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Abstract: The quantum mechanical model of deformable and polarizable atoms has been developed for the research of the 

elastic properties of rare-gas crystals Ne, Ar, Kr, and Xe over a wide range of pressure. It is shown that it is impossible to 

reproduce the observed deviation from the Cauchy relation �(�) for Ne, Kr, Xe adequately taking into account the many-body 

interaction only. The individual dependence �(�) for each of the crystals is the result of two competing interactions, namely, 

the many-body interaction and the electron-phonon interaction, which manifests itself in a quadrupole deformation of atoms 

electron shells due to displacements of the nuclei. The contributions of these interactions to Ne, Kr, and Xe compensated each 

other with high precision that provides δ with a positive value which is weakly dependent on pressure. In case of Ar the many-

body interaction prevails. The compressed Ar has a negative deviation from the Cauchy relation the absolute value of which 

increases with the rise of pressure. The consideration of the quadrupole deformation is of great importance for heavy rare-gas 

crystals Kr and Xe. The represented ab initio calculated dependences of Birch elastic moduli ���(�) and �(�) are in good 

agreement with the experiment. 

Keywords: Rare-Gas Crystals, High Pressure, Many-Body Interaction,  

Quadrupole Deformation of the Atomic Electron Shells 

 

1. Introduction 

Rare-gas crystals (RGS) are the simplest molecular 

crystals, that is why they are widely used as model objects 

when the theory is being tested. A large number of theoretical 

[1-9] and experimental [10-17] investigation of the elastic 

properties of RGS at high pressure are connected with their 

application as transmitting media in the diamond-anvil cells 

DAC [18]). 

In 2009 the article by Sasaki et al. [10] was published. 

This article and other ones [11-13] has finished the series of 

the particularly accurate measurements elastic properties of 

RGS under pressure. Shimizu et al. [12] have determined a 

large deviation from the Cauchy relation (CR)  for Ar in 

the range of pressures up to 70 GPa. These measurements 

have proved the fact that interatomic interaction in face-

centered cubic rare-gas crystals cannot be described within 

the framework of any models of the two-body potentials with 

the central interaction of atoms. 

Usually, for crystals with any type of chemical bond 

(metals, dielectrics, semiconductors) the main reason for the 

deviation from the CR is considered to be non-pair 

interactions in crystals. Many attempts have been made to 

reach an agreement with experiment for theoretical values δ 

calculated in the framework of phenomenological, as well as 

microscopic descriptions of the non-pair forces (see, e.g., 19, 

1-4, 7, and references therein). 

Within the framework of different models of the three-

body interaction in RGS it is possible to successfully 

describe fcc-hcp transition [20, 21], equation of state [22, 1], 

elastic properties including the negative deviation from the 

Cauchy relation in RGS in the wide range of pressure [1-4, 7, 

and others]. In the work [10] Sasaki et al. sum up and discuss 

how well the nowadays theory describes the experiment 

concerning the deviation from Cauchy relation. In the 

δ
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experiment the sequence  for δ is 

observed at zero pressure only. With the rise of pressure, as 

experiment [10] showed, an individual dependence of δ on 

pressure can be observed, namely at 

р ≥ 10 GPa. Sasaki et al. [10] mention that ab initio 

calculations in the density functional theory (DFT) [1] do not 

even qualitatively reproduce the deviation from the Cauchy 

relation . These calculations for δ show a negative 

pressure dependence for all RGS (Ne, Ar, Kr, Xe) with the 

coefficient directly proportional to the atomic weight of the 

elements. 

This circumstance is associated with the fact that, apart 

from the many-body interactions, the violation of the Cauchy 

relation, as was shown for the first time by Herpin [23], is 

caused by the interactions related to the deformation of 

electron shells of the atoms. Herpin obtained the energy of 

atoms’ interaction in the form of a series in powers of the 

distances between the pairs of the ions. The successive terms 

of this series are dipole, quadrupole, etc. bonds of the ions. 

Only the quadrupole terms lead to the violation of the CR for 

the crystals where each atom is the centre of the symmetry. 

In this work, all the interactions which lead to the violation 

of the CR are researched ab initio within the framework of 

the theory of lattice dynamics with deformable atoms, which 

was developed by K. B. Tolpygo for ionic crystals [24, 25] 

and the rare-gas crystals [26]. 

In the quantum-mechanical model of polarizable and 

deformable ions by K. B. Tolpygo the crystal is considered as 

a set of N-point ions of Z valency (nucleus and internal 

electrons) and deformable shells, each of which consists of Z 

valent electrons interacting not only with ions but also among 

theirselves. The similar shell model was brought forward by 

Dick and Overhauser [27] in 1958 and applied to homeopolar 

crystals by Cochran [28] in 1959. In this model, the atom was 

considered as consisting of a rigid core and rigid shell bound 

by quasi-elastic forces. The minimum quantity of parameters 

(for the elementary substances consisting of the same atoms) 

was four. They were defined from the comparison of the 

theory with the experimentally observed phonon spectrum. 

