
 

Journal of Photonic Materials and Technology 
2019; 5(1): 16-23 

http://www.sciencepublishinggroup.com/j/jpmt 

doi: 10.11648/j.jmpt.20190501.14 

ISSN: 2469-8423 (Print); ISSN: 2469-8431 (Online)  

 

Light Dispersion in Diamond-like Crystals 

Vladimir Rumyantsev
1, 2 

1Department of Theory of Complex Systems Dynamic Properties, A. A. Galkin Institute for Physics & Engineering, Donetsk, Ukraine 
2Mediterranean Institute of Fundamental Physics, Rome, Italy 

Email address: 

 

To cite this article: 
Vladimir Rumyantsev. Light Dispersion in Diamond-like Crystals. Journal of Photonic Materials and Technology.  

Vol. 5, No. 1, 2019, pp. 16-23. doi: 10.11648/j.jmpt.20190501.14 

Received: May 2, 2019; Accepted: June 3, 2019; Published: June 18, 2019 

 

Abstract: Dispersion of light in diamond-like crystals is investigated. Dispersion laws of exciton polaritons in this 

structures, which (apart from the diamond itself) include silicon and germanium is obtained within the quasi-molecular model 

of valent crystals. Dispersion curves point to the fact that in the vicinity of exciton resonance under small damping one must 

account for the exciton-photon interaction. The calculation shows that in a certain frequency range the existence of an 

additional light wave is possible. The dispersion laws of exciton polaritons in a diamond-like structure in the vicinity of 

frequency of the lowest dipole transition of a crystalline quasi-molecule (a σ-bond) are obtained. 
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1. Introduction 

A crystal is a many-electron system, which in some cases 

can be treated as an assembly of several strongly localized 

subsystems. The attempt to account for correlation between 

electrons as accurately as possible underlies the group 

function method. The efficiency of this method (provided 

that the conditions for strong orthogonality have been 

properly taken into account) depends essentially on the 

successful initial choice of electronic groups for the 

subsequent description of the full electronic system of a 

crystal. Valent crystals, in particular, can be considered from 

a standpoint of the concept of localized two-electron bonds. 

In such a case the main interest lies in group functions 

dependent on two electrons (geminals), since the electron-

electron correlation is primarily the result of a pairwise 

interaction. The study of electron correlation in atoms and 

molecules permits to conclude that the most essential effects 

are caused by interaction between electrons with opposite 

spins, whose orbitals are localized at the same region (i.e., for 

instance, closed atomic s -shells as well as σ -bonds in 

molecules). The use of two-electron functions for the 

description of molecular σ -bonds was first proposed by V. 

A. Fock [1].  

K. B. Tolpygo has developed a quasi-molecular model of a 

diamond-like valent crystal, which permitted to give a 

consistent interpretation of the ground and excited states in 

crystals based on the analysis of σ -bonds between 

neighboring atoms as well as to construct the crystal lattice 

dynamics [2].  Within the quasi-molecular model a strong 

bond in a diamond-like crystal is formed by the overlapping 

of wave functions of electrons with opposite spins (hence the 

term “valent crystals”). When atoms consolidate into a 

crystal the orbitals of valent electrons of each atom (stretched 

towards its four nearest neighbors) are formed by 
3sp -

hybridization of atomic functions (see Figures 1, 2). 

Diamond-like crystals, which (apart from the diamond 

itself) include silicon and germanium, are featured by a 

complex elementary cell (Figure 1), containing eight atoms. 

The crystal lattice of these semiconductors can be viewed as 

a superposition of two face-centered cubic lattices shifted 

with respect to each other along a cube’s diagonal through 

the 1 4 -th of its length. Each atom of such a crystal is bound 

to its four neighbors, each bond being directed along a 

tetrahedron’s edge (i.e. along the 111 -direction of the cubic 

lattice).  

