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Abstract: Thorough review of external differential forms calculus basic theses presented. Potentialities of this mathematical 

discipline, which can describe physical properties of dielectric materials, magnets and photonic materials influenced by 

mechanical, thermal and electromagnetic factors more logically and objectively, then traditional methods, demonstrated. 

Methodological effectiveness of the differential forms of thermodynamic potentials application in the macroscopic properties 

of homogeneous mono- and polyvariant systems description has been demonstrated. The simple, fundamental, symmetrical to 

the thermodynamic variables choice relations demonstrating the calculus of differential forms benefits have been obtained. 

Using Pfaffian forms thermodynamics, have been demonstrated, that differential forms calculus application to a description of 

the physical reality allows to operate physical concepts at a deeper level, based on the fundamental physical and mathematical 

principles. 

Keywords: External Differential Forms, Thermodynamic Potentials, External Product, Maxwell’s Identity,  

Photonic Materials 

 

1. Introduction 

The calculus of differential forms, which was created at 

the beginning of the XX century by E. Kartan, is one of the 

most fundamental and at the same time simple-to-use, mobile 

and fruitful mathematical method in differential geometry 

and its applications [1-3]. The universality of concepts and 

methodological simplicity are factors that confirm the 

fundamentality of differential forms theory. In the opinion of 

many mathematicians [1-4], such traditional mathematical 

tools, as vector, differential and integral calculus, which are 

the foundation of usual theoretical physics mathematical 

apparatus, are to a certain extent not full constructive transfer 

of the more fundamental mathematical constructions - 

external differential forms (see appendix). 

The development of scientific thought has always sought 

to unify, simplicity and universality of physical concepts, 

which could be presented using the fundamental nature of the 

operator symbolism, easily and simply to operate with it. 

Ultimately, it leaded to the concept of external (or alternated) 

differential form [1-3]. 

Many thermal, mechanical, magnetic and electric 

properties of matter with mono- or polyvariant structure can 

be satisfactory described by thermodynamic language. A lot 

of macroscopic matter properties have been accounted by 

such a way. Thermodynamic approach was found successful 

from both fundamental and applied points of view. 

Methodology of thermodynamic potentials (also calling 

characteristic functions) widely used against standard 

thermodynamic language background [5-10]. 

At the same time many fundamental problems haven’t due 

explanation because of traditional mathematic apparatus 

restrictions. On our opinion, using external differential forms 

calculus allows to expand thermodynamic language 

application field, to look to the standard relations from new 

point of view, consider ones on deeper scientific level. 

Authors think, that using in the article mathematic 

apparatus application will take on more concrete sense and 

apprehend more adequate after thermodynamic axioms and 
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laws consideration using direct differential calculus [5-10] 

and, at the same time, external differential forms calculus 

basic theses [1-4]. Such an approach allows to look deeper to 

the thermodynamic laws in the view of abstract vector 

analysis and its geometrical images, which show physical 

reality nature from one more fundamental side, describing in 

mathematical physics by external multiplication and external 

differentiation concepts (see Appendix). Motivation of 

external differential forms using dictating by this 

methodology effectiveness, meaning fundamentality and 

application’s simplicity. 

Confirmation of initial principles is this article which 

demonstrated the simplicity of obtaining already known 

results and provided obtaining new ones conceptual scheme. 

2. Thermodynamic Potentials External 

Differential Forms Calculus 

Let’s consider a simple, homogeneous, placed in an 

external constant electric or magnetic field system. Its 

thermodynamic properties are investigated, using the theory 

of defined on consistent generalized thermodynamic forces 

and coordinates manifolds Pfaffian forms potentials. 

The variables that characterize the forces denoted by the 

{ }, , , , iX T P E Hν µ=
� �

 (here from left to right: temperature, 

pressure, external electric and magnetic field intensities, i-th 

matter component chemical potential); congaed to these 

forces coordinates denoted by { }, , , , ix S V P M nν =
� �

 (here, 

respectively: specific entropy, volume, electrical and 

magnetic polarization, the molar substance component 

concentrations). 

Functionally dependence of the specific thermodynamic 

potentials (internal energy U, enthalpy W, free energy F, 

Gibbs potential G) at an appropriate extensive (additive) and 

intensive consistent variables manifold chosen in the form 

( ) ( )
( ) ( )

, , , , , , , , , ,

, , , , , , , , ,

i i

i i

U U S V P M n W W S P E H n

F F T V P M n G G T P E H n

= =

= =

� � � �

� � � �  

We emphasize that the required functional relationship can 

be represented in another form for another problem 

conditions [5, 9, 10]. 

