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Abstract: In this paper by using the concept of log-7-convexity of functions some interesting inequalities are investigated. In
fact new Hermite-Hadamard type integral inequalities involving log-#-convex function are established. The obtained results
have as particular cases those previously obtained for log-convex.
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1. Introduction and Preliminaries

The elegance in shape and interesting properties of convex
functions make it attractive to study this class of function in
mathematical analysis specially in applied mathematical
analysis. In the last 60 years many efforts have gone on
generalization of notion of convexity. In our opinion the
following classification in generalization of convex functions
holds:

(1) Works that change the form of defining convex
functions to a generalized form such as quasi-convex [5],
pseudo-convex [16], strongly convex [19], logarithmically
convex [18], approximately convex [11], delta-convex[20],
h-convex [22], midconvex functions [13], etc.

(2) Works that extend the domain set of convex functions
such as E-convex functions [23], a-convex functions, all
works on convex functions from R™ to R [3], invex functions
[10], etc.

(3) Works that extend the range set of convex functions
such as works on functions with range in vector spaces [12],
all kind of multivalued convex functions [2, 14], etc.

On the other hand logarithmically convex (log-convex)
functions are interesting class of functions to study in many
fields of mathematics. They have been found to play an
important role in the theory of special functions and
mathematical statistics. To see recent works about log-
convex functions see [4, 17, 18]).

Motivated by above works, we use the concept of log-n-
convex function to establish some new Hermite-Hadamard
type integral inequalities involving log-n-convex function. In
fact obtained results have as particular cases those previously
obtained for log-convex. We start with two definitions and
one example.

Let I be an interval in real line R. Considern:A X A —» B
for appropriate 4, B € R.

Definition 1. [4] A function f: ] = R is called convex with
respect to n (briefly n-convex), if

fltx+ (A=) < fO)+t(F ), fB)), (D)

forallx,y € I and t € [0,1].

In fact above definition geometrically says that if a
function is 7 -convex on [, then its graph between any
x,y € I is on or under the path starting from (y, f(y)) and
ending at (x, f(y) + n(f(x), f(¥)). If f(x) should be the
end point of the path for every x,y €1, then we have
1n(x,y) = x — y and the function reduces to a convex one.

Definition 2. Consider f:I — (0,+o0) and n:1n f (I) X
In f(I) >R If

fltx+ (1 =t)y) < f()exp (tn(In f (x),In £(¥))) ()

for every x,y € [ and t € [0,1], then f is called log-n-convex
function.

In the above definition if we set n(x,y) = x — y, then we
recapture the classic definition of a log-convex function. It is
clear that f:1 — (0,4) is log-n-convex iff (In f) is n-
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convex and when f is n-convex then (exp f) is log-7n-
convex.

The following are two simple examples of log-n-convex
functions.

Example 1.

a. Consider a function f: R — R defined by

_fe™*, x=0;
f) = {ex, x < 0.
and define a bifunction n as n(x,y) =—x—y, for all
x,¥y € R™ = (—o0, 0]. It is not hard to check that f is a log-n-
convex function.
b. Define the function f: R* = [0, +o0) - R* by

e, 0<x<1;

f(x)z{e, x;l.
and define the bifunction n: R* x R* - R* by

x+y,
CROR FAA

Then f is log-n-convex.

The following result is of importance [3]:

Theorem 1. Suppose that f: — R is a n-convex function
and 1 is bounded from above on f(I) X f(I). Then f
satisfies a Lipschitz condition on any closed interval [a, b]
contained in the interior [° of I. Hence, f is absolutely
continuous on [a, b] and continuous on /°.

Note. As a consequence of Theorem 1, if f: [a,b] = Risa
log-n-convex function where 7 is bounded from above on
f([a,b]) X f([a,b]) , then In(f) is integrable and so
f =exp (In (f)) is integrable. For other results see [2, 4].

Some Hermite-Hadamard type inequalities related to 7-
convex functions are proved in [3, 4, 7]. Some log-n-convex
version of this type inequalities are investigated in the
following.

x<Yy;
x>y

ety M 1 fbf(x)dx<
2 2 " b-— -
1 1
L@+ F0)) + 3 0@, FB) + (), @) <

1 .
SUF@ + £ )]+

provided that f:[a,b] > R is a n-convex function, 7 is
bounded from above onIn f ([a,b]) X In f ([a, b]) and M,
is upper bound of 7.
Now if f:[a, b] —
is n-convex we have
at+b_ M,
In f(

(0, 4+ ) is log-n-convex, since (In f)

2_b flnf(x)dx<

[In f(a) +In f(B)] + [n(ln f(a),In f (b))
+n(n £ (b), ln f(a)] <
1 M.
s £ (@) +1In £ (b)] +7”.