In early works [26, 29, 30] (classical version of the model 

by K. B. Tolpygo) the parameters of the adiabatic potential 

were not calculated and could be found due to different 

experiments only. But these works have the common 

quantum-mechanical basis: the method implementing the 

adiabatic approximation and giving the general form of the 

adiabatic potential which parameters are expressed through 

the definite matrix elements of Hamiltonian of the electron 

subsystem on the atomic functions was offered. This research 

sets the problem to generalize the obtained results and to 

come to the wide range of questions which concern 

characteristics of the RGC lattice under pressure from the 

common point of view. Below, it will be shown that in this 

model, within a unified approach, allows one to obtain both 

the three-body short-range interaction and electron-phonon 

interaction related to the deformation of the atoms’ electron 

shell due to displacement of the nuclei. To make establish the 

nature and ratio of the forces, which form the elastic 

properties of the RGC under high pressures we use ab initio 

calculations dependencies of the functional dependencies and 

the values of the most important parameters which have been 

obtained by K. B. Tolpygo. As far as this system is many-

electron, it is reasonable to choose the Hatree-Fock method 

as the basic analysis one. It is clearly formulated, precise 

enough and not very difficult for implementing on the 

modern computers [31]. 

The work is organized as follows. The method of the 

adiabatic potential of crystals with closed deformable shells 

and approximations which are in his basis is expounded in 

part 2. In part 3 the many-body interatomic potential was 

obtained and the simple form of the short-range three-body 

repulsive potential was offered. In part 4 expressions for 

Birch elastic moduli and the Cauchy relation with a glance at 

the three-body interaction and deformation of the electron 

shells are obtained. The calculation of the elastic properties, 

the comparison of our results for Ne, Ar, Kr, Xe with the 

experiment and other theories in the wide range of pressure 

are represented in part 5. In conclusions we summarize and 

discuss our results. 

2. Deformation of Electron Shells in 

Lattice Vibrations and the Adiabatic 

Potential of the Crystal 

Following the results obtained in [26, 32, 33], we derived 

the potential energy U of the lattice from the average 

Hamiltonian of the electron subsystem . For this purpose, 

we will minimize the Hamiltonian  with respect to the 

parameters , describing the weak deformation of the 

electron wave function . Now, we define the weakly 

deformed (owing to the interatomic interaction and the 

displacement of the nuclei) “ground” state of the electrons 

               (1) 

where l is the number of the cell (atom),  is the ground 

state of the l-th individual atom,  is the i-th excited state 

of the l-th individual atom, and, . Then, we define the 

system of correlated doubly excited states 

                             (2) 

In state (2), the atoms l and  are excited into the levels i 

and j, respectively, and the other atoms  are weakly 

deformed, as it is described by the function  (1). The 

state of the crystal will be sought in the form of a 

superposition of states (1) and (2) 
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                        (3) 

Now, we write the average Hamiltonian in the form 

                                  (4) 

and substitute the function  in the above formula from 

expression (3). Next, by minimizing the average Hamiltonian 

with respect to the coefficients  for arbitrary fixed 

displacements of the nuclei , arbitrary dipole moments of 

all atoms , and, in addition to [26], for arbitrary 

quadrupole  moments 

      (5) 

we express the relative minimum of the potential energy 

 in the function of all the quantities 

. Then, the equations of lattice vibrations can 

be written as 

               (6) 

Expression for U we will obtain in the form of (for more 

details see works [26, 32]) 
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    (7) 

Here, the first four terms describe the deformation of 

electron shells (  are the coefficients of the dipole 

and quadrupole polarizabilities). The next three terms 

describe the van der Waals forces, and K characterizes the 

Coulomb (in the classical sense) interaction of all the dipoles 

and quadrupoles with each other. Finally, the short-range 

forces are determined by the formula 

 (8) 

Here,  means that it is necessary to iterate over all 

nine combinations of the indices α, β (although among all the 

nine components , only five components are 

independent);  denotes the summation over the nearest 

neighbors; 0 0
,  and ,l l l l

i i
E Eψ ψ are wave function and energies

 

of the ground and i-th excited state of the l-atom.
 

 

 (9) 

The matrix elements of the dipole and quadrupole 

moments are given by the expressions: 

 

                 (10) 

,       (11) 

where  is interchange operator of the electrons . 
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orbitals of individual atoms sl  and the orthogonalizing 

matrix  has the form 

                 (12) 

where  is the interatomic interaction energy without 

regard for the orthogonalization of the orbitals of the nearest 

neighbor atoms,  is the orthogonalization correction 

linear in P, and  is the orthogonalization correction 

quadratic in P. In expression (12) for the energy , the 

energy E(0) is given by 

        (13) 

Here, the prime of the sum sign denotes that m ≠ l; further 

in the text, l ≠ l' ≠ m and l ≠ l' ≠ m ≠ m'. 