Experimental studies show that (see e.g. [3]) the bulk of 

valent charge of such crystals is concentrated in the vicinity 

of centers of tetrahedral σ -bonds. When proceeding from a 

quasi-molecule (a σ -bond) to examination of a crystal one 

finds that the relative change of lengths, elastic constants and 

binding energies amounts to approximately 1%. In addition, 

measurements show that the Compton profiles of C C−  
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bonds differ insignificantly from the profiles of such bonds in 

a 2 6C H  gas [4]. Therefore, experimental data indicate in fact 

that the properties of a valent (unexcited) bond are practically 

independent of its environment (with the exception for the 

nearest neighbors) similarly to the quasi-independence of 

one-electron states in the Hartree-Fock model  

 

Figure 1. The scheme of the elementary cell of a diamod-like crystal ( a  is 

the lattice constant). 

The charge-density distribution of valent electrons 

calculated within the quasi-molecular model agrees closely 

with experimental results [2,5]. The estimates for the binding 

energy of the crystal lattice, the compressibility, and the 

linear thermal expansion coefficient also favor the quasi-

molecular model [6]. Within this model a diamond-like 

crystal is viewed as an aggregation of weakly interacting 

structural units (SU) - σ -bonds. Based on the above, in this 

study we use a model according to which a crystal with a 

diamond-like structure is a set of weakly interacting 

structural units (SU) - σ -bonds. Thus, when calculating the 

local electromagnetic field in such a crystal, it becomes 

possible to use the technique developed in for molecular 

crystals [7-9].  

2. Theoretical Background 

A diamond-like crystal constituted by quasimolecules 

(bonds) has an fcc-lattice with the basis formed by four 

quasi-molecules (see Figure 1). Each molecule is exposed to 

the self-consistent field of all other SU’s of the crystal. 

We shall assume an SU’s interaction to be a dipole-dipole 

one (with the exception for the nearest surrounding of each 

SU) so that it can be described by the internal field tensor 

ˆ ssϕ ′
 obtained within the dipole approximation. Interaction of 

nearest SU’s strongly differs from that of point dipoles and 

requires a more accurate description. Hence the amplitude of 

the electric field strength 
,

s
ω k

E  created at the point l
s

r  by 

all SU’s of the crystal (except for the nearest surrounding) 

has the form: 

( ) ( )
,

3 3
,

3
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The second term in Eq. (1) is the field of the nearest 

neighbors of the 
l

sr -th SU written in dipole approximation.  

The explicit form of the Fourier-transform of tensor ˆ ssϕ ′
 

has been obtained (with the account for interaction delay) 

through Ewald transformation in Refs. [9] [10]. Within the 

long-wave approximation ( )ˆ ,ssφ ω′
k  can be represented as an 

expansion in wave vector K  (with an accuracy up to the 

second order): 
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where [ ]KK e K Kαβγ β γα
βγ

+ ≡∑ , eαβγ  is the anti-symmetric 

third-rank unit pseudo-tensor, vectors sl  (s=1…4) define the 

directions of bonds 1 2(1,1,1), (1, 1, 1),= = − −l l  

3 4( 1,1, 1), ( 1, 1,1)= − − = − −l l , ss s s′ ′= −l l l  (see Figure 2). 

Let us analyze in more detail the propagation of 

electromagnetic excitation in diamond-like valent crystals in 

the energy region of formation of the deep Frenkel exciton. 
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The use of the quasi-molecular model permits to apply to 

diamond-like structures the technique developed previously 

for molecular crystals [8, 9]. According to the model [2], 

each pair of electrons forming a σ -bond between 

neighboring atoms, together with the quarters of atoms’ 

skeletons, which make up a part of the bond, are viewed as a 

quasi-molecule. It should be highlighted that the many-

electron approach, employed here, based on Hartree 

approximation for geminals, and taking into account their 

time dependence, is different from the chaotic phases 

approximation used in [11] in that the former allows for the 

exchange and correlation within each bond. It should be 

noted here that in molecular crystals the subject of 

investigation were the “true” excited states (whose lifetime is 

limited only by radiation), whereas in diamond-like crystals 

excitons are metastable [12] – the excitation levels fall within 

the continuous spectrum GEω >ℏ  ( GE  is the band gap 

width). 