By themselves, in the differential forms calculus the 

thermodynamic functions are a 0-form. The action of the 

external differentiation operator dɶ  at the 0-form transforms 

it into 1-form. This operator is similar to the internal 

differentiation one, but it has some features (see App.). Each 

1-form of potential after formal substitution operator to an 

ordinary differential operator dɶ  will produce a 

corresponding certain potential Pfaffian form [1-8]. In 

particular, the internal energy external differential is 

i

i

U U U U
dU dS dV dx dn

S V x n
ν

ν

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

ɶ ɶ ɶ ɶ ɶ  

Here dUɶ  is a counterpart of usual differential, and partial 

derivatives are generalized forces. So, let’s act to the relevant 

0-form by the operator dɶ  and obtain 1-form of the 

thermodynamic potentials 

i idU TdS PdV X dx dnν ν µ= − + +ɶ ɶ ɶ ɶ ɶ               (1) 

i idW TdS VdP x dX dnν ν µ= + − +ɶ ɶ ɶ ɶ ɶ               (2) 

i idF SdT PdV X dx dnν ν µ= − − + +ɶ ɶ ɶ ɶ ɶ              (3) 

i idG SdT VdP x dX dnν ν µ= − + − +ɶ ɶ ɶ ɶ ɶ              (4) 

Everywhere (in particular, in (1-4)) meaning summation 

on doubled indices. Take into account i iG Nµ=  (or, for 

specific values, i iG nµ= ) [5, 6], acting operator dɶ  to this 

equation and obtaining i i i idG n d dnµ µ= +ɶ ɶ ɶ . The basic 

equation for 1-forms is obtained substituting this expression 

in (4): 

0i iSdT VdP x dX n dν ν µ− + + =ɶ ɶ ɶ ɶ             (5) 

relating only intensive variable, and the only extensive 

quantities are the parameters [5, 6, 8] (extended equation of 

Duhem-Gibbs in the new terminology). 

Note that the thermodynamic potentials are the full 

differentials in the sense of usual differential calculus, that is 

why differential calculus corresponding differential form in 

the sense of external differential calculus is closed (or 

précising) [1, 2]. Therefore, considerating basic property of 

double using the operator dɶ , we apply the external 

differential operator to the relations (1-5) again. In 

consequence occur vanishing 1-form: 

( ) ( ) ( ) ( ) 0d dU d dW d dF d dG= = = =ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ . Take into account 

anticommutation rules dS dT dT dS∧ = − ∧ɶ ɶ ɶ ɶ  etc., too. In 

consequence we obtain the basic equation of the external 

differential calculus thermodynamic potentials theory 

0i idT dS dP dV dX dx d dnν ν µ∧ − ∧ + ∧ + ∧ =ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ        (6) 

Note that this equation has balanced, "symmetrical" to the 

differentials, form. 

Based on the rules of the external differentiation, from the 

basic equation (6) we can easily get all the known 

thermodynamic relations between describing the 

macroscopic properties of the material characteristic 

thermodynamic factors. These relations traditionally 

determines on the Pfaffian forms of characteristic functions 

(corresponding thermodynamic potentials) basis [5-8]. For 

example, let’s consider only thermal and mechanical 

variables in (6) (i.e. assuming 0i idX dx d dnν ν µ∧ = ∧ =ɶ ɶ ɶ ɶ ), 

we obtain the truncated ratio 

0dT dS dP dV∧ − ∧ =ɶ ɶ ɶ ɶ                            (7) 

The 0-forms for the temperature and pressure are defined 
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using the manifold (basis) of variables (S, V): 

( ) ( ), , ,T T S V P P S V= =                    (8) 

From the 0-forms (8) we obtain 1-forms 

V S

T T
dT dS dV

S V

∂ ∂   = +   ∂ ∂   
ɶ ɶ ɶ                    (9) 

V S

P P
dP dS dV

S V

∂ ∂   = +   ∂ ∂   
ɶ ɶ ɶ                (10) 

Substituting (9) and (10) into (7) and taking into account 

forms properties (particularly, anticommutation: 

0, 0dS dS dV dV dS dV dV dS∧ = ∧ = ∧ = − ∧ ≠ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ), (7) leads 

to the form 

( ) ( ) 0
S V

T P
dV dS dV dS

V S

∂ ∂   ∧ + ∧ =   ∂ ∂   
ɶ ɶ ɶ ɶ       (11) 

From (11) we obtain the well-known Maxwell's relation 

S V

T P

V S

∂ ∂   = −   ∂ ∂   
                           (12) 

Using Jacobians technique [5, 6], it is possible to show 

(12) either as 

( , ) ( , )

( , ) ( , )

T S P V

V S V S

∂ ∂=
∂ ∂

                           (13) 

or as the calibration ratio [7] 

( , )
1

( , )

T S

P V

∂ =
∂

                         (14) 

Using pair of variables (S, P), (T, V), (T, P) as a basis, after 

a conversion, similar to demonstrated above, using the 

external differential forms calculus technique, obtain the 

corresponding Maxwell’s relations, that can be reduced to 

calibration (14) by Jacobians technique. 