The first term in expression (13) is the sum of energies of 

individual atoms, which does not depend on the interatomic 

distances in the crystal. It can be included in the energy 

origin. The second term in expression (13) consists of two-

center integrals, i.e., the matrix elements of the potential of 

the electron-ion interaction , the potential of the neutral 

individual atom , and the potential of the exchange 

interatomic interaction  constructed using the atomic 

orbitals . 

The orthogonalization correction to the crystal energy, 

which is defined by expression (12) and is linear in Р, has the 

form 

         (14) 

where  is the energy of the Hartree-Fock orbital 

. 

The orthogonalization correction to the crystal energy, 

which is defined by expression (12) and is quadratic in Р, has 

the form 

 (15) 

We analyze the behavior of different terms in expressions 
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calculation performed in [36] demonstrated that the 

expansion in S for the energy  (13) begins with . 

The expansion of the elements of the matrix  

in powers of the matrix of overlap integrals S, has the form 
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Then, expression (12) for the energy  for electrons of 

the crystal can be written as the expansion in powers of the 

overlap integrals  
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The correction W2 contains only the three-center integrals 

and corresponds to the two-body interactions in the crystal. 

The term W3 is the third order correction in S, which contains 

the three-center integrals 
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mixed type 

      (20) 

Similarly to ,  (for more details see [34, 35]). 

The results of the calculations of the two-center integrals 

with the use of the tables presented in [37] are reported in our 

recent paper [38]. The regularities revealed in these 

calculations are conveniently used in approximating the 

three-center and four-center integrals whose dimensionality 

cannot be reduced according to the procedure proposed in 

[36]. In work [35] the approximate form of the three-body 

interaction in case when atoms  create the equilateral 

triangle is obtained: 

 

              (21) 

where  is the largest overlap integral between the 

outer р-orbital of the electrons. 

In Fig. 1 [22, 39-41] we present our short-range potentials, 

i.e., the two-body potential  and the 

three-body potential , as well as the best empirical 

potentials as a function of the interatomic distance 

, where  is one-half the cube edge (see. 

[22] and references therein). 

 

Fig. 1. Interatomic short-range potentials in Ne. is 

the present calculation;  is the present calculation of the three-body 

potential (see (21)); is the pair potential;  is 

the short-range part of the Aziz-Slaman pair potential [39, 40];  is the 

short-range part of the Slater-Kirkwood three-body potential 

 [22, 41];  is the total 

potential . 

As can be seen from Fig. 1, our pair potential 

, calculated accurate to  agrees 

fairly well with the best empirical Aziz-Slaman pair potential 

 [39, 40]. The three-body potential  (21) 

calculated by us and Slater-Kirkwood three-body potential 

 [41] and also 

corresponding sums are in good agreement with each other. 
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Atoms 
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  (22) 

Here, we introduce the following dimensionless 

parameters of the short-range forces between the nearest 

neighbors. 

    (23) 

the parameters of the short-range forces between the second 

neighbors  and the van der Waals parameter В are as 

follows: 

;                (24) 

Three-body corrections  and , which lead to 

noncentricity of the pair interaction, are obtained on the basis 

of the expression for  (21), have the form: 

     (25) 

,      (26) 

where  is a distance between the nearest neighbors, 

and , е is the elementary charge, , ,  are 

expressed through the first and second derivatives of the 

overlap integral  with respect to argument modulus. 

The expressions of these functions have the following form: 

, , 

 

Similarly to , , . 

The three-body interaction parameter can be represented in 

the form: 

 (27) 

The quadrupole interaction parameters  and 

dimensionless polarizability  have the form [43]: 

      (28) 

Here, W and U are expressed through the single different 

from zero tensor component  (9) 

               (29) 

In this case, the deviation from the Cauchy relation, which 

is written through the Birch moduli, will not contain the pair 

interaction parameters ( ): 

 (30) 

 is the deviation from the CR only due to the three-body 

interaction. In terms of the expressions (25)-(27) and the fact 

that overlap integral of the outer p-orbitals is  we 

obtain  for all RGS under any 

pressure. The quadrupole interaction parameters, we have 

 by definition (28). Thus, it is difficult to make 

an estimate of value and sign , and also it is difficult to 

make an estimate of the general meaning of deviation from 

the Cauchy relation . The explicit calculation for each 

crystal series Ne-Xe will give the individual dependence 

. It will allow defining the nature and correlation of 

forces forming the elastic properties under high pressures. 

5. The Calculation of the Elastic 

Properties of RGC Under Pressure 

It is seen from (28), (29), that compression dependence of 

 are determined by the matrix element

, which can be expressed in terms of the 

matrix elements of the one-electron wave functions: 
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Following, we accept [33, 43] 

                         (31) 

where  is a distance between atoms  and  (for 

nearest neighbors, ),  is some coefficient 

which is weakly dependent on pressure [48]. 

Let us find parameters  and  by formulas (28), (29), 

using functional dependence (31) 

                        (32) 

                         (33) 

where  are dimensionless coefficients containing 

dimensionless polarizability  which weakly depends on 

compression. 