 

Figure 2. Coordination tetrahedron of a diamond-like crystal. 

The specifics of interaction between electromagnetic 

waves and a solid medium is defined by the latter’s response 

function. Our primary task consists therefore in finding this 

function for the case of diamond-like crystals. 

Within the quasi-molecular model of valent crystals each 

pair of electrons forming a σ -bond between neighboring 

atoms is viewed as a “molecule”, whose state 1 2( , )l

σΨ r r
�

 is 

described by a two-electron Schredinger equation: 

( )ˆˆ
l

l l lW
t

σ
σ σ σ

∂Ψ
= Η + Ψ

∂
                               (3) 

where l  is the cell number, σ is the quasi-molecule number 

in the cell, l
H

s
 is the Hamiltonian, which includes static 

Coulomb field of the rest of SU’s being at the ground state 

0

l

σΨ . Interaction between all other SU’s (σ -bonds) can be 

considered as a dipole-dipole one with the exception for the 

nearest neighbors of each SU. In the latter case it is different 

from the interaction between point dipoles and hence is 

subject to refinement. There is a perturbation exerted upon 

the 
l

σr -th bond by all other bonds, which arises due to the 

partial virtual excitation of SU’s and can be represented in 

the following form: 

ˆ ˆP E( ,r )l l l lW t Wσ σ σ σ= − ⋅ + ∆                           (4) 

where 1 2

l

σ = +P r r  is the dipole moment operator, ( , )lt σE r  is 

the field exerted upon the (
l

σ )-th bond by all other bonds 

with the exception for the nearest surrounding, whose 

contribution is taken into account by the term ˆ lWσ∆ . 

Interaction of a σ -bond with the nearest surrounding cannot 

be treated as a dipole-dipole one since the distance between 

centers of neighboring bonds is smaller than the bond length 

itself. 

According to Ref. [2] one can adopt a concept according to 

which every SU has its eigen-functions 
l

iσΨ , which satisfy a 

Hartree-type equation ˆ l l l

i i iH Eσ σ σ σΨ = Ψ  (where iEσ  are the 

energy eigen-values of a quasi-molecule). Such an approach 

is valid for moderate excitation levels as long as wave 

functions 
l

iσΨ  can be considered as localized at a single 

bond. If the non-stationary state of the bond is written in the 

form (1. 1. 23) in Ref [9] then it is easy to show that 

coefficients 
l

icσ  corresponding to excitations with index i  

satisfy (approximately) the following equations:  
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where the dipole moment operator matrix is 
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l
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Wave functions 
l

iσΨ  are chosen to be real-valued, whereas 

summation in (5) and (6) is carried out over the nearest 

neighbors of the 
l

σr -th SU. Since the Fourier-amplitude 
,ω

σ
k

P  

of the average dipole moment SU equals to: 

( ) ( ) ( ), ,

0 0 0 0i i i i i
i i

c c C
ω σ σ σ
σ σ σω ω ω ω ω− = + + − ≡∑ ∑ 

k k k k
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by performing the Fourier transformation of the system (5)-

(6) and keeping in mind that we consider the region in the 

vicinity of the dipole transition ( i f= ) we arrive at the 

system of equations in ( ),

i
Cσ ωk

 (the real parts of the 

Fourier-transforms of coefficients ( )l

i
c tσ ): 
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Here k  is the dimensionless wave vector, ,σσ σ σ′ ′= −l l l  

( ) ( )1 2
1,1,1 , 1, 1, 1 ,= = − −l l ( ) ( )3 4

1,1, 1 , 1, 1,1= − − = − −l l  

are vectors directed along the bonds (Figures 1. 3, 1. 4). 