Consequently

N =

a+b. M, 1 b
exp (In f(T) —7) < exp (mf In f (x)dx) <

eXp( [In f(a) +1In f(b)] +- [n(ln f(a),In f (b))
+n(n f (b),In f(a))]) <
1 M,
exp (E[ln f(a)+1n f(b)] +7).
So
a+b M, 1 b
fe=exp (=) Sexp(—b_af In f (x)dx) <

1
Vi@f®)exp (7n(n £ (a),In f (b))
+n(n £ (b),In f(a))]) <

M,
VF@Ff®) exp (5.

Also if we consider
(a) (Arithmetic mean) A(a, b) = aTHJ, forany a,b € R,
(b) (Geometric mean) G (a, b) = Vab, for any a,b € R,
then we have
M. 1 b
f(A@, b)) exp (=) < exp (G [71n f (x)dx) <
M
G(f (@), f (b)) exp (5. A3)
For more results about this inequalities see [2, 5].
The following theorem is a consequence of Theorem 1 of
[1], which we use these results frequently in this paper.

Theorem 2. If f; and f, are positive increasing functions
on [0, 1]. Then

folﬁ (x)dx folfz (x)dx < folf1 (0 f,(x)dx.

Also if f; and f, are positive decreasing functions on [0, 1]
and K is an upper bound for f; and f,, then K — f; and
K — f, are positive increasing functions and we have

RS RESIACNE:
0 1 0
< [ (K= K - fodx,

which gives again

[ #iedx [ £ dx s [ f@feodx
0 0 0

2. Main Results

In this section by using log-n-convexity property of a
function some inequalities which generalize those previously
obtained for log-convex functions are given.
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Theorem 3. Let f:I — (0,4+o) be a log- n -convex (f(A(a,b)))?exp (— M,) < b—iaf:f(x)f(a +b—x)dx< (4
function with 1 bounded from above on In f ([a,b]) X Consider a, b € I with a < b. Then
In f ([a, b]) and M,, be the upper bound of the function 7.

A @Y 5o T OV mamram @) &P (2My = 1)
Proof. Forany x,y € I and t € [0, 1], rty L
O R RR AN o T oo
= ’ ’ n(n £ () In £ (D
and
f(ty + (1= 0)x) < f() exp (en(in £ ), In f (x), < VFOF O exp (% [My + My 1),

() {f(ty +(1- %) < f0) exp (1 — O)@(n £ (0),1n f G)).
Then fort = 1/2

or

M,
FEE D e (-5 < TR,

Now choosing x =ta+ (1—t)band y = (1 —t)a+tb
and forall t € [0,1] we get

x+y 1
fE5) < fGexp (Gnlin £ (I f (),

x+y 1
fEZP) < fE) exp (5n(in £ ()In £ ())).

So

a+b

f)exp (= %) SG(f(ta+ (1 =0)b), f((1 —t)a + th)). ©)

Now the left side of (4) is a consequence of (5) with 5 1
integration over t € [0,1]. (f(0) f exp (2tn(In f (a),In f (b)))dt
0

For the right side of (4), using the elementary inequality

2 2 > b 2
G(x,y) < K(x,y):= [* =2 (x,y = 0) and relations < (o) 2n(ln f (a),In f (b))

2

(exp (2M,) — 1).

With the same argument we can obtain that

{f(ta + (1 —=0)b) < f(b)exp {tn(In f (a),In f (b))}
f((A=0a+tb) < f(b)exp {(1—t)n(n f(a)In f (b))}, 1

b
f fe)f(a+b—x)dx

we get b—a i
[*rearcass- o = VO g Gyt @y P D
b—al,
= f fta+ 1 —-t)b)f((1-0ta So
0 b
o + th)dt < ) bi ff(x)f(a+b—x)de
> [f {f(ta + (1 —t)b)}?dt + f {f((1 = t)a + tb)}?dt] . Z @ 1
° < ° i 0O 2 F @ oy P M)
1t 1
2| (@D e (onain £ @.n £ Gyyae ~ D@ g F By @y &P (M~ D) <
0 ) 1
1 = 2
+5] (wenes @ 2O 2 7 oy @)
— Oynin £ (@), In f (B))}2de = + (D)) - )(exp (2M,) = 1),

2n(in f (a),In f (b))

where for the last inequality we used the property that

1 1
E(f(b))zf0 exp (2tn(In f (a),In f (b)))dt

1 1 : crd
+3G®Y [ ew 20 min {€,d} < =%

2 0 When a log-n-convex function is positive and increasing,
—t)n(n f (a),In f (b)))dt = we can use Theorem 2 to obtain the following inequalities as

well.
Theorem 4. Let f:I — (0,+0o0) be an increasing log-7-
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convex function with 17 bounded from above on In f (I) X

In f(I) Also  consider a,b €l (a<b)
n(n f (b),In f(a)) > 0 and M,, # 0. Then

8 b
i, (’;(“_)a) (exp ((n £ (b),In £ (@))) = 1) f f (odx <

exp (4M;) — 1
4exp (n(ln f (b),In f (@)

Proof. For any t € [0,1] we have
f(tb + (1 =t)a) < f(a)exp (tn(In f (b),In £ (a))),

and for every x,y € R we have [6],

)f*(a) +8.