We set . In this case, we neglect terms , as 

far as at consideration of the many-body interaction (17) we 

have used the term . Then the deviation from the CR due 

to the quadrupole deformation of the electron shell  will 

take a form 

 

where  and  are the parameter of the quadrupole 

deformation of atomic electron shells and the overlap integral 

for  accordingly. 

Till now, the theory has not included fitting parameters 

since we could calculate all parameters of the two-body 

interaction ( ) and the three-body interaction 

( ) with sufficient accuracy individually for 

each crystal of the series Ne-Xe. We found the functional 

dependence for the quadrupole parameter  but it seems to 

be impossible to determine its absolute value now (i.e., 

coefficients ) based on formulas (28), (29), (9). 

Therefore, we suggest to take the initial value of the 

parameter  from experimental . 

          (34) 

In the case of lack of experimental values of , we can 

use exactly calculated parameter  and accept . 

Figure 2 (a, b, c, d) shows the three-body interaction 

parameter  and the quadrupole parameter  for variation 

in  (31), depending on compression  

( , where  is volume as ), for Ne, Ar, 

Kr, Xe accordingly. The best possible fit with  comes out 

when  for Xe and  for Kr. In case of light 

RGC such kind of the best agreement of the calculated  

and  cannot be observed. For the further calculations 

we choose =0.5 for Ne and =0.1 for Ar. 
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Fig. 2. Dependence of the three-body interaction parameter  and the 

quadrupole interaction parameter  on different coefficients  from 

compression for (a) Ne, (b) Ar, (c) Kr and (d) Xe. Filled triangle, circle, 

rhomb, pentagon and square are calculations the quadrupole parameters 

 with coefficients = 0.6, 0.5, 0.2, 01, and 0.45 (31), accordingly; the 

open square is the three-body interaction parameter  (27); dotted line is 

calculation from formula ; stars is calculation of  from 

formula (34) for  [10]. 

The parameters which are necessary for the calculation of 

the elastic moduli  (22) and the deviation from Cauchi 

relation (30) are presented in the Table (see Appendix) for 

the series Ne-Xe. For comparison we give the pair interaction 

parameters in the Table which are defined with expressions 

(23)-(24) (see also [46]). As the Table shows the quadrupole 

parameters  and three-body parameters  have the same 

order, but both  for Ne and  for other 

crystals. The comparative role of the tree-body interaction is 

growing in the series Ne-Xe and is 0,5%, 2,6%, 4,7%, 7,4%, 

accordingly. In work [49] the contribution of the three-body 

interaction to the cohesive energy for Xe is 7% that is in 

good agreement with our calculations. 

Birch elastic moduli  (22) can be represented as 

 

 

 

   (35) 

where  are the Birch elastic moduli with pair interaction 

potentials previously calculated by us in the models M1, M3 

and M5 [46] (see also Fig. 1). In the model M5 the short-

range part of the repulsive potential is calculated with respect 

to the accurate formula for  (18) , in 

other models М3 and М1  it is calculated in 

approximation . Moreover, in models M3 and M5 van der 

Waals constant  is predetermined and 

“the second” neighbors are taken into account in the 

calculations of the short-range forces [46]. In the simplest 

model М1  only the first neighbors are taken into 

account. 

As it is seen from the Table and expression (35) the 

contributions of the elastic moduli  and are 

compensated to a large extent, and we have the elastic 

modulus . The main difference of  from  

is defined by the contribution of the three-body interaction of 

 which is positive. The contribution to shear modulus 

 due to the quadrupole deformation of the electron shells 

 and it has considerably bigger value than  

( ). This analysis is true for all RGC at any 

pressure. But the comparative value of contributions ,  

is growing in the series Ne, Ar, Kr, Xe [34, 43, 48, 50]. The 

total contributions of the three-body and the quadrupole 

interactions in the elastic moduli  are represented in the 

following figures the most visually. 

In Figures 3 (a, b, c, d) – 6 (a, b, c, d) show the Birch 

elastic moduli and deviations from the Cauchy relation for 

Ne, Ar, Kr, Xe. The agreement of the theory and the 

experiment for elastic moduli depends on the model of 

calculation of . M1 model fits best as a basic one for the 

calculation of  in the crystals Ar, Kr, Xe. The inclusion 

of the contributions and  in the calculation improves 

the agreement between theory and the experiment. The 

elastic moduli  calculated in the M3 model are in the best 

agreement with the experiment for Xe; this agreement 

becomes somewhat worse when the three-body interaction 

and the quadrupole deformation of the atomic electron shells 

are taken into account. 

The elastic moduli  and  are presented in a wide 

range of pressure before the metallization region (see Figure 

3 b, c – 6 b, c). Our results obtained for  and the results 

of other authors (ab initio calculations in DFT [1], and in 

calculations in the embedded atom model (EAM) with 

empirical potentials [2]) are in good agreement at moderate 

pressures. 

