwF%% = 	��k� + � + ��� − ���k − ��,	V = 1, … ,2] �                  (17) 

Solving the linear system of algebraic (17) we obtain the 

unknowns	�F , substituting in (16) we get the solution of the 

BVP [16,17]. 

3.2. Haar Solution of Fredholm Integral Equations 

In equation (2) let ���� = ∑ �FℎF���5jF,�             (18) 

From (18) equation (2) becomes ∑ �FℎF���5jF,� − ∑ �FxF���5jF,� = !���     (19) 

Where 

xF��� = � ���, ��ℎF�������           (20) 

and 

!��� = � + ���������� �� − �� − ������ � ���, ��	�������   (21) 

Satisfying equation (19) at the collocation points (11) ∑ �F"ℎF��k�5jF,� − xF��k�% = !��k�, V = 1,2, … ,2]   (22) 

Equation (22) is a linear system of algebraic equations in 

the unknowns 	�F ,  solving this system we obtain 	�F , 

substituting in (18) we solve the Fredholm integral equation (2) 

[9-11,18]. 

3.3. Haar Solution of Integro-Differential Equations 

To solve the integro-differential equation (4), let 

����� = ∑ �FℎF���5jF,� ⇒ ���� = ∑ �F F̀���5jF,� + ���� (23) 
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Where F̀��� = � ℎF�����y� . 

Substituting from (23) in (4) we get ∑ �F"ℎF��� + !��� F̀��� − #IF��� − $xF���%5jF,� = −!������� + #����z��� + 	���          (24) 

Where xF���given from (20) and IF��� = � ���, �� F̀������� , z��� = � ���, ������  

Satisfying equation (24) at the collocation points (11) to get 

the matrix form as Α�q + | − #I − $x� = −&! + #&z + :       (25) 

Where Α is a 2] vector of the coefficients �F ; (!, :, z) 

are 2]  vectors and q = qFk = qF��k� , I = IFk = IF��k� , | = |Fk = !��k� F̀��k� [6,9,12]. 

3.4. Haar Solution of Linear System of Fredholm Integral 

Equations 

Using equation (12) in equation (5) we obtain ∑ �'FℎF���5jF,� − ∑ �'FxF���5jF,� = :���;     (26) 