1 b
| 1 @dx+

8xy < x*+y* +8.
So we can write

8f(th + (1 —t)a)f(a) exp (tn(In £ (b),In f (a)))
< fYth+ (1 —ta)

+ f*(@)exp (4tn(In £ (b),In f (a))) +8

Then
1
f 8f(th+ (1—-t)a)f(a)exp (tn(In f (b),In f (a)))dt
’ <
f frh+ (1 —0ta)
0
1
+f f* (@) exp (4tn(In £ (b),In f (a)))
+ 8.
Also
1
f f@b+(1

- t)a)ﬂltf0 f(@exp (tn(In f(b),In f(a)))dt <

| F(th+ (1 - Df (@) exp (en(in £ (b)In f (@)t
Therefor we have
8 fo b+
- e | 'F (@ exp (tnin £ (b)In £ (@))dt <
| b+ (1- D)

1
+f f* (@) exp (4tn(In f (b),In f (a)))
+ 8.

On the other hand

1

1 b
fo F(th + (1 - Da)dt = mfa £ (0)dx,

fo f @ exp (tnin £ (b),In f (@))dt
_ f@
n(n £ (), In f (@)

(exp (n(In £ (b),In f(a))) = 1),

fof‘* (a) exp (4tn(In f (b),In f (a)))dt
f'(@)

~an(n £ (b),In f (@)
- 1).

(exp (4n(In £ (b),In £ (a)))

Hence
8f(a)
n(n f (b),In f (a))(bb— a)
-1 | fx)dx <
e
Py af f*(x)dx
f*(@)

T Gy ey @ (40 f (B0 f @) =1 +8,

(exp (n(In £ (b),In f (a)))

which gives

8

s (exp (n(In £ (0),In f (@) = 1) [ f ()dx < (6)

M,

exp (4M,) — 1

4
Texp (n(in £ &), 1n f (@) @

1 b
et NS
’ + 8.

The following result is obtained for the multiplication of
two positive increasing log-n-convex functions under some
special conditions.

Theorem 5. Let f,g:1 — (0, +00) be increasing log-7-
convex functions with n bounded from above onIn f (I) X
In f(I) . Also consider ab€l with a<b ,
n(n f (a),In f (b)) <0, n(n g(a),In g(b)) <0 and
M, # 0. Then the following inequality holds:

exp (M) -1
M, (b — a)

f(B)g(b)
P

b b
o) [ gadx+ g [ f @ <

1 b
fexp (P) = 1] +7— f £ 00900 dx,

where
M = min {n(In f (a),In £ (b)),n(In g (a),In g (b))} and
P =mn(n f (a),In f (b)) +n(n g (a),In g (b)).

Proof. Since f, g are log-n-convex functions, we have

f(ta+ (1 =1t)b) < f(b)exp (tn(In f (a),In £ (b))
g(ta+ (1-1)b) < g(b)exp (tn(In g (a),In g (b)))

forall t € [0,1]. So
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[f(ta + (1— t)b)
— f(b)exp (tn(In f (a),In f (b)))][g(ta
+ (1= 1)b)

—g)exp (tn(In g (a),In g (b)))] 2 0

Therefor one can write:
f(ta+ @1 =t)b)g(b) exp (tn(In g (a),In g (b))) +(7)
g(ta+ (1 =t)b)f(b)exp (tn(In f (a),In f (b)) <
f(b)gb) exp (tn(In f (a),In f(b))) exp (tn(In g (a),In g (b)) +
fta+ (@1 —-t)b)g(ta+ (1 —t)b).

f(b)g(b)exp (tP) + f(ta+ (1 —t)b)g(ta+ (1 —t)b).