As can be seen from Figs. 4 b – 6 b for the series Ar-Xe 

the calculation in EAM model is in the interval between our 

results obtained in the models M1 and M3. Our calculations 
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of  with consideration for the deformation of the 

electron shells  and the three-body interaction of  

for Ne, Kr и Xe lie below than the calculations of . in 

DFT and the empirical model EAM with consideration for 

the three-body interaction only. But namely the consideration 

of  makes  at 75 GPa, that fits the transition of 

Xe from fcc into hcp phase [51]. 

The Figures 3 d – 6 d present the pressure dependence 

 for the series Ne-Xe. In case of Ne our calculations of 

 in different approximations lay between the 

calculations of  in DFT and EAM. The consideration of 

the deformation of the electron shells for Ne gives the 

positive value  in agreement with the experiment. As 

can be seen from Figs 4 our calculations of  are 

very close to the many-body calculations of , in 

particular, to the result which have been obtained in the work 

[3]. In case of Ar for the adequate description of the 

dependence of the consideration of the many-body 

interaction only is enough. 

 

 

Fig. 3. Pressure dependencies of Birch elastic moduli [(a) , (b) , (c) ] and deviations from the Cauchy relation  (d) for Ne. 

(a–c) semi-filled symbols are calculations of  in the model M3 [46]; dotted line is calculation of  in the model M5 [46]; filled symbols are 

calculations of  in this work inclusion of the three-body and quadrupole interactions ; dashed-dot-dot line is calculation of 

; open symbols are experiment [13]; dashed-dot line and open pentagon are calculations in EAM [2] and in DFT [1], accordingly. 

(d) Filled square are calculations with inclusion of the three-body and quadrupole interactions of  at , =0,5; open square is 

calculation taking into account only the three-body interaction ; filled stars are average experimental data [10]; open stars are the experiments [13]. 

The arrows indicate the calculated metallization pressure  [52, 53]. 
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Fig. 4. Pressure dependencies of Birch elastic moduli [(a) ijB , (b) 12B , (c) 44B ] and deviations from the Cauchy relation (d) for Ar. (a–c) semi-filled symbols 

are calculations of 0 ( 3)ijB M  in the model M3 [46]; dotted line is calculation of 0

12
( 1)B M

 
in the model M1 [46]; filled symbols are calculations of ijB

 
in this 

work inclusion of the three-body and quadrupole interactions 0 ( 3) t q

ij ij ij ijB B M B B= + + ; dashed-dot-dot line is calculation of 0

12 12 12 12
( 1) t qB B M B B= + + ; open 

symbols are experiment [12]; dashed-dot line and open pentagon are calculations in EAM [2] and in DFT [1], accordingly. (d) Filled square are calculations 

with inclusion of the three-body and quadrupole interactions of t qδ δ δ= +  at 0 0

expqV V= , 
i

A =0,1; open square is calculation taking into account only the 

three-body interaction
 

0qδ = ; filled stars are average experimental data [12]. The arrows indicate the calculated metallization pressure 510mp =  [21]. 
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Fig. 5. Pressure dependencies of Birch elastic moduli [(a) ijB , (b) 12B , (c) 44B ] and deviations from the Cauchy relation (d) for Kr. (a–c) semi-filled symbols 

are calculations of 0 ( 3)ijB M  in the model M3 [46]; dotted line is calculation of 0

12
( 1)B M

 
in the model M1 [46]; filled symbols are calculations of ijB

 
in this 

work inclusion of the three-body and quadrupole interactions 0 ( 3) t q

ij ij ij ijB B M B B= + + ; dashed-dot-dot line is calculation of 0

12 12 12 12
( 1) t qB B M B B= + + ; open 

symbols are experiment [11]; dashed-dot line and open pentagon are calculations in EAM [2] and in DFT [1], accordingly. (d) Filled square are calculations 

with inclusion of the three-body and quadrupole interactions of t qδ δ δ= +  at 0 0

expqV V= , 
i

A =0,6; open square is calculation taking into account only the 

three-body interaction
 

0qδ = ; filled stars are average experimental data [10]; open stars are the experiments [11]. The arrows indicate the calculated 

metallization pressure 310 GPamp =  [21]. 