To make an analysis of the homogeneous, placed in an 

external field system, you should consider an appropriate 

combination of the paired members (6), or the corresponding 

2-form. For example, to examine together thermal and 

mechanical properties in general case (in presence of an 

electric and magnetic fields), you should consider 2-form (6) 

(with 0i id dnµ ∧ =ɶ ɶ )). 

The simplest and most accessible to experimental 

verification are 4-dimensional 2-forms (second degree forms 

in R
4
). 

For example we can explore obtained from (6) 2-form, 

describing the mechanical behavior of dielectric in an electric 

field 

0dP dV dP dE∧ − ∧ =
� �

ɶ ɶ ɶ ɶ                            (15) 

and magnetic material in a magnetic field 

0dP dV dM dH∧ − ∧ =
� �

ɶ ɶ ɶ ɶ                    (16) 

Similarly, we can consider only the thermal properties of 

the dielectric and magnetic material respectively on the base 

of the corresponding 2-forms 

0dT dS dE dP∧ − ∧ =
� �

ɶ ɶ ɶ ɶ                        (17) 

0dT dS dH dM∧ − ∧ =
� �

ɶ ɶ ɶ ɶ                        (18) 

We consider the most known relations for the dielectric 

(15) and magnet (16) in the isotropic case. 

Solving equation (15). Similarly to operations (9)-(14) 

used to solve (7), select serially bases 

( ) ( ) ( ) ( ), , , , , , ,P P P E V P V E
� � � �

. Finally in each case obtain 

the calibration 

( , )
1

( , )

V P

P E

∂ =
∂
� �                                 (19) 

Using the calibration (19) and the Jacobian technique [5, 

6], we can obtain any ratio between the characteristic 

coefficients for given thermodynamic variables and field 

conditions. For example, multiplying (19) on unit represented 

as 
( , )

1
( , )

P P

P P

∂
=

∂

�

� , which can be formally regarded as a 

fraction, obtain the relation 

( , )( , )
1

( , ) ( , )

P PV P

P E P P

∂∂ ⋅ =
∂ ∂

�

� � �  

After obvious transformations it leads to the form 

( , ) ( , ) / ( , )( , )
1

( , ) ( , ) ( , ) / ( , )

P P V P P PV P

P P P E P E P P

∂ ∂ ∂∂ ⋅ = =
∂ ∂ ∂ ∂

� �

� � � � � �  

Hence we receive connection 

( , )( , )
,

( , ) ( , )

P EV P

P P P P

∂∂ =
∂ ∂

� �

� �  

which can be written in the traditional form 

P P

EV

PP

   ∂∂   =
   ∂∂    �

�

�  or 

P P

PP

VE

   ∂∂   =
   ∂∂   �

�

�      (20) 

For the magnetic material mechanical properties study (see 

(16)) in the adiabatic or temperature constancy case 

( 0dT dS∧ =ɶ ɶ ) the following calibration is obtained: 

( , )
1

( , )

V P

M H

∂ =
∂
� �                    (21) 

Based on the calibration ratio (21), considering the pair of 
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variables ( ) ( ) ( ) ( ), , , , , , ,P M P H V M V H
� � � �

 and using a 

Jacobians method, it is possible to obtain all the 

thermodynamic relations between mechanical-magnetic 

coefficients characterizing the system. In particular, if in the 

case (15) choose variables ( ),P E
�

, and in the case (16) – 

variables ( ),P H
�

, we obtain the well-known ratio 

;

P E

PV

PE

   ∂∂   = −
   ∂∂    �

�

�

P H

MV

PH

   ∂∂   = −
   ∂∂    �

�

�      (22) 

These relations (Maxwell’s identity) can be found by the 

standard thermodynamic approach on the base of differentials 

fullness condition [5-8]. 

Obviously, the relations (22) define a volume change 

caused by electric and magnetic fields respectively: 

electrostriction 

P

V

E

 ∂ 
 ∂ 

�
 and magnetostriction 

P

V

H

 ∂ 
 ∂ 

�
 The 

latter are connected with electroelastc 

E

P

P

 ∂
 
 ∂
  �

�

 and 

magnetoelastic 

H

M

P

 ∂
 
 ∂
  �

�

effects. In the absence of external 

fields ( 0E =
�

 and 0H =
�

) e) electric and magnetic effects 

caused by elastic forces is called [5] piezoelectric and 

piezomagnetic respectively. 

