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Abstract: In this paper, we have combined the Extreme Value Approach with GARCH model which is called conditional 

EVT. We have used their approach on the Islamic stock price index to measure the conditional VaR and the related risk 

statistic expected shortfall (ES). The dynamic risk measures have been estimated for different percentiles for negative and 

positive returns. The empirical results show a strong stability across of the selected threshold, implying the accuracy and 

reliability of the estimated quantile based risk measures. Interested islamic index fund managers could employ these 

techniques as a means of risk management. 
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1. Introduction 

The Value-at Risk (VaR) answers the question of how 

much we can lose, with a given probability, over a certain 

horizon. From a mathematical viewpoint, VaR is simply a 

quantile of the Profit & Loss (P&L) distribution of a given 

portfolio over a prescribed holding period. 

The VaR technique has undergone a significant refinement 

since it originally appeared more than two decades ago and 

now the existing approaches for estimating VaR can be 

divided into three groups: i) the non-parametric historical 

simulation (HS) method; ii) fully parametric methods based 

on an econometric model for volatility dynamics and the 

assumption of conditional normality (most model from the 

ARCH/GARCH family) and Risk metrics) and iii) methods 

based on extreme value theory (EVT). 

The extreme value theory (EVT) relies on extreme 

observations to derive the distribution of the tails random 

variable. By doing so, risk is measured more efficiently 

than by modeling the entire distribution of the random 

variable itself. The link between the extreme value theory 

and risk management is that EVT methods fit extreme 

quantiles better than the conventional approaches for 

heavy-tailed data. The EVT method needs to choose a 

threshold and only uses the data which exceed this 

threshold (namely extreme value) to estimate the 

generalized Pareto distribution (GPD) parameters. There 

are several advantages about the EVT-based method: (1) 

risk is measured more efficiently than by modeling the 

entire distribution of the random variable itself. The reason 

is that the extreme value method focuses on extreme events, 

and the event risk is explicitly taken into account; (2) with 

the normal distribution or any given distribution of returns, 

the distribution tails may be badly fitted. As the extreme 

value method does not assume a particular model for 

returns but lets the data speak for themselves to fit the 

distribution tails, the model risk is considerably reduced; (3) 

the EVT allows for a separate treatment of two tails of a 

distribution considering the fact that most financial returns 

are asymmetric. 

Hence, the motivation of this paper is to propose a 

method of value at risk measurement by integrating the 

advantage of the power of EVT in accounting asymmetric 

fat-tails of a return distribution separately. 

The rest of this paper is organized as follows. We 

introduce the sample data and discuss how daily returns are 

constructed in Section2. In Section 3, we present an 

overview of the theoretical framework of EVT, describe the 

measures of extremes risks - VaR and ES and then explain 

how conditional EVT is applied on VaR and ES. We discuss 
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in Section 4 the tail modeling of the Islamic market return 

series, assess the outcomes and provide the estimates of the 

risk measures. Finally, we conclude the study in section 5. 

2. Date 

The data set in our empirical study are daily Dow Jones 

Islamic Market index (DJIM
1
), Stock index in compliance 

with the Sharia. This index so includes assets of several 

countries of the Middle-East and North Africa as Tunisia, 

the newcomer from 01 January, 1999 to 03 February, 2011. 

The daily price series and the daily returns are shown in 

Fig.1. The daily returns measured as differences in the 

natural logarithm
1( ln ln )t t tr p p −= − 2
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Figure 1. The daily price series of DJIM and tje daily returns 

Table.1 reports the descriptive statistics for daily returns: 

Table 1. Descriptive statistics of returns. 

Statistics Value 

Mean 0.000104 

Median 0.000558 

Maximum 0.097753 

Minimun -0.081855 

Std.Dev. 0.011280 

Skewness -0.252243 

Kurtosis -0.252243 

Jaque-Bera 9.668571 

Q(16) 45.224 (0.000) 

Q2(16) 3671.5 (0.000) 

Sum 0.327635 

Sum Sq.Dev. 0.401308 

ADF test -3.41 

P-P test -3.41 

Observation 3179 

* ADF & P-P are statistics for the Augmented Dickey-Fuller and Phillips-Perron unit 

root tests based on the least AICcriterion,respectly. Denote significance at 5% level. 