 

 

Fig. 6. Pressure dependencies of Birch elastic moduli [(a) ijB , (b) 12B , (c) 44B ] and deviations from the Cauchy relation (d) for Xe. (a–c) semi-filled symbols 

are calculations of 0 ( 3)ijB M  in the model M3 [46]; dotted line is calculation of 0

12
( 1)B M

 
in the model M1 [46]; filled symbols are calculations of ijB

 
in this 

work inclusion of the three-body and quadrupole interactions 0 ( 3) t q

ij ij ij ijB B M B B= + + ; dashed-dot-dot line is calculation of 0

12 12 12 12
( 1) t qB B M B B= + + ; open 

symbols are experiment [10]; dashed-dot line and open pentagon are calculations in EAM [2] and in DFT [1], accordingly. (d) Filled square are calculations 

with inclusion of the three-body and quadrupole interactions of t qδ δ δ= +  at 0 0

expqV V= , 
i

A =0,45; open square is calculation taking into account only the 

three-body interaction
 

0qδ = ; open stars are the experiments [10]. The arrows indicate the average metallization pressure pm from 121 to 138 GPa [51, 54]. 
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The Figures 5 d – 6 d present the pressure dependence of 

 on for heavy RGC. Our calculations are in good 

agreement with the experimental data. In Kr and Xe the 

obtained value  has the weak dependence on pressure that 

makes our results substantially different from the results of 

other authors [1, 2]. The results of ab initio calculation in 

DFT [1] and EAM empirical model [2] are close to the 

experiment only when р=0, with the rise of pressure the 

distinction of kind can be observed.The proximity of the 

present calculations of  at different  and  to 

 for the whole series RGC demonstrates the stability of 

the model and the controllability of made approximations 

6. Conclusions 

The presented results (see also [46]) of the calculations of 

the Birch moduli  have demonstrated that, for their 

adequate description, it is sufficient to use a semiempirical 

effective pair interaction potential (  in model М3). The 

model M3 contains adjustable parameters А and β in the 

predefined van der Waals constant  which 

make it possible to effectively take into account the many-

body interaction, deformation of the atomic electron shells, 

and other effects. In this work, we have performed the ab 

initio investigation of a many-body interaction in the short-

range repulsive potential within the framework of the 

dynamical theory of crystal lattices with deformable atoms 

(the ab initio version of the Tolpygo model). As follows from 

the calculation of the pressure dependences of the Birch 

modulus  for Ar, Kr and Xe within the M1 model 

(without adjustable parameters), we can successfully use the 

ab initio pair interaction potential  defined by 

expressions (13), (18) as well as the ab initio three-body 

interaction potential  (21) proposed here instead of the 

semi empirical effective pair interaction potential [46]. This 

is understandable because the ab initio interaction potentials 

 are in good agreement with the corresponding empirical 

potentials. In the Fig. 1 this agreement is shown for Ne. The 

simple form for the three-body potential obtained due to the 

calculation of the accurate expression  (19) [37] allows to 

individually calculate the parameters of the three-body 

interaction through the overlap integrals of the external p-

electrons the atomic orbitals.  

It can be seen from Fig. 7 a for  the series Ne-Xe the 

consideration of the three-body interaction only leads to the 

relation , similar to the calculations 

in DFT [1] and does not reproduce the observed dependence 

. As it is presented in this work (see 

Fig. 7 b) for the adequate description of the observed 

dependence  in Ne, Kr and Xe it is also necessary to 

take into account the deformation of the electron shells in the 

quadrupole approximation. The dependence of the deviation 

from the Cauchy relation on the pressure is the result of two 

competing interactions, namely the many-body and 

electron–phonon interactions, which manifests itself in the 

deformation of the atoms electron shells due to 

displacements of the nuclei. In case of Ne, Kr and Xe the 

contributions of these interactions in considerable measure 

are compensated that provides the weak dependence of  

on pressure. The quantitative analysis of the contributions the 

three-body  and the electron-phonon  interactions to 

the deviation from the Cauchy relation showed the 

importance of the consideration of the information of the 

electron shells not only for the heavy RGC [48] but also for 

the light Ne. Furthermore, for Ne, we have  which 

provides a positive value of  in contrast to Xe, where we 

have  which leads to the total negative value of δ in 

agreement with the experiment [10]. 

In our opinion to build the dynamic theory of crystal 

lattices in the model of the deformable atoms is of principal 

importance even when  though in this case the 

electron-phonon interaction is small therefore the 

deformation of the electron shells is also small. The 

smallness of the interatomic interaction energy for the closed 

spherically symmetrical shells leads to that thing that atoms 

deform each other weakly. But it does not give grounds to 

ignore such a deformation since only this deformation is 

responsible for the coupling in the crystal that can be seen 

from the example of van der Waals. Such kind interaction, as 

it has been mentioned in the introduction, takes place in the 

shell model [27, 28, 55].  

A somewhat different model is sometimes used, namely, 

the “breathing shell” model, in which the dynamic variables 

are the shell radii, which can elastically vary during the 

nuclear vibrations [56]. In our opinion, this model introduces 

nothing new in principle since the “breathing shell”, which 

retains the spherical symmetry, cannot originate long-range 

forces.  

The previously suggested approximation of weakly (as a 

dipole) deformable atoms leads to the expressions for the 

adiabatic potential which are formally equivalent of the shell 

model. In this regard the shell model gets the quantum-

mechanical justification (as Cochran notes in the work [28]). 