3. Remarks 

Let’s make a remark about the methodology of 

thermodynamic potentials. Maxwell’s relations, obtained in a 

standard Pfaffian forms calculus as a result of characteristic 

functions mixed derivatives equality, usually connected some 

values describing the mechanical, thermal etc. system 

properties [5, 6, 8]. The establishment of such relations is a 

content of the thermodynamic potentials method. For 

example, thermodynamic potential derivatives in the T, S, P, 

V variables determine the thermal, adiabatic, isochoric, 

isobaric, caloric system parameters characterizing its thermal 

and mechanical properties. The relationship between these 

parameters can be determined basing on different potentials. 

At the same time, the thermodynamic potential only in their 

own variables satisfies the differential fullness condition and 

is a real characteristic function of them. 

Calibration relations have certain universal character, and 

in the majority of cases they are invariant to the variables 

change. Calibration violation is an indication of matter 

abnormal properties in relevant thermodynamic variables 

space points (for instance, water [5, 6]). 

Additionally we’ll make a brief summary, based on the 

provisions of [1-3], in order to more fully revealing the 

meaning operations used in the paper. 

Note the differential forms calculus fundamental 

provisions and the obvious comparisons. 

Note the following about comparison. In three-

dimensional space R
3
 external multiplication operation may 

be associated with the vector multiplication operation in the 

standard vector calculus. Accordingly, the external 

differentiation operator dɶ , acting on the 1-form (p=1) in 

three-dimensional space, associated with the rotor of the 

vector field. 

The dɶ  and Λ operations fundamental properties are the 

following. 

Operator dɶ  converting form to another form, increasing 

its degree per unit – this is its main property. So if ϕɶ  is a 

form, then dϕɶ ɶ  is a form too, and its degree is one unit 

higher. 

Next integral-differential rule, that is correct for the forms 

of degrees 0 and 1, holds for higher degrees too. In a one-

dimensional space (n = 1) operator dɶ  turns a 0-form (p=0) to 

such a 1-form (p=1): ( )
df

df x dx
dx

=ɶ ɶ . For the latter standard 

integral calculus basic formula is true: 

( ) ( )

b b

a a

df df f b f a≡ = −∫ ∫ɶ  

In the differential forms calculus operator’s dɶ  action to 

forms of high degrees is similar to one’s action to 0-form. If 

( )pϕɶ  is a form of degree p, then ( ) ( 1)d p pϕ ψ= +ɶ ɶ ɶ . For 

forms ( )pϕɶ  and ( )qψɶ  of the p and q degree respectively, the 

following basic relations are satisfied: 

( 1)

( )

( ) ( 1)

( ) 0

pq

p

d d d

d d d

d d

ϕ ψ ψ ϕ
ϕ ψ ϕ ψ
ϕ ψ ϕ ψ ϕ ψ

ϕ

Λ = − Λ

+ = +

Λ = Λ + − Λ

=

ɶ ɶ ɶ ɶ

ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

 

The article listed the differential forms calculus provisions 

have been applied to the thermodynamic potentials and their 

differentials, which can be regarded as a 0-form and 1-forms, 

respectively. At the same time the second external 

differentials of these functions, according to the operator’s dɶ  

general properties, vanish [1, 2]. 

4. Conclusions 

This paper is given a visual representation of the vector 

calculus fundamental nature, which is essentially based on 

the external differential forms calculus. As an example of the 

required formalism chosen Pfaffian forms methodology, used 

in thermodynamic potentials theory. The mathematical 

simplicity of forms using and the efficiency of obtaining 

physical results is shown. 

In the article fundamental relationship between external 

differential form calculus and abstract vector analysis 

principles have been demonstrated. This apparatus is a 

generalization of standard differential and integral calculus. 
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Article shows potentials of external differential forms 

using for analyze electromagnetic fields influence on 

condensed media, composite materials and compound high-

molecular systems, in particular photonic materials. 

Using mathematical apparatus methodological 

peculiarities, proving its fundamentality, which causes one’s 

academic necessity and practical expedience, demonstrated. 

Authors think [11], that due to the fundamental nature of 

the external differential forms calculus apparatus and based 

on geometrical principles (adequate the describing physical 

reality nature) concepts application using differential forms 

calculus as a method of mentioned reality study in the near 

future will be, as projected in the literature cited in an article, 

the needed fundamental mathematical tool in the making 

steps towards understanding the laws of nature investigators 

arsenal. 

Appendix 

1. Basic Theses 

To refining using material, following [3], let’s consider 

ordered set 1 2
( , ,..., )

p
ξ ξ ξ
� � �

 of p vectors. Let exists function 

1 2
( , ,..., )

p
a ξ ξ ξ
� � �

, which compares real number to such a set of 

vectors. This function named polylinear form of p degree (or 

p-form), if it is a linear form for each argument. 