- The mean daily return is positive showing an upward 

movement of share price. 

- The negative skewness and negative kurtosis clearly 

indicate the non-normality of the distribution which is 

confirmed by the Jarque-Bera statistics. 

- The Ljung-Box Q(16)  and Q²(16) statistics indicate the 

presence of serial correlation, as well as volatility.  

                                                             
1

http://www.djindexes.com/mdsidx/downloads/rulebooks/Dow_Jones_Isla

mic_Market_Indices_Rulebook.pdf 
2  Price of closure of DJIM in the date t. 

 

- Moreover, the results of augmented Dickey-Fuller and 

Phillips-Perron unit root tests reject the null hypothesis of a 

unit root in this series, indicating that they are stationary 

and may be modeled directly without further 

transformation. Fig.1 and Table.1 demonstrate the defining 

characteristics of the stock market: high volatility, 

occasional extreme movements, and volatility clustering 

and fat tailed distributions. These findings support the need 

for the AR-GARCH model to filter the data series and then 

to apply the EVT to it. 

3. GARCH-Type Models 

Financial returns are often modeled as autoregressive 

time series with random disturbances having conditional 

heteroscedastic variances, especially with GARCH type 

processes. GARCH processes have been intensely studied 

in financial and econometric literature as risk models of 

many financial time series. In order to analyse two data sets 

of stock prices, we try to fit AR(1) processes with GARCH 

or EGARCH errors to the log returns. Moreover, hyperbolic 

or generalized error distributions occur to be good models 

of white noise distributions. 

Here we use the simplest possible AR-GARCH model with 

the mean return modeled as an AR(1) process and the 

conditional variance of the return as a GARCH(1,1) model:  

0 1 1 0 1 1

2

0 1 1 2 1

,− −

− −

= + + = + +

= + +
t t t t t t

t t t

r r r h

h h

α α ε α α η

β β ε β
        (1) 

With 1/ −Ω →t tε Student's t distribution with mean = 0, 

variance = th  and degree of freedom parameter, v, and 

where tΩ  is the information set of all information at time t. 

Table.2 presents the estimated parameters of the AR-

GARCH model with t distributed innovations applied daily 

return series. Both the constant term and the AR(1) 

coefficient in the mean equation are found to be significant 

Similarly, the parameters in the volatility equation: the 

constant, the ARCH(1) coefficient and the GARCH(1,1) 

coefficient, are all found to be significant. 

All of the reported parameter estimates are statistically 

significant at the 5% level and, based on the Ljung-Box Q- 

staistics, there is no evidence of serial correlation in the 

standardised residuals or the squared standardised residuals. 

Consequently, the GARCH(1,1) model, reported in 

Table2,appears adequate  

Table 2. GARCH (1,1) model 

Parameter Value 

Mean equation 

0α  0.000595 

1α  0.139380 

Variance equation 

0β  7.80E-07 

1β  0.072618 

2β  0.921574 
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Table.3 presents diagnostic statistics of returns and 

standardized residuals. The significant value of ljung-Box 

Q(16) statistic of the first column indicates that raw returns 

are serially correlated and hence are not iid as required by 

EVT.  

In contrast, the standardized residuals are as their Q(16) 

statistic not significant. Thus the filtering producing iid 

residuals on which EVT can be implemented. The Q
2
 (16) 

statistic of standardized residuals also suggests that the 

AR(1)-GARCH(1,1) model is well specified. However, it 

appears from the table that skewness and excess kurtosis 

remain in the standardized residuals, it is also noted that 

neither the return series nor the standardized residual series 

are normally distributed as suggested by Jaque-Bera 

statistics. All these findings motivate the second stage of 

McNeil and Frey's (2000) EVT implementation, where fat 

tails of the standardized residuals are explicitly modeled. 