However, the sense of parameters turns out another, namely, 

the fundamental short-range action is performed between 

undeformable atoms (terms ), the weaker forces are 

described by terms  and , and the weakest 

forces are described by terms , where  is the 

displacement of atom i, and  it is dipole moment. This 

relation is actually a result of the comparison of the 

experiment with the phonon spectra. If to take into account 

the quadrupole function then it is a minor part in comparison 

with the dipole deformation and gives lesser corrections to 

the phonon energy. The quadrupole deformation cannot be 

described within the framework of cores and shells model. 
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Fig. 7. Pressure dependence of the deviation from the Cauchy relation for Ne, Ar, Kr и Xe. (а) Filled symbols are calculations of ( ) ( )tp pδ δ=  without 

consideration of the quadrupole interaction 0
q

δ = ; dashed lines with semi-filled symbols are ab initio DFT calculations [1]. (b) filled symbols are our 

calculations of δ  with inclusion of the three-body and quadrupole interactions ( ) ( ) ( )t qp p pδ δ δ= + , open symbols are experiment for Ne [13], Ar [12], 

Kr [11] and Xe [10]. The other notations are as in the figure 7 a. 

In the series of papers [57-59] we considered nonadiabatic 

effects, i.e., the electron-phonon interaction induced by the 

deformation of electron shells of the atoms in the dipole 

approximation. This corresponds to the inclusion of the lower 

order terms in the nonadiabaticity parameter. As is known 

[19] these terms do not contribut to the second-order elastic 

constants. The next order, i.e., the consideration of the 

electron–phonon interaction induced by the deformation of 

electron shells of the atoms in the quadrupole approximation 

leads to the appearance of the corresponding terms in 

expressions (35) for the elastic moduli. These terms make 

smaller contributions in comparison with those of the pair 

interaction potential, but they are comparable to the 

contribution of the three-body interaction (the parameters 

 are of the same order of magnitude). 

We have emphasized that the parameter δ does not depend 

on the parameters of the two-body potential. This makes it 

indispensable for the ab initio verification of the role of the 

many-body interaction and the effects of the deformation of 

atomic electron shells. 

The research of the CR violation gave us an opportunity to 

recognize the nature and the correlation of forces which form 

the elastic properties of crystals under high pressures.  

Thus, it has been shown that the violation of the Cauchy 

relation for rare-gas crystals is caused by two factors: first, 

the three-body interaction forces associated with the overlap 

of electron shells of the atoms in the crystal, and second, the 

electron-phonon interaction related to the quadrupole 

deformation of electron shells of the atoms due to the 

displacement of the nuclei. 

In conclusion we note that obtained in this work 

parameters can be confidently used in subsequent 

calculations of the dynamic matrix for the determination of 

the phonon energy, thermodynamic quantities, and other 

properties of rare-gas crystals at high pressures. 

Appendix 

Table. Dimensionless parameters of short-range pair interaction H0, G0, F, and E, three-body interaction δG, δH, Rt, and Vt, and electron-phonon interaction 

Vq as functions of the compression . 

            

Ne: Vq
0 =Vq

exp=0,012 (p=4,6954), Ai=0,5 

0 0.126 46.885 -1.280 9.190 -0.130 1.000 0.050 -0.024 0.010 -0.028 0.092 

0.1 0.396 53.957 -1.860 13.330 -0.200 1.464 0.084 -0.041 0.018 -0.046 0.145 

0.2 0.998 63.132 -2.830 20.100 -0.300 2.210 0.146 -0.072 0.032 -0.080 0.237 

0.3 2.402 75.435 -4.530 31.730 -0.480 3.510 0.261 -0.132 0.060 -0.143 0.401 

0.4 5.911 92.648 -7.720 52.930 -0.830 5.920 0.487 -0.252 0.119 -0.266 0.713 

0.5 15.644 118.143 -14.22 94.470 -1.540 10.850 0.957 -0.510 0.250 -0.521 1.350 

0.55 26.589 135.963 -20.00 130.189 -2.195 15.299 1.371 -0.745 0.372 -0.745 1.914 

0.6 47.049 159.083 -28.98 183.950 -3.240 22.330 1.995 -1.107 0.567 -1.082 2.781 

0.65 87.680 190.084 -43.47 267.700 -5.005 34.054 2.954 -1.682 0.884 -1.596 4.159 

0.7 174.86 233.457 -68.03 403.930 -8.190 54.940 4.448 -2.613 1.417 -2.392 6.444 

0.72 236.06 255.952 -82.533 482.004 -10.180 67.809 5.262 -3.137 1.725 -2.823 7.768 

 and t qV V

u

u
,p

GPa

( ),K p

GPa
2

0 10H ⋅⋅⋅⋅ 2
0 10G ⋅⋅⋅⋅ 2

10F ⋅⋅⋅⋅ 2
10E ⋅⋅⋅⋅ 2

10Gδδδδ ⋅⋅⋅⋅ 2
10Hδδδδ ⋅⋅⋅⋅ 2

10tR ⋅⋅⋅⋅ 2
10tV ⋅⋅⋅⋅ 2

10qV ⋅⋅⋅⋅
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0.74 324.01 282.534 -101.09 579.892 -12.830 84.842 6.237 -3.780 2.110 -3.339 9.437 