If the polylinear form changes its sign when any pair of 

arguments permute, it named skew-symmetric (anti-

symmetric, alternating) form: 

1 1
( ,..., ,... ,..., ) ( ,..., ,... ,..., )

i j p j i p
a aξ ξ ξ ξ ξ ξ ξ ξ= −
� � � � � � � �

 

Representation of arbitrary polylinear form 1 2
( , ,..., )

p
a ξ ξ ξ
� � �

 

in arbitrary orthonormalized basis of some n-dimension 

vector space V defined as 

1

1

1

1 2 ... 1 1

1 1

( , ,..., ) ... ... ,p

p

p

n n
ii

p i i

i i

a aξ ξ ξ ξ ξ
= =

=∑ ∑
� � �

 

where 
1 1 1... ... ( ,..., )

p p pi i i i i ia a e e= � �
 - some numbers, { }1

1 ,..., pii

pξ ξ  - 

vectors ξ
�

 components in this basis: 
1

; 1,...,
n

i

k k i

i

e k pξ ξ
=

= =∑
� �

. 

The special case is a polylinear skew-symmetric form, 

which can be represented by expansion on given basis: 

1

1

1

1 2 ... 1 1

1 1

( , ,..., ) ... ... p

p

p

n n
ii

p i i

i i

ω ω ξ ξ ξ ω ξ ξ
= =

= =∑ ∑
� � �

 

In this case numbers 
1 1 1... ... ( ,..., )

p p pi i i i i ie eω ω= � �
 change their 

signs when indexes pair permutes. 

Main operation in alternating form theory is operation of 

exterior multiplicity. It needs of some comments. 

Let’s consider polylinear form, which is simply a product 

of two skew-symmetric p- and q-dimension forms: 

1 1 1
( ,..., ) ( ,..., ) ( ,..., )p q

p q p p p q
a ξ ξ ω ξ ξ ω ξ ξ+ + += ⋅
� � � � � �

 

Generally, this form is not alternating, because when 

arguments iξ
�

 and j
ξ
�

 (where 1≤i≤p, p+1≤j≤p+q) permute, 

resulting form may change not only a sign, but a module too. 

Just this fact leaded to introducing exterior product concept. 

This concept is connected with a permutations theory. Let 

σ(k) – some permutation of numbers set { }1,...,k m= . A set 

of such permutations denoted as Σm. For two different 

permutations σ and τ from this set exists their superposition 

mστ ∈ Σ . For any permutation σ exists inverse one σ
-1

, 

satisfying σσ
-1

=σσ
-1

=ε, where ε – identical permutation. 

Permutation which exchange only two numbers and keeps all 

otters fixed, named transposition. For transposition there is 

σ=σ
-1

. Any permutation can be expanded into transpositions. 

Number of expansion members is independent of expansion 

means. Parity of transpositions number in the permutation 

expansion named parity of this permutation. 

Such a way, exterior product ω=ω
p
Λω

q
 of forms ω

p
 и ω

q
 is 

a form 
1( ,..., ) ( )

p q

p q sgn a
σ

ω ω ω ξ ξ σ σ+Λ = = ⋅∑
� �

 (summation 

by all permutations). Here σa is a function of p+q vectors, 

obtained from defined above function a by argument 

permutation σ; sgn(σ) is 1, if permutation is even, and -1, if it 

is odd. As a simple example of exterior product let’s view a 

product of two linear 1-forms gives a bilinear form: 

1 2 1 2

1 2 2 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f g sgn f g

f g f g

σ
ξ ξ σ σ ξ ξ

ξ ξ ξ ξ

Λ = ⋅ =

= −

∑
� � � �

� � � �  

Exterior product of 1-form and q-form (q>1) is a form of 

q+1 degree: 

0 1 0 1

0 1

0 1 1

0

( , ,..., ) ( ) ( ,..., )

( ) ( ) ( ,..., )

( 1) ( ) ( ,..., , ,..., )

q q

q

q
i

i i i q

i

f g

sgn f g

f g

σ

ω ξ ξ ξ ξ ξ ξ

σ σ ξ ξ ξ

ξ ξ ξ ξ ξ− +
=

= Λ =

= ⋅ =

= −

∑

∑

� � � � � �

� � �

� � � � �

 

So, by definition, p-linear form ϕ~  is a linear function of p 

vectors. Number p is a form degree, and φ is polylinear form 

of p degree. If the form is alternating, then φ is an exterior p-

form. Each linear 1-form (p=1) is exterior; exterior 0-forms 

(p=0) are, by definition, real numbers. 