Where 

:��� = <	����	5���⋮	+���> 

xF���
=

}~
~~~
~~
�x����� = E �����, ���

* ℎF����� … x�+��� = E ��+��, ���
* ℎF�����

x5���� = E �5���, ���
* ℎF����� … x5+��� = E �5+��, ���

* ℎF�����⋮ ⋱ ⋮x+���� = E �+���, ���
* ℎF����� … x++��� = E �++��, ���

* ℎF�������
���
��
�
 

Satisfying equation (26) only at the collocation points (11) 

we get a linear system of algebraic equations ∑ �'FℎF��k�5jF,� − ∑ �'FxF��k�5jF,� = :��k�,V = 1,2, … ,2]; - = 1,2, … ,2] �     (27) 

The matrix form of equation (27) is �� = : where 

� = �n ��F
5j
F,� n �5F

5j
F,� … n �+F

5j
F,� �, 

: = <	���k�	5��k�⋮	+��k�> , � = <q − x�� −x5� … −x+�−x�5 q − x55 … −x+5⋮ ⋮ ⋱ ⋮−x�+ −x5+ … q − x++
> 

Solving the linear system (27) we obtain �'F [6,9,12]. 

3.5. Haar Algorithm for Linear System of F. I. E. 

a) Divide the interval [0, 1] into 2] part of equal length ∆� = �5j . 

b) Compute the x matrix from the equation (26). 

c) Solve the system (27) at the collocation points to 

determine	�'F  . 

d) Substitute in (12), we get the solution of the system (5). 

4. Numerical Examples 

In this section some numerical examples are considered. 

The exact solution introduced to show the accuracy and 

efficiency of the used method. In the first example we 

compare between the second order two point BVP and its 

Fredholm integral representation. In the second example we 

solve a linear system of F. I. E. and compare our method with 

a domain decomposition method. In the third example, the 

solution of the integro-differential equation and comparing 

our solution with another method is introduced. 

Example 1: 

Consider the second order two point BVP, [3, 19]: −	������ + �5���� = 2	�5	�G1�� �� ,0 ≤ � ≤ 1; 	��0� = ��1� = 0. �      (28) 

whose exact solution was given as ���� = sin��	��.               (29) 

The Fredholm integral form of equation (28) is 

���� = 2 8G1 �� − �5 � ��1 − ��y* ������ − �5 � ��1 − ���y ������.           (30) 

It is an easy task to see that this integral equation (30) 

satisfies the boundary conditions in (28). Moreover the closed 

form solution (29) satisfies both the differential and the 

integral equation. 

In equation (28) let 

������ = n �FℎF���5j
F,�  

Integrating twice from 0 → � with boundary conditions we 

get on 

���� = ������ + n �FbF���5j
F,�  

Putting � = 1 in the previous equation to find ���0� we 

have 
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���0� = − n �FwF
5j
F,�  

Where wF defined before, then 

���� = n �FbF���5j
F,� − � n �FwF

5j
F,�  

Substituting in (28) we get ∑ �F"�5bF��� − �5�wF − ℎF���%5jF,� = 2�5 sin ��    (31) 

Satisfying equation (31) at the collocation points (11) ∑ �F"�5bF��k� − �5�kwF − ℎF��k�%5jF,� = 2�5 sin ��k ,V = 1, … ,2] �  (32) 

Solving the linear system (32) we determine 	�F . The 

solution of BVP (28), the exact solution and the error at 

different numbers of collocation points with different values 

of ] given in table 1. 

Satisfying equation (30) at the collocation points (11)	 

���k� + �5 � ��1 − �k�y�* ������ + �5 � �k�1 − ���y� ������ = 2 8G1 ��k .V = 1,2, … ,2] 2               (33) 

putting ���� = ∑ �FℎF���5jF,� , in equation (33) we have 

∑ �F"ℎF��k� + �5�1 − �k� � �y�* ℎF�����5jF,� + �5�k � �1 − ���y� ℎF�����% = 2 8G1 ��k .	V = 1,2, … ,2] 2            (34) 

For \ = 3 the solution of (30), the exact solution and the error between the exact solution and Haar solution are given in table 1. 

Table 1. Comparison between Haar solution of BVP Ex. (1) and Haar solution of its Fredholm form with (J=3). 

X / 32 Exact solution Haar (BVP) |����|  Haar (F. I. E) |��.�.�.|  

1 0.098017 0.106234 0.008216 0.098098 0.0000811 

3 0.290285 0.315259 0.024974 0.290514 0.0002295 

5 0.471397 0.514114 0.042717 0.471775 0.0003781 

7 0.634393 0.696537 0.062144 0.6349 0.0005067 

9 0.77301 0.857028 0.084018 0.77363 0.0006196 

11 0.881921 0.991116 0.109194 0.882627 0.0007062 

13 0.95694 1.0956 0.138656 0.957705 0.0007647 

15 0.995185 1.16875 0.173548 0.995982 0.0007973 

17 0.995185 1.21133 0.216149 0.995982 0.0007976 

19 0.95694 1.23014 0.2732 0.957706 0.0007658 

21 0.881921 1.2256 0.343674 0.882629 0.000708 

23 0.77301 1.19498 0.421967 0.773633 0.0006221 

25 0.634393 1.14665 0.512255 0.634903 0.0005098 

27 0.471397 1.0885 0.617103 0.47178 0.0003834 

29 0.290285 1.032 0.74172 0.290519 0.0002339 

31 0.098017 0.997273 0.899256 0.098190 0.0000861 

The comparison between the BVP in example (1) and its Fredholm integral form at different values of \ are given in table 2. 

Table 2. Shows the error for BVP Ex. (1) and its Fredholm from at different number of collocation points. 

J 2 M ����  ��.�.�  

1 4 0.295356  0.0079622  

2 8 0.292566  0.00203375  

3 16 0.291799  0.000511918  

4 32 0.290915  0.000128373  

Example (2): 

Consider the following linear system of Fredholm integral equations, [5] 

����� = y�� + ��l� + � aYyl ��������* + � aYyl �5������* ,�5��� = �5 − � �5 � + 1 + � ����������* + � ���5������* p                       (35) 

With exact solution ����� = � + 1 and	�5��� = �5 + 1. 

Putting 
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����� = ∑ ��FℎF���5jF,� ; 	�5��� = ∑ �5FℎF���5jF,�                             (36) 

Using (36) in (35) 