Since coefficients 
,

iCσ k
 in the right-hand side of Eq. (9) are 

small as compared to unity the system of equations (9), (10) 

can be solved by the iteration method, where in the zeroth 

approximation: 
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It should be noted however that the coefficient with 
,

f
Cσ ′ k

 

in the right-hand side of Eq. (10) is not small due to a 

resonant denominator and hence upon substitution of (11) 

into (10) the latter is solved exactly with respect to 
,

f
Cσ k

. 

Symbolically Eq. (10) can be written as 
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where cos cos cos
2 2 2

yx z
c

kk k
f = , and as above foω ωΩ ≡  

and Î  being the unity matrix. Substituting the solution of 

system of equations (9), (10) into (8), we get: 

, 3 ,

, ,
,

( , )P a A E
ω σσ ω

σ α αβ σ β
σ β

ω′
′

′
= ∑k k
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Tensor Âσσ ′  is the dynamic polarizability of the ( )l
σ -th 

bond, whose explicit form (in view of its cumbersomeness) is 

given in the Appendix (A-2) in Ref. [9]. Dependency of 

coefficients ( , )Aσσ
αβ ω′

k  on k  is explained by the fact that our 

analysis does not entirely fits within the frames of the dipole-

dipole approximation. Taking into complete account an 

interaction of the ( )l
σ -th SU with its nearest neighbors 

results in a situation when for the symmetry 3dD  of a 

diamond-like crystal the dipole 1 2g uA A→ , 1g uA E→  cease 

to be forbidden for certain higher odd multipolar moments 

(the latter is the cause for the dependency of ( ),Aσσ
αβ ω′

k  on 

the wave vector k ). 

The Fourier-amplitude of the field acting upon the ( )l
σ -th 

SU of the crystal is found by the procedure described in Ref. 

[13], 

( ), 3 ,

, ,

,

,E a Pω σσ ω
σ α αβ σ β

σ β
φ ω′−

′
′

= ∑k kkɶ
                     (17) 

Here tensor ˆσσφ ′ɶ  serves to denote the expression in 

angular brackets in Eq. (1. 2. 16) [9]. The solvability 

condition for the system of linear homogeneous equations 

(16) and (17), with the account for (1. 2. 17) [9], yields the 

dispersion law ( )ω ω= k , which characterizes exciton 

polaritons in crystals of the considered type.  

In the general case (16), (17) constitute a system of 24 
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equations, which is factorized under 0→k  and upon both 

sides of equalities being subjected to a unitary 

transformation. Analysis of equations yielded by the 

transformation shows that in the limit 0→k  only the 

2 15,′Γ Γ -symmetry excitations are set in motion (which 

interact with the electromagnetic wave). The so found 

limiting exciton frequencies are determined (through 

coefficients ijZ , see Appendix A-2 [9]) by the whole state 

spectrum of geminals. Finding of the latter constitutes a 

separate problem; here we shall confine ourselves to a 

simpler model.  

3. Results and Discussion 

Let us consider an approximation where each valent bond 

of the crystal in addition to the ground state ,

l

oσΨ  has only 

one excited state described by a wave function ,

l

fσΨ  of the 

same form as in the study [14], which is constructed on the 

basis of the same 
3sp -hybrids as the ground state in the study 

[6]. It is easy to verify that in this case the Fourier-transform 
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polarization of the bond is much bigger than the transversal 
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This procedure permits to substantially reduce the number 

of variables and hence the number of equations in system 
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Here 2 15,′Γ Γ  are the indices of irreducible representations 

of the wave vector group, coefficients a
i  ( 0...4i = ), which 

reflect the structure of a diamond-like crystal are given in 

Table 1, 
2 2 2

0f
M c a ω= . Vector 

15ΓP  has the meaning of the 

dipole moment of a cell ( )1 2 3
, , ,P P P=P  where 

15
2 Γ=P P  

(by analogy with 
15ΓE ). Higher electronic excitations are 

taken into account by introduction of the dielectric 

permeability ε∞ . In this case the resonant term of the 

dimensionless polarizability of a quasimolecule-bond should 

be supplemented by a high-frequency term A∞ : 