Schematically physics and mathematics usually operate 

with letter T, denoting some real space of tangent vectors. 

Symbol 
pT  denotes p-fold Cartesian product T on itself – set 

of all ensembles of p vectors from T space ( )pξξ
��

,...,1
. By T* 

denotes a dual space (like direct and inverse space in the 

solid state physics), or vector space of linear forms in T space 

[1-3]. 

For all p exterior p-forms combine into real vector space 
pE , named p-fold Grassmann product on T space. At that 

0E  is R, and 1E  is T*. Underline, that exterior 
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multiplication reflected Cartesian product qp EE ×  to qpE +  

space. I.e., forms exterior product )()( qp ψϕ Λ , that is 

exterior (p+q)-form, don’t belong to p
E  and qE , when p>0 

and q>0. 

2. Concrete Applications 

From methodological point of view exterior differential 

form formalism is much simply then vector calculus one [1-

3]. By definition, p-degree differential form in n-dimension 

Euclidean space is infinitely differentiable vector function 

( ),x dxω  (where ( )1 2, ,..., nx x x x=  is an element of 

mentioned space, and differential symbol 

( )1 2, ,..., ndx dx dx dx=  is a vector) [3]. This form is skew-

symmetric p-form by dx, when x are fixed [1-3]: 

( ) 1

1

1

...

...

, ( ) ... p

p

p

ii

i i

i i

x dx x dx dxω ω
< <

= ∧ ∧∑             (A1) 

where 
1

, ...,
p

i i  are ordering indexes. 

To underline exterior differentiation distinction from usual 

differentiation, sometimes forms and their derivatives 

denotes as φ, ψ or α, β, and exterior differentials sign by 

differential operator dɶ ; then ,d dϕ αɶ ɶ  are the standard 

notations of φ and α forms exterior differentials. 

Differential forms algebra is formalized by exterior 

differentiation dɶ  and exterior (anticommutative) 

multiplication Λ rules. This algebra is more easily and at the 

same time more effective and more fundamental, that vector 

analysis [1-3]. 

A set of all forms of any degree with exterior 

multiplication operation between them defines as Grassmann 

algebra [1-3]. 

For the forms φ(p) and ψ(q) of p and q degrees it’s true a 

commutation rule 

( ) ( ) ( 1) ( ) ( )pqp q q pϕ ψ ψ ϕ∧ = − ∧                   (A2) 

Operator’s dɶ  action to high degree forms is analogous to 

one’s action to 0-forms. Exterior differentiation increases 

form degree per unit (if φ is a p-form, then dϕɶ  is a (p+1)-

form). 

If dϕɶ  is an exact form [1, 2] ( dϕ  is a full differential in a 

usual differential calculus), then double exterior 

differentiation operation leads to form vanishing: ( ) 0d dϕ =ɶ ɶ . 

Exterior differentiation rules are the similar to usual 

differentiations ones, taking into account Λ operation 

anticommutative properties: 

( )1i j ij j idx dx dx dxδ∧ = − ∧ɶ ɶ ɶ ɶ                           (A3) 

Linearity of exterior differential forms resulting from 

( 1 2,λ λ  are numbers): 

( )
( )

{ }

1 2 1 2

1 2

1 2

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( 1) ( ) ( )
p

d p q d p d q

d p q

d p q p d q

λ ϕ λ ψ λ ϕ λ ψ

λ ϕ λ ψ

λ λ ϕ ψ ϕ ψ

+ = +

∧ =

= ∧ + − ∧

ɶ ɶ ɶ

ɶ

ɶ ɶ

      (A4) 

Thus, systematical consideration of differential forms 

bases on the next theses. Differential form characterizes by 

its dimension, or degree (p), and by Euclidean space 

dimension (n): R
n
. Space dimension is equal to number of 

manifold variables that form is defined on. Obvious relation 

n p≥  is true. 

Form of zero degree (p=0) is an any infinitely 

differentiable function 

  (A5） 

Obviously, in one-dimension case ( ) ( )x f xω = , in two-

dimension case ( ) ( ) ( ) ( )1 2
, , ,x x x x y f x yω ω ω= = =  Similar 

representations of 0-form there are for any dimension of 

space. 