∑ ��F"ℎF��� − x�F���%5jF,� − ∑ �5Fx�F���5jF,� = y�� + ��l�∑ ��F"−x5F���%5jF,� + ∑ �5F"ℎF��� − x5F���%5jF,� = �5 − � �5 � + 1¡                     (37) 

Where 

x�F��� = E � + �3 ℎF������
* = ¢ �3 + 16 	G		G = 1−112[5 	G		G > 1	 ; 

x5F��� = E ��	ℎF������
* = ¢ �2 	G		G = 1−�4[5 	G		G > 1 

Satisfying equation (37) at the collocation points (11) 

∑ ��F"ℎF��k� − x�F��k�%5jF,� − ∑ �5Fx�F��k�5jF,� = y��� + ��l�∑ ��F"−x5F��k�%5jF,� + ∑ �5F"ℎF��k� − x5F��k�%5jF,� = �k 5 − � �5 �k + 1¡                 (38) 

Solving the linear system (38) with (16) collocation 

points ( \ = 3 → ] = 8 → 2] = 1�  the coefficients 	��F 	&	�5F  are obtained. The Haar solution of the system 

(35), the exact solution, the error between Haar solution and 

exact solution and the error between Haar solution and 

decomposition solution of the same system are given in 

table 3 and table 4. 

Example 3, [20]: 

Consider the integro-differential equation 

����� = �Uy + Uy − � + � ��������* , ��0� = 0   (39) 

Whose exact solution is 

���� = �Uy                 (40) 

To solve (39) let ����� = ∑ �FℎF���5jF,� ⇒ ���� = ∑ �F F̀���5jF,�  (41) 

Where F̀��� = � ℎF�����y* . Substituting from (41) in (39) 

gives 

n �F ¦ℎF��� − � E F̀������
* §5j

F,� = Uy"� + 1% − � 

Satisfying the previous equation at the collocation points (11) 

∑ �F ¨ℎF��k� − �k � F̀������* ©5jF,� = Uy�"�k + 1% − �k , V = 1, … ,2].                     (42) 

Solving the system (42) the coefficients �F , G = 1�1�16 are 

obtained. The absolute error between the exact solution and 

Haar solution comparing with the absolute error between the 

exact solution and the solution using differential transform 

method, given in [20], are given in table 5. 

Table 3. Comparison between the error of Haar solution and the error by decomposition method for y1 of Ex. (2) with (J=3). 

x/32 Exact �ª Haar S. �ª �«¬¬­,�ª	 Deco. S. �ª �®�¯°±,�ª 
1 1.03125 1.03097 0.0002788 1.01917 0.012084 
3 1.09375 1.09346 0.0002888 1.0805 0.013253 
5 1.15625 1.15595 0.0003029 1.14183 0.014421 
7 1.21875 1.21843 0.0003167 1.20316 0.01559 
9 1.28125 1.28092 0.0003274 1.26449 0.016759 
11 1.34375 1.34341 0.0003412 1.32582 0.017928 
13 1.40625 1.4059 0.0003543 1.38715 0.019096 
15 1.46875 1.46838 0.0003653 1.44848 0.020265 
17 1.53125 1.53087 0.0003788 1.50982 0.021434 
19 1.59375 1.59336 0.0003926 1.57115 0.022603 
21 1.65625 1.65585 0.0004028 1.63248 0.023771 
23 1.71875 1.71833 0.0004167 1.69381 0.02494 
25 1.78125 1.78082 0.0004301 1.75514 0.026109 
27 1.84375 1.84331 0.0004411 1.81647 0.027278 
29 1.90625 1.90579 0.0004552 1.8778 0.028446 
31 1.96875 1.97615 0.0074043 1.93913 0.029615 
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Figure 1. The comparison between the Haar solution of BVP and Haar 

solution of its Integral form in Ex. (1) with J=3. 

 

Figure 2. The effect of increasing the collocation points for Eq. (28). 

 

Figure 3. The effect of the increasing the collocation points for Eq. (30). 

 

Figure 4. The comparison between Haar solution and Decomposition 

solution for y1 for Ex. (2) with J=3. 

Table 4. Comparison between the error of Haar solution and the error by decomposition method for y2 of Ex. (2) with (J=3). 

x/32 Exact �² Haar S. �² �«¬¬­,�²	 Deco. S. �² �®�¯°±,�² 

1 1.00098 1.00095 0.0000265 0.99989 0.0010781 

3 1.00879 1.00871 0.0000749 1.00555 0.0032347 

5 1.02441 1.02429 0.0001271 1.01902 0.0053906 

7 1.04785 1.04767 0.000177 1.0403 0.0075468 

9 1.0791 1.07887 0.0002287 1.0694 0.0097031 

11 1.11816 1.11789 0.000278 1.1063 0.0118594 

13 1.16504 1.16471 0.0003293 1.15102 0.0140156 

15 1.21973 1.21935 0.0003789 1.20355 0.0161719 

17 1.28223 1.2818 0.0004305 1.2639 0.0183281 

19 1.35254 1.35206 0.0004804 1.33205 0.0204844 

21 1.43066 1.43013 0.0005304 1.40802 0.0226406 

23 1.5166 1.51602 0.0005822 1.4918 0.0247969 

25 1.61035 1.60972 0.0006329 1.5834 0.0269531 

27 1.71191 1.71123 0.0006834 1.6828 0.0291094 

29 1.82129 1.82055 0.0007342 1.79002 0.0312656 

31 1.93848 1.93769 0.000785 1.90505 0.0334219 

Table 5. Comparison between Haar solution and differential transform method for Ex. (3). 

Method  Haar Wavelet Differential Transform [18] 

Absolute error 1.9 ∗ 10�l  7.3 ∗ 10�5  
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Figure 1. The comparison between Haar solution and Decomposition 

solution for y2 for Ex. (2) with J=3. 

5. Conclusion 

Applying the Haar wavelet transform with collocation 

points method is introduced and we found that: 

a) Solving the problem as integral equation is more 

accurate than solving it as BVP, see table 1 and figure 

1. 

b) It is observed that if the level of resolution is increased 

i.e. if the collocation points are increased, then we can 

get a better solution with less error, see table 2 and 

figures 2,3. 

c) Using Haar wavelet technique to solve the system of 

integral equations is more efficient than the use of 

decomposition method, see tables 3, 4 and figures 4, 5. 

d) The Haar solution of integro-differential equations 

gives accuracy more than the differential transform 

method given in [20], see table 5. 

e) It can be concluded that this method is quite suitable, 

accurate, and efficient in comparison to other classical 

methods. 
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