Table 3. statistics of returns and standardized residuals 
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Q(16) =45.224(0.000) 

Q²(16) =3671.5 (0.000) 

Q(16) =18.354 (0.245) 

Q²(16) =17.518 (0.289) 

 

4. Extreme Value Theory 

The EVT relates to the asymptotic behavior of extreme 

observations of a random variable. It provides the 

fundamentals for the statistical modeling of rare events and 

is used to compute tail-related risk measures. There are two 

different but related ways of identifying extremes in real 

data over a certain time horizon.  

The first approach divides the time horizon into blocks or 

periods and considers the maximum the variable takes in 

successive periods, for example months or years. These 

selected observations constitute the extreme events, also 

called block maxima (BM). In this case, the generalized 

extreme value (GEV) distribution is used to fit the BM. On 

the other hand, the peak-over-threshold (POT) approach 

focuses only on the observations that exceed a given 

threshold. In this paper, we adopt the POT model to identify 

the extreme observations that exceed a high threshold u. 

4.1. The Peak over Threshold Model (POT) 

4.1.1. Theory 

Assume that the 1 2, ,... nX X X  are iid random variables 

representing risks or losses with ( ) Pr( )= ≤tF x X x . Let u 

denote a high threshold beyond which observations of Xt 

are considered exceedence. The magnitude of the 

erxceedence is given by i iy x u= − , for i = 1,...k, where k 

is the total number of exceedences in the sample. 

Given a high threshold u, the probability distribution of 

excess value of X over threshold u is defined by 

( ) ( )
( ) Pr( / )

1 ( )
u

F y u F u
F y X u y X u

F u

+ −− − ≤ > −
−        (2) 

For a sufficiently high threshold u, the distribution 

function of the excess may be approximated by the 

generalized Pareto distribution (GPD) because as the 

threshold gets large, the excess distribution ( )uF y  

converges to the GPD Balkema and De Haan (1974) and 

Pickands (1975). 

The GPD in general is defined as 

1/

,

/

1 (1 ) , 0
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1 exp , 0
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             (3) 

Where ξ  is the shape parameter, α is the tail index, and 

β  is the parameter scale parameter. 

Acknowledging that ( )F u  can be written as (n-k)/n, 

where n is the total number of observations, and k is the 

number of observations above the threshold u, and that 

( )uF y  can be replaced by 
, ( ).G yξ β  Eq (4) can be 

simplified to 

( ) 1
( ) 1 (1 )

− −= − + xk
F X

n

µξ β                    (4) 

For X > u, where ξ and β  can be estimated by the 

method of maximum likelihood. For a given probability 

q > ( )F u , the tail quantile can be obtained by inverting the 

tail estimation formula above to get. 

1
1

/

− − = + −  
   

q

q
x u

k n

ξβ
ξ

              (5) 
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4.1.2. Determination of Thresholds 

As mentioned earlier, we employ the POT method using 

GPD for tail estimation of the standardized residual series. 

The first step in this modeling is to estimate the threshold 

for identifying the relevant tail region. Several techniques 

are available for threshold determination. In this study, we 

apply two approaches: the first one is to use exploratory 

tools prior to model estimation; the second one is to assess 

the stability of the estimates of parameters, based on fitting 

the model across a range of different thresholds. 

- The first approach for threshold selection utilizes the 

empirical mean excess function (MEF). An MFE is the sum 

of the excesses over the threshold u divided by the number 

of data point which exceed the threshold u and is expressed 

by 

1

( )

1

( )

( ) /=

>
=

−
= >
∑

∑ t

n

t

i

n

X u

i

X u

e u X u

I

                   (6) 

Where I is an indicator function. It is an estimate of the 

mean excess function which describes the expected 

overshoot of a threshold once an exceedance occurs. If the 

empirical MEF is a positively sloped straight line above a 

certain threshold u, it is an indication that the data follows 

the GPD with a positive shape parameterξ . On the other 

hand, exponentially distributed data would show a 

horizontal MEF while short-tailed data would have a 

negatively sloped line. 