Form of degree 1 (p=1), or 1-form, is 

( )
1

, ( )
n

j j

j

x dx x dxω ω
=

=∑ ɶ                        (A6) 

Particularly, when n=1, we have linear differential form 

( ), ( )x dx f x dxω =ɶ ɶ                            (A7) 

Form of degree 2 (p=2), or 2-form, is 

( )1 2
, , ( )

ik i k

i k

x dx dx x dx dxω ω
<

= ∧∑ɶ ɶ ɶ ɶ
              (A8) 

Particularly, for the minimal space dimension n=p=2 

 (A9) 

( ) ( )
1 2

1 1

1 2 1 2

2 2

( , ) , ,
dx dx

x dx x dx dx f x
dx dx

ω ω= =
ɶ ɶ

ɶ ɶ ɶɶ ɶ
ɶ ɶ

 (A10) 

Here determinant 
1 2 2 1

1 2 1 2
dx dx dx dx−ɶ ɶ ɶ ɶ  is equal to defined on 

vectors 
1 2
,dx dxɶ ɶ  area element. When n=p=3 and variables are 

1 2 3

1 2 3 1 2 3

1 1 1 1 2 2 2 2

1 2 3

3 3 3 3

( , , ),

( , , ), ( , , ),

( , , )

x x x x x

d x d x d x d x d x d x d x d x
dx dx

d x d x d x d x

=

 
=  

 
 

�

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ
ɶ ɶ

ɶ ɶ ɶ ɶ

 

we have corresponding to vectors 1 2 3, ,dx dx dxɶ ɶ ɶ
 volume 

element, which is similarly equal to determinant. 3-form is, 

respectively 

( ) ( )

1 2 3

1 1 1

1 2 3

1 2 3 2 2 2

1 2 3

3 3 3

( , ) , , ,

dx dx dx

x dx x dx dx dx f x dx dx dx

dx dx dx

ω ω= =

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ

ɶ ɶ ɶ

(A11) 

( ) ( ) ( ) ( ) ( )1 2

0, , 0 , , ...,
n

x d x x x f x f x x xω ω ω= = = =ɶ

( )1 2 1 2 1 2

1 1 1 2 2 2( , ), ( , ), ( , )x x x dx dx d x d x d x d x d x d x= =� ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ
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Let’s specify differential form formalism for a vector field 

case. In this case remind, that exterior differential dωɶ  of the 

linear differential form ω of p degree defines by relation 

1 1

1,

...

...,

...
p p

p

i i i i

i i

d d dx dxω ω= ∧ ∧ ∧∑ɶ ɶ ɶ ɶ
                  (A12) 

where 

1

1

...

...

1

p

p

n
i i

i i kk
k

d dx
x

ω
ω

=

∂
=

∂∑ɶ ɶ                         (A13) 

Operator dɶ  action to zero degree form ( ( ) ( )x f xω = ) 

formally agrees with usual differentiation: 

1

( ) ( )
n

kk
k

f
d x df x dx

x
ω

=

∂= =
∂∑ɶ ɶ ɶ                   (A14) 

External differential of linear form (p=1) calculation 

(when n>1) leads to 

( )
1

, ( )
n

i i

i

i k

k ik i
k i

d x dx d x dx

dx dx
x x

ω ω

ω ω
=

<

 = = 
 

∂ ∂ = − ∧ ∂ ∂ 

∑

∑

ɶ ɶ ɶ ɶ

ɶ ɶ

              (A15) 

For example, if n=2, for 1-form 

( )( , ), , ( , ) ( , )x y dx dy P x y dx Q x y dyω = +ɶ ɶ ɶ ɶ  obtain 

Q P
d dx dy

x y
ω  ∂ ∂= − ∧ ∂ ∂ 

ɶ ɶ ɶ                    (A16) 

Mark out rules, which define exterior differentiation 

operator action for fixed form degree p and space dimension 

n. 

Operator dɶ  action to defined in 1-dimension space R
1
 0-

form (p=0) gives 1-form (p=1). I.e., in R
1
 operator dɶ  

increase form degree, and dimension of space, which form 

defined on, is invariant: 

( ) ( )
df

d x df x dx
dx

ω = =ɶ ɶ ɶ                        (A17) 

Operator dɶ  action to 0-form, defined in n-dimension 

space R
n
, also given 1 form – linear combination of n 

differential terms: 

1

1

( ) ( ,..., )
n

n

ii
i

f
d x df x x dx

x
ω

=

∂= =
∂∑ɶ ɶ ɶ               (A18) 

Differential forms of higher degrees (p>1) generate either 

by lower degrees form exterior multiplication, or by exterior 

differentiation operator action to form of degree, lower per 

unit. 