Integration from (7) over ¢t on [0, 1] gives

fo f(ta+ (1=1t)b)g(b)exp (tn(n g (a),In g (b)))dt +
1
f g (ta+ (1 —=t)b)f(b)exp (tn(In f (a),In f (b)))dt <
flf (ta+ (1—t)b)g(ta + (1 — t)b)dt
0

1
+ f f (b)g(b)exp (tP)dt.
0
On the other hand

| F(ta+ (1 - OB g(b) exp (tn(In g (@), In g (BY))de +
| g @+ (1 — OB (B exp (tnin £ (@),In £ ())dt >
| Fata

- opyde | g By exp (n(in g (@),In g (BY)de +

| ga+a

- opyde | ' (b)exp (n(in £ (@,In £ Bt =

g(b)
T 5 @ n g @ a) P (100 9@ 1n 9 4)
- 1)f f (x)dx +
/) : (exp (n(In f (a),In f (b))
n(ln f (a),In f (b))(b " a) '
- 1)f g (x)dx =
b ’ b
Mﬂf,f ) o5 (exp (1n g (@,In g (4))) = 1) f f Godx +
S (exp (n(In £ (a),In f (b)) — 1)fb (x)dx =
My(b—a) P ’ 9 =
g(b)

b
M"I(b _a) (EXp (M) — 1)-[1 f(x)dx+

f(b)
M, (b —a)
and

b
(exp (M) — 1) f 9 ()dx,

flf (b)g(b) exp (tP)dt + flf (ta+ (1 —t)b)g(ta + (1
’ — byt =

b)g(b 1 b
PO e (1) =11+ 5 [ 7 o,

P

There for

exp (M) —1
M, (b —a)

f(B)g(b)
P

b b
o) [ gadx+ 9 [ f @ <

1 b
[exp (P) — 1] + mfa f (x)g(x)dx.

The dual form of Theorem 5, is stated as the following.

Theorem 6. Let f,g:1 — (0,+00) be increasing log-7-
convex functions with 7 bounded from above onIn f (I) X
In f(I) . Also consider abel with a<b ,

n(n f(b),In f(a))>0 , n(n g(),In g(a)) >0 and
M, # 0. Then the following inequality holds:

exp (M) -1
M,(b —a)

f(a)g(a)
P

b b
@ [ gGdx+g(@ | f @ <

1 b
fexp (P) = 11+ 3= | f (g

where
M = min {n(In f (b),In f (a)),n(In g (b),In g (a))} and
P =n(n f(b),In f(a)) +n(n g (b),In g (a)).

Proof. Change the role of a and b in proof of Theorem 5.

Using an elementary inequality between real numbers
leads to an inequality related to square of a positive
increasing log-n-convex function.

Theorem 7. Let f:1 — (0,+0o0) be an increasing log-7-
convex function with n bounded from above on In f (I) X
In f(I). Also consider a,b € with a <b and M, <O0.
Then

exp (My) =1 f(@) +f(), (*
Ty | o<
2M,) —1 1 b
(@) + F BT (ZM;’) ) g—g ) 1

Proof. Since f is log-n-convex function on I, we have
f(ta+ (1 —t)b) < f(b) exp (tn(In f (a),In f (b))

f(ta+ (1 -t)b) < f(a)exp ((1
—t)n(n £ (b),In f (a)))

for all t € [0, 1]. Using the elementary inequality

xy+yz+xz<x>+y?2+z%2(x,v,z€R)
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and the fact that ) is bounded from above we have

f2(ta+ (1—t)b) + f*(a)exp (2(1 —t)M,) +
f?(b) exp (2M,) = (®)

fta+ (1 —0)b)f(b)exp (tM,) + f(ta+ (1
—)b)f (a)exp ((1 - )My)
+f(a@)f (b) exp (My).

Then by integration over t € [0,1] in (8),

Jy f2(ta+ (1= O)b)dt + [} f2 (@) exp (2(1 — )M,)dt +
fy £? (b) exp (2My) = ©)

flf (ta+ (1 =t)b)f(b) exp (tM,)dt + flf (ta+ (1
- t)i?)f(a) exp ((1 —t)M,)dt
+ f f(a)f(b)exp (M,,)dt.

It is easy to check the following from (9):

- 2M
[ 7 e+ 0 2R
n

2M.
+ 2 (b)(exp ( )>

77

exp (tM,)dt
0

(oo
— O)M,)dt =
ron = [ 'F (i
@)= e_x;: M”) [ " Goydx =
CGaR 1)[f(a) IO, [
So
G, f f (dx <
7@+ P f £ Gy

3. Conclusion

Logarithmically convex (log-convex) functions have some
nice results in mathematical inequalities and are of interest in
many areas of mathematics. They play a valuable and
important role in the theory of special functions and
mathematical statistics. On the other hand it should be
noticed that in new problems related to convexity,
generalized notions about convexity are required to obtain
applicable results. One of these generalizations may be

notion of log-7n-convex functions which results in many
interesting integral inequalities such as generalized form of
Hermite-Hadamard type integral inequalities.
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