4.1.3. Exploratory Data Analysis 

The QQ plot is a graphical technique which allows to 

compare the quantiles of the empirical distribution to those 

of a reference distribution. In our case, we are interested in 

investigating  whether our sample follows the normal law 

or not. The graph of QQ plot presented by fig.2 shows that 

the time series deviates widely from the normal distribution 

and exhibits thicker than the latter tails 
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Figure 2. The graph of QQ plot 

The thickness of the tails of the distribution of returns is 

in favor of our choice of EVT modeling tails and more 

precisely the choice of the POT method for modeling the 

distribution tails. 

The MEF (Fig.3) of both positive and negative returns is 

estimated to choose thresholds. From the MEF, the 

thresholds can be chosen from range of 1.01 to 1.52 for the 

left tail and from the range of 1.09 to 1.8 for the right tail 

based on the criterion of linearity in the MEF plots.  
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Figure 3. The MEF plots 

4.1.4. Estimation of HILL 
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Figure 4. The variation of the Hill estimator 
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Figures depict the variation of the Hill estimator of the 

tail index ξ compared to the number of exceptions and 

thresholds are correspondents. The choice of the tail index 

begins by the region where the graph becomes relatively 

stable. This corresponds to a number equal to overflow Nu 

= 380 and a threshold for the u = 1.2 and a straight tail 

number exceeded equal to Nu = 380 and a threshold u = 

1.04 for the left tail DJIM yields. 

4.1.5. Estimation of GPD Parameters 

The next step is the estimation of shape (ξ ) and scale ( β ) 

parameter by fitting the GPD in Eq. (5) to the standardized 

residuals. The estimated shape parameter and scale 

parameter as well as their related statistics under different 

thresholds are listed in table 3 for negative and positive 

returns. 

4.1.6. Value-at-Risk ((VaR) and Expected Shortfall (ES) 

A popular model of market risk is the VaR, which is 

generally defined as the maximum potential losses in the 

market value, say, a financial portfolio with a given level of 

probability over a specific period. For example, if the given 

period of time is one day and the given probability is 1%, 

the VaR measure would be an estimate of the decline in the 

portfolio value that could occur with a 1% probability over 

the next trading day.  

For a given probability q, VaR can be defined as the qth 

quantile of the distribution F  

1(1 )−= −qVaR F q                             (8) 

Where 1−F  is the so-called quantile function defined as 

the inverse of the distribution function F. Since VaR is an 

extreme quantile, it can be estimated using the quantile 

formula given in Eq. (7) by 

1
ˆ 1

/

− − = = + −  
   

q q

q
VaR x u

k n

ξβ
ξ

             (9) 

Another measure of risk is the expected shortfall (ES) 

which is defined as the expected size of a loss that exceeds 

VaR. Where VaR addresses the question: “How bad can 

things get?” The ES addresses the question: “If things go 

bad, what is the expected loss?” Mathematically the ES for 

risk X at given probability level q is expressed as  

( / )= >q qES E X X VaR  

The ES is estimated by the following equation 

ˆ ˆˆ
ˆ

ˆ ˆ1 (1 )

−= +
− −

q

q

VaR u
ES

β ξ
ξ ξ

                         (10) 

Is based on the estimated values (ξ , β ) in Table 4 the 

VaR quantiles for negative as well as positive returns are 

obtained from Eq.(8) 

And the expressions of ES are obtained from Eq (10) are 

also reported in Table 4. 