( ) ( ) 1

3 1 8 2A ε π ε δ −
∞ ∞ ∞= − + −                         (25) 

where ( )0
3 1 8aδ ε π∞= −  is the structural correction due to 

the local field. The existence condition of a non-trivial 

solution of the system (24) yielded first of all [15] the 

limiting ( 0→k ) excitonic frequencies with the account for 

the higher excitations: 

( )

( )

2

2 2

2 0 ||

1

||2 2

|| 1 0 0

1

||2 2

1 0 0

,

16 16
0 1

3 3 3

8 8
0 1

3 3 3

a

a A a

a A a

π π

π π

′Γ

−

∞

−

⊥ ∞

Ω = Ω − ∆

∆     Ω = Ω + + + +    
    

∆     Ω =Ω − − − −    
    

   (26) 

Numerical values of the squares of limiting frequencies for 

diamond and silicon crystals obtained within the accurate 

description of interaction between nearest σ -bonds as well 

as the constants necessary for their evaluation are given in 

Table 2. For comparison purposes Table 3 gives the same 

frequencies calculated within the approximation where only 

the dipole-dipole interaction is present between a crystal’s 

SU’s (including their immediate surrounding). Tables 2 and 3 

show the importance of as exact as possible account for 

interaction between nearest neighbors in each crystalline SU. 

Table 1. Structural coefficients a
i . 

a0 A1 a2 A3 A4 

5,15599 0,35397 0,54053 2,11659 0,12445 

Table 2. Squares of limiting frequencies. 

Crystal ε∞  
||

∆∆∆∆  
ff fo

I ωωωω  
2

2

′′′′ΓΓΓΓΩΩΩΩ  2

||
ΩΩΩΩ  2

⊥⊥⊥⊥ΩΩΩΩ  

Diamond 5,7 0,08 0,067 1,40 0,89 0,59 

Silicon 11,7 0,10 0,073 1,38 0,86 0,45 

Table 3. Squares of limiting frequencies (dipole-dipole approximation). 

Crystal 
2

2

′′′′ΓΓΓΓΩΩΩΩ  2

||
ΩΩΩΩ  2

⊥⊥⊥⊥ΩΩΩΩ  

Diamond 2,82 0,83 0,17 

Silicon 3,27 0,79 -0,03 

 

Table 4. Values of limiting exciton frequencies. 

 ||
(0)ΩΩΩΩ  (0)⊥⊥⊥⊥ΩΩΩΩ  0f

ωωωω (а. е) 0f
ωωωω  (eV) 0f

ωωωω  (с-1) a (м) M 

Diamond 0,94  0,77 0,97 26,38 4,02
16

10⋅  1,78
1010−⋅  1,8

3
10⋅  

Silicon 0,93  0,67 0,49 13,33 2,03
16

10⋅  2,71
1010−⋅  3,0

3
10⋅  

Detailed calculations employing the technique of Ref. [13] crystals performed in [15] within the model of two-level SU’s of 

diamond-like crystals have led to the following dispersion laws in the vicinity of the dipole transition frequency foω  of a 

quasimolecule. For longitudinal excitons: 

( ) ( )( )
1

2 2 2

|| || 0 || || 0

16
( ) (0) 3 1

3
K K s

−

∞

   Ω = Ω + − ∆ + +   
    

ff f
I A a

πω β                                         (27) 

For transversal excitons: 

( ) ( ) ( )( )

( ) ( ) ( )( )

1

2 2 2

1 1 || 0

1

2 2 2

2 2 || 0

8
0 3 1

3

8
0 3 1

3

K K s

K K s

−

⊥ ⊥ ⊥ ∞

−

⊥ ⊥ ⊥ ∞

  Ω = Ω − ∆ − −  
  

  Ω = Ω − ∆ − −  
  

A a

A a

πβ

πβ
                                                 (28) 

where ( ) ( )4 4 4

|| 1 3 4 1 2 3
,a a a s s sβ = + + + +s  ( ) ( )4 4 4

1 1 2 1 4 1 2 3
, 1a a a s s sβ β⊥ ⊥= = − − − −s . 