For example, if 1-form in R
3
 is 

( )1 2 3 1 2 3

1 1 2 2 3 3

( , , ), , ,a a a dx dx dx

a dx a dx a dx

ϕ ω= =

= + +

ɶ ɶ ɶ

ɶ ɶ ɶ
          (A19) 

where 1 2 3( , , )i ia a x x x=  are a components of vector field a
�

, 

which are functions of R
3
 space variables, then operator dɶ  

translates this 1-form into a 2-form in R
3
: 

1 2 3 2 3 1 3 1 2d c dx dx c dx dx c dx dxϕ = ∧ + ∧ + ∧ɶ ɶ ɶ ɶ ɶ ɶ ɶ      (A20) 

Here ( )1 2 3, ,c c c  - components of vector c
�

, defining as 

3 32 1 2 1
1 2 32 3 3 1 1 2

, ,
a aa a a a

c c c
x x x x x x

∂ ∂∂ ∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂ ∂ ∂
  (A21) 

In traditional vector calculus mentioned vector calls rotor: 

( )c rot a=� �
. If we’ll consider 2-form in R

3
 

( )1 2 3 1 2 3

1 2 3 2 3 1 3 1 2

( , , ), , ,

,

b b b dx dx dx

b dx dx b dx dx b dx dx

ψ ω= =

= ∧ + ∧ + ∧

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ
      (A22) 

where ib  - components of some vector (depend on от 

1 2 3, ,x x x ), then exterior differentiation operator translates it 

into 3-form in R
3
 

1 2 3d cdx dx dxψ = ∧ ∧ɶ ɶ ɶ ɶ                        (A23) 

Obtained 3-form characterizes by value 

31 2

1 2 3

bb b
c

x x x

∂∂ ∂
= + +

∂ ∂ ∂
                        (A24) 

analogous to a divergence ( )c div b=
�

 in vector analyze. 

3. Formalism of Integration 

Forms are connected with an elementary volume in the n-

dimension manifold. For the volume form we can change any 

n-form. This choice follows from problem conditions. Two-

dimension square is a singular volume of three-dimension 

space. 

Integration of the function on the manifold essentially is 

multiplication of a function value on volume element and 

summation of obtained numbers. 

If ωɶ  is n-form, defined in area U of n-dimension manifold 

M with coordinates { }1 2, ,..., nx x x , then exists such function 

1 2( , ,..., )nf x x x , that 
1 ... nfdx dxω = ∧ ∧ɶ ɶɶ , and integral of ωɶ  

on U by definition is 

1 1

1 1

( ,..., ) ...

( ,..., ) ...

n n

n n

f x x dx dx

f x x dx dx

ω ≡ ≡

≡ ∧ ∧

∫ ∫

∫

ɶ

ɶ ɶ
               (A25) 

In two-dimension case, i.e. on manifold ( ,λ µ ), in 

differential forms terms integral will be written as 
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( , ) ( , )f d d f d dω λ µ λ µ λ µ λ µ≡ ≡ ∧∫ ∫ ∫ ɶ ɶɶ   (A26) 

Variables change, or transfer to new coordinates (x, y), 

makes in according to exterior differentiation rules for the 

function compositions: 

( , )

( , )

d d x y dx dy
x y

d d x y dx dy
x y

λ λλ λ

µ µµ µ

∂ ∂= = +
∂ ∂
∂ ∂= = +
∂ ∂

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

                  (A27) 

Taking into account antisymmetry of the exterior 

multiplication operator Λ: 

, 0dx dy dy dx dx dx dy dyΛ = − Λ Λ = Λ =ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ , we’ll receive 

transfer from «square» d dλ µΛɶ ɶ  to dx dyΛɶ ɶ . Result is 

( , )

( , )

d d dx dy dx dy
x y x y

dx dy
x y

λ λ µ µλ µ

λ µ

   ∂ ∂ ∂ ∂Λ = + Λ + =   ∂ ∂ ∂ ∂   

∂= Λ
∂

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ

  (A28) 

Thus, in the differential form calculus integrals of function 

f on variables ,λ µ  and one on variables x, y are connected 

by traditional way, through Jacobean 
( , )

( , )x y

λ µ∂
∂

. 

At the same time differential form apparatus using is 

sensitive to choose of coordinate system. A sign of ω∫ ɶ , or a 

sign of Jacobean, causes by starting basis. In other words, 

integral of form ωɶ  depends on coordinate system orientation 

only. 

According to common point of view, we must choose basis 

type: « right » or « left ». 

Traditional vector integral equations have respective 

formulas in exterior differential form calculus. For example, 

well-known equation 

( ) ( )
F F

a dl rot a dS
∂

⋅ = ⋅∫ ∫
� �� �

                   (A29) 

corresponds to 

F F

dϕ ϕ
∂

=∫ ∫ ɶ                                   (A30) 

Formula 

1 2 3
( ) ( )

G G

b dS div b dx dx dx
∂

⋅ =∫ ∫
� ��

                  (A31) 

looks like 

G G

dψ ψ
∂

=∫ ∫ ɶ                                (A32) 

Traditional vectors in (A29) and (A31) replace by form 

calculus vectors in (A30), (A32). Latter’s components are 

functions of three variables (defined in R
3
). 
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