Table 4. Parameter estimates for the AR-GARCH(1,1) model under 

different thresholds 

 
+ returns - returns 

u= 1.2 u= 1.04 

Total in-simple observation T 3179 3179 

Number of exceedences k 380 380 

% of exceedences in-simple k/T 11.95% 11.95% 

GPD shape parameter ξ  0.11894 0.1487 

GPD scale parameter β  0.74965 0.6304 

VaR quantile:   

0.95
ˆ ( )VaR Z  1.801915 1.65862 

0.99
ˆ ( )VaR Z  3.141606 2.931907 

Expected shortfall:   

0.95
ˆES  2.072543 2.489570 

0.99
ˆES  4.368787 4.0281137 

4.1.7.  Extreme Risk Measure 

We now calculate the dynamic risk measure. Table 4 

reports the conditional VaR and conditional ES for positive 

and negative returns. For a one-day horizon, an estimate of 

the conditional VaR is:  

1

1 1
ˆˆ ˆ ( ) .+

+ += +t

q t t q
VaR h VaR Zµ  

Similarly for a 1-day horizon, an estimate of conditional 

ES is: 

1

1 1
ˆ ˆˆ+

+ += +t

q t t q
ES h ESµ  

Where ˆ
qVaR is given by Eq.9 and ˆ

q
ES  is given by Eq.10. 

Table 5. Conditional VaR and Conditional ES 

 
- returns +returns 

u= 1.2 u=1.04 

Conditional VaR:   
1

0.95

+tVaR  0.02037526 0.01876333 

1

0.99

+tVaR  0.03544554 0.03308662 

Conditional ES:   
1

0.95

+tES  0.0234196 0.02802077 

1

0.99

+tES  0.04925021 0.04541795 

The conditional VaR is estimated as 0.0187633 at the 5th 

percile for the right tail. This implies that, for the lower 5% 

positive daily returns, the worst daily loss in the Islamic 

Market value may exceed 2.03% in expectation. ie, if we 

invest in market portfolio, we are 95% confident that our daily 

loss at worst will not exceed 2.03 during one trading day. 

On the other hand, VaR is estimated as 0.02037526 at the 

95th percentile for the left tail. We expect that a daily change 

in the market portfolio would not increase by more than 

2.03%. Put differently, we are 95% confident that our daily 

loss will not exceed 2.03 % if we take short position of 

market portfolio.(similarly at a lower quantile of 99-level.) 

We can say that under different thresholds, the estimates 

of VaR exhibit strong stability.  

The other interesting observation is that, for any given 

threshold and quantile level, the corresponding VaR 

estimate in the left tail is larger than that in the right tail. 
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Similarly, the estimates of conditional ES exhibit similar 

characteristics to those observed from the Conditional VaR. 

the ES are stable for any given confidence level and this is 

true for both the tails.  

Moreover, we find the corresponding ES estimates in the 

left tail are larger than that in the right tail. 

5. Conclusion 

The high degree of volatility seen in financial markets in 

recent year has been regarded as complex and nonlinear 

dynamic systems. EVT is a powerful tool to estimate the 

effects of extreme events in risky markets based on sound 

statistical methodology. 

This paper exhibits how EVT can be used to model tail-

related risk measure such as VaR and ES by applying it to 

the daily returns of market portfolio of Dow Jones Islamic 

Market. A conditional approach is favored as the return 

series exhibit stochastic volatility and are non-iid. We 

calculate the daily VaR for the islamic returns by 

combining the EVT with GARCH models. The objective 

was to get standardized residuals that are close to iid so that 

EVT models can be applied. In the context of applying 

conditional EVT, the POT method provides a simple and 

effective means to choose thresholds and estimate 

parameters. By assessing the empirical excess distribution 

functions and survival functions with associated theoretical 

distribution simulations, we find the goodness-of-fit in tail 

modeling. 

The point and interval estimates of conditional VaR and 

conditional ES computed under different high quantile 

levels exhibit strong stability through the selected 

thresholds, implying the accuracy and reliability of the 

estimated quantile-based risk measures. 

The VaR and ES measures based on conditional EVT 

model provide quantitative information for analyzing the 

extent of potential extreme risks in the market portfolio of 

DJIM. Interested index fund managers could employ these 

techniques as a means of risk management. 
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