From the solvability condition of Eqs. (16) and (17) follows the dispersion laws of exciton polaritons ( )p p
Ω = Ω k  in a 

diamond-like structure in the vicinity of frequency 0fω  of the lowest dipole transition of a crystalline quasi-molecule 
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( 0fω ωΩ =  in dimensionless units): 

( ) ( ) ( )2 22 2
2 2 2 2

( ) || ||

1
{ 4 }

2

kk
k k

⊥
±

∞ ∞ ∞

Ω 
Ω = Ω + ± Ω + − 

 
p

M Mk
Mk

ε ε ε
                                         (29) 

Dispersion laws ( ) ( )|| (1,2), ⊥Ω Ωk k  of longitudinal and 

transversal excitons are given by formulas (27) and (28), 
2 2 2

0fM с a ω= , a  is the lattice constant, the values of 

limiting ( 0)k →  exciton frequencies || (0), (0)⊥Ω Ω  and other 

useful constants are given in Table 2 and Table 4. 

Figure 3 shows the graph of 2 1Ω − Ω  – the splitting of the 

excited state 1 of a quasimolecule caused by its interaction 

only with the nearest SU’s (σ -bonds). According to formula 

(19), 2Ω  and 1Ω  are, correspondingly, the singlet and triplet 

levels of a quasimolecule. 
2′ΓΩ  and 

15ΓΩ  are, 

correspondingly, the singlet and triplet levels of the crystal 

[15]. 

 

Figure 3. Dispersion curves of electromagnetic excitations in a diamond-like 

crystal. 

4. Conclusion 

The dispersion curves obtained in the work point to the fact 

that in the vicinity of exciton resonance under small damping 

one must account for the exciton-photon interaction and that 

the 15Γ -symmetry exciton is split into two doubly-degenerated 

(under 0→k ) branches ( ) ( ),
p p+ −Ω Ω , corresponding to a 

transversal wave and one nondegenerate branch ||Ω , 

corresponding to a longitudinal wave; in the ⊥Ω < Ω  

frequency interval there may exist an additional lightwave.  

The electromagnetic wave propagation in symmetric 

directions , ,∆ Λ Σ  of a diamond-like crystal is investigated. 

The obtained dispersion relations for exciton polaritons 

indicate that in the neighborhood of exciton resonance 

( )0⊥Ω , when ||ω ω⊥− >> Γ  (Г is the damping constant), 

one must account for the exciton-photon interaction. Whereas 

the singlet excitonic symmetry level 2
′Γ  does not “mix” with 

light, an interaction of the triplet excitonic symmetry level 

15Γ  with light leads to its splitting into one branch 

corresponding to a longitudinal wave ( )||ω k  (which does not 

“mix” with light as well) and two polariton branches 

( ) ( )1,2,ω ω− +k k , whose shape indicates the existence of an 

additional light wave for ( )0⊥Ω < Ω  in the considered 

crystals. 

Utilization of novel materials for designing of sources of 

coherent irradiation has become an extensive interdisciplinary 

scientific area, which includes laser physics, condensed matter 

physics, nanotechnology, chemistry, and information science 

[16]. Special attention is paid to possibilities of controlling of 

propagation of electromagnetic excitations in resulting 

composite structures such as porous Si (see for example Ref. 

[17]). The presented results make it possible to expand the 

possibilities of creating a new class of porous functional 

materials - polaritonic crystal systems (arrays of micropores-

resonators) with controlling the propagation of electromagnetic 

excitations in such composite structures [18, 19]. 
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