0.76 453.33 314.355 -125.13 704.132 -16.432 107.79 7.402 -4.571 2.594 -3.953 11.563 

Ar: Vq
0 =Vq

exp =0.0286 (p=1.338466), Ai =0.1 

0 0.016 23.197 -4.700 38.580 -0.030 0.420 1.012 -0.503 0.221 -0.564 0.141 

0.1 0.507 26.696 -7.360 57.600 -0.070 0.820 1.633 -0.823 0.370 -0.907 0.216 

0.2 1.650 31.236 -11.810 88.130 -0.150 1.650 2.692 -1.384 0.638 -1.491 0.343 

0.3 4.358 37.323 -19.540 139.190 -0.320 3.390 4.528 -2.385 1.136 -2.498 0.563 

0.4 11.127 45.839 -33.790 229.370 -0.750 7.380 7.763 -4.226 2.091 -4.270 0.968 

0.5 29.705 58.454 -61.980 400.800 -1.880 17.290 13.490 -7.680 3.979 -7.402 1.751 

0.55 50.404 67.270 -86.504 545.728 -3.108 27.480 17.798 -10.435 5.556 -9.758 2.410 

0.6 88.875 78.709 -123.97 762.540 -5.300 45.130 23.397 -14.217 7.807 -12.819 3.376 

0.65 165.051 94.047 -183.67 1100.93 -9.442 77.316 30.441 -19.352 11.012 -16.680 4.824 

0.7 328.948 115.507 -284.19 1658.95 -17.790 140.00 38.778 -26.128 15.501 -21.254 7.048 

0.72 444.701 126.637 -343.65 1984.54 -23.387 181.07 42.178 -29.306 17.720 -23.173 8.258 

0.74 612.168 139.789 -419.99 2399.33 -31.176 237.44 45.489 -32.700 20.185 -25.031 9.718 

Kr: Vq
0 =Vq

exp =0.029 (p=0.6163), Ai =0.6 

0 0.003 18.138 -6.700 55.500 -0.004 0.320 2.616 -1.297 0.579 -1.437 1.102 

0.1 0.543 20.874 -10.500 80.840 -0.030 0.760 4.064 -2.063 0.946 -2.234 1.687 

0.2 1.749 24.423 -16.640 119.350 -0.110 1.710 6.387 -3.336 1.579 -3.512 2.650 

0.3 4.468 29.183 -26.830 179.630 -0.300 3.770 10.154 -5.484 2.693 -5.582 4.286 

0.4 10.870 35.842 -44.420 277.880 -0.790 8.400 14.549 -9.136 4.680 -8.913 7.181 

0.5 27.190 45.705 -76.560 447.440 -2.080 19.036 26.125 -15.562 8.368 -14.388 12.551 

0.55 44.313 52.598 -102.69 579.961 -3.441 30.030 32.861 -20.279 11.225 -18.108 16.909 

0.6 74.576 61.543 -140.40 766.380 -5.790 47.560 40.886 -26.341 15.068 -22.546 23.108 

0.65 131.174 73.536 -196.82 1038.48 -10.026 77.446 49.822 -33.878 20.132 -27.491 32.088 

0.7 245.234 90.315 -285.25 1455.30 -18.020 130.91 58.363 -42.708 26.543 -32.329 45.340 

0.72 322.076 99.018 -334.89 1685.91 -23.106 163.73 60.996 -46.353 29.412 -33.883 52.331 

Xe: Vq
0 =Vq

exp =0.05 (p=0.451), Ai =0.45 

0 -0.034 13.104 -9.690 82.620 -0.130 0.490 6.155 -3.051 1.401 -3.300 1.569 

0.1 0.527 15.080 -15.300 118.300 -0.140 0.160 9.072 -4.767 2.246 -5.042 2.354 

0.2 1.740 17.645 -24.100 169.400 -0.110 0.810 13.801 -7.433 3.619 -7.628 3.618 

0.3 4.349 21.083 -38.100 243.110 -0.050 3.370 21.103 -11.744 5.938 -11.611 5.717 

0.4 10.096 25.894 -60.490 349.730 -0.600 9.760 32.117 -18.717 9.889 -17.656 9.330 

0.5 23.454 33.020 -97.140 505.280 -2.3400 26.010 47.859 -29.790 16.601 -26.377 15.813 

0.55 36.372 38.000 -123.85 609.135 -4.2780 42.335 49.701 -34.064 19.896 -28.337 20.783 

0.6 57.653 44.462 -158.80 737.480 -7.7600 69.540 67.202 -45.939 27.434 -37.010 27.981 

0.65 94.445 53.126 -205.19 901.036 -14.180 116.29 75.048 -55.249 34.473 -41.554 37.874 

0.7 162.717 65.249 -268.50 1124.15 -26.500 200.17 78.433 -63.609 41.848 -43.522 51.829 
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